forked from OSchip/llvm-project
4024 lines
163 KiB
C++
4024 lines
163 KiB
C++
//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides a generalized class for OpenMP runtime code generation
|
|
// specialized by GPU targets NVPTX and AMDGCN.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGOpenMPRuntimeGPU.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclOpenMP.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/Cuda.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Frontend/OpenMP/OMPGridValues.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using namespace llvm::omp;
|
|
|
|
namespace {
|
|
/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
|
|
class NVPTXActionTy final : public PrePostActionTy {
|
|
llvm::FunctionCallee EnterCallee = nullptr;
|
|
ArrayRef<llvm::Value *> EnterArgs;
|
|
llvm::FunctionCallee ExitCallee = nullptr;
|
|
ArrayRef<llvm::Value *> ExitArgs;
|
|
bool Conditional = false;
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
public:
|
|
NVPTXActionTy(llvm::FunctionCallee EnterCallee,
|
|
ArrayRef<llvm::Value *> EnterArgs,
|
|
llvm::FunctionCallee ExitCallee,
|
|
ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
|
|
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
|
|
ExitArgs(ExitArgs), Conditional(Conditional) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
|
|
if (Conditional) {
|
|
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
|
|
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
|
|
ContBlock = CGF.createBasicBlock("omp_if.end");
|
|
// Generate the branch (If-stmt)
|
|
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
|
|
CGF.EmitBlock(ThenBlock);
|
|
}
|
|
}
|
|
void Done(CodeGenFunction &CGF) {
|
|
// Emit the rest of blocks/branches
|
|
CGF.EmitBranch(ContBlock);
|
|
CGF.EmitBlock(ContBlock, true);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
|
|
}
|
|
};
|
|
|
|
/// A class to track the execution mode when codegening directives within
|
|
/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
|
|
/// to the target region and used by containing directives such as 'parallel'
|
|
/// to emit optimized code.
|
|
class ExecutionRuntimeModesRAII {
|
|
private:
|
|
CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
|
|
CGOpenMPRuntimeGPU::EM_Unknown;
|
|
CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
|
|
bool SavedRuntimeMode = false;
|
|
bool *RuntimeMode = nullptr;
|
|
|
|
public:
|
|
/// Constructor for Non-SPMD mode.
|
|
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
|
|
: ExecMode(ExecMode) {
|
|
SavedExecMode = ExecMode;
|
|
ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
|
|
}
|
|
/// Constructor for SPMD mode.
|
|
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
|
|
bool &RuntimeMode, bool FullRuntimeMode)
|
|
: ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
|
|
SavedExecMode = ExecMode;
|
|
SavedRuntimeMode = RuntimeMode;
|
|
ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
|
|
RuntimeMode = FullRuntimeMode;
|
|
}
|
|
~ExecutionRuntimeModesRAII() {
|
|
ExecMode = SavedExecMode;
|
|
if (RuntimeMode)
|
|
*RuntimeMode = SavedRuntimeMode;
|
|
}
|
|
};
|
|
|
|
/// GPU Configuration: This information can be derived from cuda registers,
|
|
/// however, providing compile time constants helps generate more efficient
|
|
/// code. For all practical purposes this is fine because the configuration
|
|
/// is the same for all known NVPTX architectures.
|
|
enum MachineConfiguration : unsigned {
|
|
/// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
|
|
/// specific Grid Values like GV_Warp_Size, GV_Slot_Size
|
|
|
|
/// Global memory alignment for performance.
|
|
GlobalMemoryAlignment = 128,
|
|
|
|
/// Maximal size of the shared memory buffer.
|
|
SharedMemorySize = 128,
|
|
};
|
|
|
|
static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
|
|
RefExpr = RefExpr->IgnoreParens();
|
|
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
|
|
const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = TempASE->getBase()->IgnoreParenImpCasts();
|
|
RefExpr = Base;
|
|
} else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
|
|
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
|
|
Base = TempOASE->getBase()->IgnoreParenImpCasts();
|
|
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
|
|
Base = TempASE->getBase()->IgnoreParenImpCasts();
|
|
RefExpr = Base;
|
|
}
|
|
RefExpr = RefExpr->IgnoreParenImpCasts();
|
|
if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
|
|
return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
|
|
const auto *ME = cast<MemberExpr>(RefExpr);
|
|
return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
|
|
}
|
|
|
|
|
|
static RecordDecl *buildRecordForGlobalizedVars(
|
|
ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
|
|
ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
|
|
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&MappedDeclsFields, int BufSize) {
|
|
using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
|
|
if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
|
|
return nullptr;
|
|
SmallVector<VarsDataTy, 4> GlobalizedVars;
|
|
for (const ValueDecl *D : EscapedDecls)
|
|
GlobalizedVars.emplace_back(
|
|
CharUnits::fromQuantity(std::max(
|
|
C.getDeclAlign(D).getQuantity(),
|
|
static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
|
|
D);
|
|
for (const ValueDecl *D : EscapedDeclsForTeams)
|
|
GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
|
|
llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
|
|
return L.first > R.first;
|
|
});
|
|
|
|
// Build struct _globalized_locals_ty {
|
|
// /* globalized vars */[WarSize] align (max(decl_align,
|
|
// GlobalMemoryAlignment))
|
|
// /* globalized vars */ for EscapedDeclsForTeams
|
|
// };
|
|
RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
|
|
GlobalizedRD->startDefinition();
|
|
llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
|
|
EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
|
|
for (const auto &Pair : GlobalizedVars) {
|
|
const ValueDecl *VD = Pair.second;
|
|
QualType Type = VD->getType();
|
|
if (Type->isLValueReferenceType())
|
|
Type = C.getPointerType(Type.getNonReferenceType());
|
|
else
|
|
Type = Type.getNonReferenceType();
|
|
SourceLocation Loc = VD->getLocation();
|
|
FieldDecl *Field;
|
|
if (SingleEscaped.count(VD)) {
|
|
Field = FieldDecl::Create(
|
|
C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
|
|
C.getTrivialTypeSourceInfo(Type, SourceLocation()),
|
|
/*BW=*/nullptr, /*Mutable=*/false,
|
|
/*InitStyle=*/ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
if (VD->hasAttrs()) {
|
|
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
|
|
E(VD->getAttrs().end());
|
|
I != E; ++I)
|
|
Field->addAttr(*I);
|
|
}
|
|
} else {
|
|
llvm::APInt ArraySize(32, BufSize);
|
|
Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
|
|
0);
|
|
Field = FieldDecl::Create(
|
|
C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
|
|
C.getTrivialTypeSourceInfo(Type, SourceLocation()),
|
|
/*BW=*/nullptr, /*Mutable=*/false,
|
|
/*InitStyle=*/ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
|
|
static_cast<CharUnits::QuantityType>(
|
|
GlobalMemoryAlignment)));
|
|
Field->addAttr(AlignedAttr::CreateImplicit(
|
|
C, /*IsAlignmentExpr=*/true,
|
|
IntegerLiteral::Create(C, Align,
|
|
C.getIntTypeForBitwidth(32, /*Signed=*/0),
|
|
SourceLocation()),
|
|
{}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
|
|
}
|
|
GlobalizedRD->addDecl(Field);
|
|
MappedDeclsFields.try_emplace(VD, Field);
|
|
}
|
|
GlobalizedRD->completeDefinition();
|
|
return GlobalizedRD;
|
|
}
|
|
|
|
/// Get the list of variables that can escape their declaration context.
|
|
class CheckVarsEscapingDeclContext final
|
|
: public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
|
|
CodeGenFunction &CGF;
|
|
llvm::SetVector<const ValueDecl *> EscapedDecls;
|
|
llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
|
|
llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
|
|
RecordDecl *GlobalizedRD = nullptr;
|
|
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
|
|
bool AllEscaped = false;
|
|
bool IsForCombinedParallelRegion = false;
|
|
|
|
void markAsEscaped(const ValueDecl *VD) {
|
|
// Do not globalize declare target variables.
|
|
if (!isa<VarDecl>(VD) ||
|
|
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
|
|
return;
|
|
VD = cast<ValueDecl>(VD->getCanonicalDecl());
|
|
// Use user-specified allocation.
|
|
if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
|
|
return;
|
|
// Variables captured by value must be globalized.
|
|
if (auto *CSI = CGF.CapturedStmtInfo) {
|
|
if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
|
|
// Check if need to capture the variable that was already captured by
|
|
// value in the outer region.
|
|
if (!IsForCombinedParallelRegion) {
|
|
if (!FD->hasAttrs())
|
|
return;
|
|
const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
|
|
if (!Attr)
|
|
return;
|
|
if (((Attr->getCaptureKind() != OMPC_map) &&
|
|
!isOpenMPPrivate(Attr->getCaptureKind())) ||
|
|
((Attr->getCaptureKind() == OMPC_map) &&
|
|
!FD->getType()->isAnyPointerType()))
|
|
return;
|
|
}
|
|
if (!FD->getType()->isReferenceType()) {
|
|
assert(!VD->getType()->isVariablyModifiedType() &&
|
|
"Parameter captured by value with variably modified type");
|
|
EscapedParameters.insert(VD);
|
|
} else if (!IsForCombinedParallelRegion) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if ((!CGF.CapturedStmtInfo ||
|
|
(IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
|
|
VD->getType()->isReferenceType())
|
|
// Do not globalize variables with reference type.
|
|
return;
|
|
if (VD->getType()->isVariablyModifiedType())
|
|
EscapedVariableLengthDecls.insert(VD);
|
|
else
|
|
EscapedDecls.insert(VD);
|
|
}
|
|
|
|
void VisitValueDecl(const ValueDecl *VD) {
|
|
if (VD->getType()->isLValueReferenceType())
|
|
markAsEscaped(VD);
|
|
if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
|
|
if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
|
|
const bool SavedAllEscaped = AllEscaped;
|
|
AllEscaped = VD->getType()->isLValueReferenceType();
|
|
Visit(VarD->getInit());
|
|
AllEscaped = SavedAllEscaped;
|
|
}
|
|
}
|
|
}
|
|
void VisitOpenMPCapturedStmt(const CapturedStmt *S,
|
|
ArrayRef<OMPClause *> Clauses,
|
|
bool IsCombinedParallelRegion) {
|
|
if (!S)
|
|
return;
|
|
for (const CapturedStmt::Capture &C : S->captures()) {
|
|
if (C.capturesVariable() && !C.capturesVariableByCopy()) {
|
|
const ValueDecl *VD = C.getCapturedVar();
|
|
bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
|
|
if (IsCombinedParallelRegion) {
|
|
// Check if the variable is privatized in the combined construct and
|
|
// those private copies must be shared in the inner parallel
|
|
// directive.
|
|
IsForCombinedParallelRegion = false;
|
|
for (const OMPClause *C : Clauses) {
|
|
if (!isOpenMPPrivate(C->getClauseKind()) ||
|
|
C->getClauseKind() == OMPC_reduction ||
|
|
C->getClauseKind() == OMPC_linear ||
|
|
C->getClauseKind() == OMPC_private)
|
|
continue;
|
|
ArrayRef<const Expr *> Vars;
|
|
if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
|
|
Vars = PC->getVarRefs();
|
|
else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
|
|
Vars = PC->getVarRefs();
|
|
else
|
|
llvm_unreachable("Unexpected clause.");
|
|
for (const auto *E : Vars) {
|
|
const Decl *D =
|
|
cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
|
|
if (D == VD->getCanonicalDecl()) {
|
|
IsForCombinedParallelRegion = true;
|
|
break;
|
|
}
|
|
}
|
|
if (IsForCombinedParallelRegion)
|
|
break;
|
|
}
|
|
}
|
|
markAsEscaped(VD);
|
|
if (isa<OMPCapturedExprDecl>(VD))
|
|
VisitValueDecl(VD);
|
|
IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
|
|
}
|
|
}
|
|
}
|
|
|
|
void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
|
|
assert(!GlobalizedRD &&
|
|
"Record for globalized variables is built already.");
|
|
ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
|
|
unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
|
|
if (IsInTTDRegion)
|
|
EscapedDeclsForTeams = EscapedDecls.getArrayRef();
|
|
else
|
|
EscapedDeclsForParallel = EscapedDecls.getArrayRef();
|
|
GlobalizedRD = ::buildRecordForGlobalizedVars(
|
|
CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
|
|
MappedDeclsFields, WarpSize);
|
|
}
|
|
|
|
public:
|
|
CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
|
|
ArrayRef<const ValueDecl *> TeamsReductions)
|
|
: CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
|
|
}
|
|
virtual ~CheckVarsEscapingDeclContext() = default;
|
|
void VisitDeclStmt(const DeclStmt *S) {
|
|
if (!S)
|
|
return;
|
|
for (const Decl *D : S->decls())
|
|
if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
|
|
VisitValueDecl(VD);
|
|
}
|
|
void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
|
|
if (!D)
|
|
return;
|
|
if (!D->hasAssociatedStmt())
|
|
return;
|
|
if (const auto *S =
|
|
dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
|
|
// Do not analyze directives that do not actually require capturing,
|
|
// like `omp for` or `omp simd` directives.
|
|
llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
|
|
getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
|
|
if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
|
|
VisitStmt(S->getCapturedStmt());
|
|
return;
|
|
}
|
|
VisitOpenMPCapturedStmt(
|
|
S, D->clauses(),
|
|
CaptureRegions.back() == OMPD_parallel &&
|
|
isOpenMPDistributeDirective(D->getDirectiveKind()));
|
|
}
|
|
}
|
|
void VisitCapturedStmt(const CapturedStmt *S) {
|
|
if (!S)
|
|
return;
|
|
for (const CapturedStmt::Capture &C : S->captures()) {
|
|
if (C.capturesVariable() && !C.capturesVariableByCopy()) {
|
|
const ValueDecl *VD = C.getCapturedVar();
|
|
markAsEscaped(VD);
|
|
if (isa<OMPCapturedExprDecl>(VD))
|
|
VisitValueDecl(VD);
|
|
}
|
|
}
|
|
}
|
|
void VisitLambdaExpr(const LambdaExpr *E) {
|
|
if (!E)
|
|
return;
|
|
for (const LambdaCapture &C : E->captures()) {
|
|
if (C.capturesVariable()) {
|
|
if (C.getCaptureKind() == LCK_ByRef) {
|
|
const ValueDecl *VD = C.getCapturedVar();
|
|
markAsEscaped(VD);
|
|
if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
|
|
VisitValueDecl(VD);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
void VisitBlockExpr(const BlockExpr *E) {
|
|
if (!E)
|
|
return;
|
|
for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
|
|
if (C.isByRef()) {
|
|
const VarDecl *VD = C.getVariable();
|
|
markAsEscaped(VD);
|
|
if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
|
|
VisitValueDecl(VD);
|
|
}
|
|
}
|
|
}
|
|
void VisitCallExpr(const CallExpr *E) {
|
|
if (!E)
|
|
return;
|
|
for (const Expr *Arg : E->arguments()) {
|
|
if (!Arg)
|
|
continue;
|
|
if (Arg->isLValue()) {
|
|
const bool SavedAllEscaped = AllEscaped;
|
|
AllEscaped = true;
|
|
Visit(Arg);
|
|
AllEscaped = SavedAllEscaped;
|
|
} else {
|
|
Visit(Arg);
|
|
}
|
|
}
|
|
Visit(E->getCallee());
|
|
}
|
|
void VisitDeclRefExpr(const DeclRefExpr *E) {
|
|
if (!E)
|
|
return;
|
|
const ValueDecl *VD = E->getDecl();
|
|
if (AllEscaped)
|
|
markAsEscaped(VD);
|
|
if (isa<OMPCapturedExprDecl>(VD))
|
|
VisitValueDecl(VD);
|
|
else if (const auto *VarD = dyn_cast<VarDecl>(VD))
|
|
if (VarD->isInitCapture())
|
|
VisitValueDecl(VD);
|
|
}
|
|
void VisitUnaryOperator(const UnaryOperator *E) {
|
|
if (!E)
|
|
return;
|
|
if (E->getOpcode() == UO_AddrOf) {
|
|
const bool SavedAllEscaped = AllEscaped;
|
|
AllEscaped = true;
|
|
Visit(E->getSubExpr());
|
|
AllEscaped = SavedAllEscaped;
|
|
} else {
|
|
Visit(E->getSubExpr());
|
|
}
|
|
}
|
|
void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
|
|
if (!E)
|
|
return;
|
|
if (E->getCastKind() == CK_ArrayToPointerDecay) {
|
|
const bool SavedAllEscaped = AllEscaped;
|
|
AllEscaped = true;
|
|
Visit(E->getSubExpr());
|
|
AllEscaped = SavedAllEscaped;
|
|
} else {
|
|
Visit(E->getSubExpr());
|
|
}
|
|
}
|
|
void VisitExpr(const Expr *E) {
|
|
if (!E)
|
|
return;
|
|
bool SavedAllEscaped = AllEscaped;
|
|
if (!E->isLValue())
|
|
AllEscaped = false;
|
|
for (const Stmt *Child : E->children())
|
|
if (Child)
|
|
Visit(Child);
|
|
AllEscaped = SavedAllEscaped;
|
|
}
|
|
void VisitStmt(const Stmt *S) {
|
|
if (!S)
|
|
return;
|
|
for (const Stmt *Child : S->children())
|
|
if (Child)
|
|
Visit(Child);
|
|
}
|
|
|
|
/// Returns the record that handles all the escaped local variables and used
|
|
/// instead of their original storage.
|
|
const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
|
|
if (!GlobalizedRD)
|
|
buildRecordForGlobalizedVars(IsInTTDRegion);
|
|
return GlobalizedRD;
|
|
}
|
|
|
|
/// Returns the field in the globalized record for the escaped variable.
|
|
const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
|
|
assert(GlobalizedRD &&
|
|
"Record for globalized variables must be generated already.");
|
|
auto I = MappedDeclsFields.find(VD);
|
|
if (I == MappedDeclsFields.end())
|
|
return nullptr;
|
|
return I->getSecond();
|
|
}
|
|
|
|
/// Returns the list of the escaped local variables/parameters.
|
|
ArrayRef<const ValueDecl *> getEscapedDecls() const {
|
|
return EscapedDecls.getArrayRef();
|
|
}
|
|
|
|
/// Checks if the escaped local variable is actually a parameter passed by
|
|
/// value.
|
|
const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
|
|
return EscapedParameters;
|
|
}
|
|
|
|
/// Returns the list of the escaped variables with the variably modified
|
|
/// types.
|
|
ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
|
|
return EscapedVariableLengthDecls.getArrayRef();
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
/// Get the id of the warp in the block.
|
|
/// We assume that the warp size is 32, which is always the case
|
|
/// on the NVPTX device, to generate more efficient code.
|
|
static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
unsigned LaneIDBits =
|
|
llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
|
|
auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
|
|
}
|
|
|
|
/// Get the id of the current lane in the Warp.
|
|
/// We assume that the warp size is 32, which is always the case
|
|
/// on the NVPTX device, to generate more efficient code.
|
|
static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
unsigned LaneIDBits =
|
|
llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
|
|
unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
|
|
auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
|
|
"nvptx_lane_id");
|
|
}
|
|
|
|
CGOpenMPRuntimeGPU::ExecutionMode
|
|
CGOpenMPRuntimeGPU::getExecutionMode() const {
|
|
return CurrentExecutionMode;
|
|
}
|
|
|
|
static CGOpenMPRuntimeGPU::DataSharingMode
|
|
getDataSharingMode(CodeGenModule &CGM) {
|
|
return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
|
|
: CGOpenMPRuntimeGPU::Generic;
|
|
}
|
|
|
|
/// Check for inner (nested) SPMD construct, if any
|
|
static bool hasNestedSPMDDirective(ASTContext &Ctx,
|
|
const OMPExecutableDirective &D) {
|
|
const auto *CS = D.getInnermostCapturedStmt();
|
|
const auto *Body =
|
|
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
|
|
if (const auto *NestedDir =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_target:
|
|
if (isOpenMPParallelDirective(DKind))
|
|
return true;
|
|
if (DKind == OMPD_teams) {
|
|
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return false;
|
|
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPParallelDirective(DKind))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
case OMPD_target_teams:
|
|
return isOpenMPParallelDirective(DKind);
|
|
case OMPD_target_simd:
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_depobj:
|
|
case OMPD_scan:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_begin_declare_variant:
|
|
case OMPD_end_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
default:
|
|
llvm_unreachable("Unexpected directive.");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool supportsSPMDExecutionMode(ASTContext &Ctx,
|
|
const OMPExecutableDirective &D) {
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
switch (DirectiveKind) {
|
|
case OMPD_target:
|
|
case OMPD_target_teams:
|
|
return hasNestedSPMDDirective(Ctx, D);
|
|
case OMPD_target_parallel:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_simd:
|
|
case OMPD_target_teams_distribute_simd:
|
|
return true;
|
|
case OMPD_target_teams_distribute:
|
|
return false;
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_depobj:
|
|
case OMPD_scan:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_begin_declare_variant:
|
|
case OMPD_end_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable(
|
|
"Unknown programming model for OpenMP directive on NVPTX target.");
|
|
}
|
|
|
|
/// Check if the directive is loops based and has schedule clause at all or has
|
|
/// static scheduling.
|
|
static bool hasStaticScheduling(const OMPExecutableDirective &D) {
|
|
assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
|
|
isOpenMPLoopDirective(D.getDirectiveKind()) &&
|
|
"Expected loop-based directive.");
|
|
return !D.hasClausesOfKind<OMPOrderedClause>() &&
|
|
(!D.hasClausesOfKind<OMPScheduleClause>() ||
|
|
llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
|
|
[](const OMPScheduleClause *C) {
|
|
return C->getScheduleKind() == OMPC_SCHEDULE_static;
|
|
}));
|
|
}
|
|
|
|
/// Check for inner (nested) lightweight runtime construct, if any
|
|
static bool hasNestedLightweightDirective(ASTContext &Ctx,
|
|
const OMPExecutableDirective &D) {
|
|
assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
|
|
const auto *CS = D.getInnermostCapturedStmt();
|
|
const auto *Body =
|
|
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
|
|
if (const auto *NestedDir =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
|
|
switch (D.getDirectiveKind()) {
|
|
case OMPD_target:
|
|
if (isOpenMPParallelDirective(DKind) &&
|
|
isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
|
|
hasStaticScheduling(*NestedDir))
|
|
return true;
|
|
if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
|
|
return true;
|
|
if (DKind == OMPD_parallel) {
|
|
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return false;
|
|
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPWorksharingDirective(DKind) &&
|
|
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
|
|
return true;
|
|
}
|
|
} else if (DKind == OMPD_teams) {
|
|
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return false;
|
|
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPParallelDirective(DKind) &&
|
|
isOpenMPWorksharingDirective(DKind) &&
|
|
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
|
|
return true;
|
|
if (DKind == OMPD_parallel) {
|
|
Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return false;
|
|
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPWorksharingDirective(DKind) &&
|
|
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
case OMPD_target_teams:
|
|
if (isOpenMPParallelDirective(DKind) &&
|
|
isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
|
|
hasStaticScheduling(*NestedDir))
|
|
return true;
|
|
if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
|
|
return true;
|
|
if (DKind == OMPD_parallel) {
|
|
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true);
|
|
if (!Body)
|
|
return false;
|
|
ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
|
|
if (const auto *NND =
|
|
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
|
|
DKind = NND->getDirectiveKind();
|
|
if (isOpenMPWorksharingDirective(DKind) &&
|
|
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
case OMPD_target_parallel:
|
|
if (DKind == OMPD_simd)
|
|
return true;
|
|
return isOpenMPWorksharingDirective(DKind) &&
|
|
isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
|
|
case OMPD_target_teams_distribute:
|
|
case OMPD_target_simd:
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_teams_distribute_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_depobj:
|
|
case OMPD_scan:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_begin_declare_variant:
|
|
case OMPD_end_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
default:
|
|
llvm_unreachable("Unexpected directive.");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Checks if the construct supports lightweight runtime. It must be SPMD
|
|
/// construct + inner loop-based construct with static scheduling.
|
|
static bool supportsLightweightRuntime(ASTContext &Ctx,
|
|
const OMPExecutableDirective &D) {
|
|
if (!supportsSPMDExecutionMode(Ctx, D))
|
|
return false;
|
|
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
|
|
switch (DirectiveKind) {
|
|
case OMPD_target:
|
|
case OMPD_target_teams:
|
|
case OMPD_target_parallel:
|
|
return hasNestedLightweightDirective(Ctx, D);
|
|
case OMPD_target_parallel_for:
|
|
case OMPD_target_parallel_for_simd:
|
|
case OMPD_target_teams_distribute_parallel_for:
|
|
case OMPD_target_teams_distribute_parallel_for_simd:
|
|
// (Last|First)-privates must be shared in parallel region.
|
|
return hasStaticScheduling(D);
|
|
case OMPD_target_simd:
|
|
case OMPD_target_teams_distribute_simd:
|
|
return true;
|
|
case OMPD_target_teams_distribute:
|
|
return false;
|
|
case OMPD_parallel:
|
|
case OMPD_for:
|
|
case OMPD_parallel_for:
|
|
case OMPD_parallel_master:
|
|
case OMPD_parallel_sections:
|
|
case OMPD_for_simd:
|
|
case OMPD_parallel_for_simd:
|
|
case OMPD_cancel:
|
|
case OMPD_cancellation_point:
|
|
case OMPD_ordered:
|
|
case OMPD_threadprivate:
|
|
case OMPD_allocate:
|
|
case OMPD_task:
|
|
case OMPD_simd:
|
|
case OMPD_sections:
|
|
case OMPD_section:
|
|
case OMPD_single:
|
|
case OMPD_master:
|
|
case OMPD_critical:
|
|
case OMPD_taskyield:
|
|
case OMPD_barrier:
|
|
case OMPD_taskwait:
|
|
case OMPD_taskgroup:
|
|
case OMPD_atomic:
|
|
case OMPD_flush:
|
|
case OMPD_depobj:
|
|
case OMPD_scan:
|
|
case OMPD_teams:
|
|
case OMPD_target_data:
|
|
case OMPD_target_exit_data:
|
|
case OMPD_target_enter_data:
|
|
case OMPD_distribute:
|
|
case OMPD_distribute_simd:
|
|
case OMPD_distribute_parallel_for:
|
|
case OMPD_distribute_parallel_for_simd:
|
|
case OMPD_teams_distribute:
|
|
case OMPD_teams_distribute_simd:
|
|
case OMPD_teams_distribute_parallel_for:
|
|
case OMPD_teams_distribute_parallel_for_simd:
|
|
case OMPD_target_update:
|
|
case OMPD_declare_simd:
|
|
case OMPD_declare_variant:
|
|
case OMPD_begin_declare_variant:
|
|
case OMPD_end_declare_variant:
|
|
case OMPD_declare_target:
|
|
case OMPD_end_declare_target:
|
|
case OMPD_declare_reduction:
|
|
case OMPD_declare_mapper:
|
|
case OMPD_taskloop:
|
|
case OMPD_taskloop_simd:
|
|
case OMPD_master_taskloop:
|
|
case OMPD_master_taskloop_simd:
|
|
case OMPD_parallel_master_taskloop:
|
|
case OMPD_parallel_master_taskloop_simd:
|
|
case OMPD_requires:
|
|
case OMPD_unknown:
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable(
|
|
"Unknown programming model for OpenMP directive on NVPTX target.");
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
|
|
StringRef ParentName,
|
|
llvm::Function *&OutlinedFn,
|
|
llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
|
|
EntryFunctionState EST;
|
|
WrapperFunctionsMap.clear();
|
|
|
|
// Emit target region as a standalone region.
|
|
class NVPTXPrePostActionTy : public PrePostActionTy {
|
|
CGOpenMPRuntimeGPU::EntryFunctionState &EST;
|
|
|
|
public:
|
|
NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
|
|
: EST(EST) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
auto &RT =
|
|
static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
|
|
// Skip target region initialization.
|
|
RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
auto &RT =
|
|
static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
RT.clearLocThreadIdInsertPt(CGF);
|
|
RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
|
|
}
|
|
} Action(EST);
|
|
CodeGen.setAction(Action);
|
|
IsInTTDRegion = true;
|
|
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
|
|
IsOffloadEntry, CodeGen);
|
|
IsInTTDRegion = false;
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
|
|
EntryFunctionState &EST, bool IsSPMD) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
|
|
IsInTargetMasterThreadRegion = IsSPMD;
|
|
if (!IsSPMD)
|
|
emitGenericVarsProlog(CGF, EST.Loc);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
|
|
EntryFunctionState &EST,
|
|
bool IsSPMD) {
|
|
if (!IsSPMD)
|
|
emitGenericVarsEpilog(CGF);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
|
|
StringRef ParentName,
|
|
llvm::Function *&OutlinedFn,
|
|
llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry,
|
|
const RegionCodeGenTy &CodeGen) {
|
|
ExecutionRuntimeModesRAII ModeRAII(
|
|
CurrentExecutionMode, RequiresFullRuntime,
|
|
CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
|
|
!supportsLightweightRuntime(CGM.getContext(), D));
|
|
EntryFunctionState EST;
|
|
|
|
// Emit target region as a standalone region.
|
|
class NVPTXPrePostActionTy : public PrePostActionTy {
|
|
CGOpenMPRuntimeGPU &RT;
|
|
CGOpenMPRuntimeGPU::EntryFunctionState &EST;
|
|
|
|
public:
|
|
NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
|
|
CGOpenMPRuntimeGPU::EntryFunctionState &EST)
|
|
: RT(RT), EST(EST) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
|
|
// Skip target region initialization.
|
|
RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
RT.clearLocThreadIdInsertPt(CGF);
|
|
RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
|
|
}
|
|
} Action(*this, EST);
|
|
CodeGen.setAction(Action);
|
|
IsInTTDRegion = true;
|
|
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
|
|
IsOffloadEntry, CodeGen);
|
|
IsInTTDRegion = false;
|
|
}
|
|
|
|
// Create a unique global variable to indicate the execution mode of this target
|
|
// region. The execution mode is either 'generic', or 'spmd' depending on the
|
|
// target directive. This variable is picked up by the offload library to setup
|
|
// the device appropriately before kernel launch. If the execution mode is
|
|
// 'generic', the runtime reserves one warp for the master, otherwise, all
|
|
// warps participate in parallel work.
|
|
static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
|
|
bool Mode) {
|
|
auto *GVMode = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
|
|
llvm::GlobalValue::WeakAnyLinkage,
|
|
llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
|
|
: OMP_TGT_EXEC_MODE_GENERIC),
|
|
Twine(Name, "_exec_mode"));
|
|
CGM.addCompilerUsedGlobal(GVMode);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
|
|
llvm::Constant *Addr,
|
|
uint64_t Size, int32_t,
|
|
llvm::GlobalValue::LinkageTypes) {
|
|
// TODO: Add support for global variables on the device after declare target
|
|
// support.
|
|
llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
|
|
if (!Fn)
|
|
return;
|
|
|
|
llvm::Module &M = CGM.getModule();
|
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
|
|
// Get "nvvm.annotations" metadata node.
|
|
llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
|
|
|
|
llvm::Metadata *MDVals[] = {
|
|
llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
|
|
llvm::ConstantAsMetadata::get(
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
|
|
// Append metadata to nvvm.annotations.
|
|
MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
|
|
|
|
// Add a function attribute for the kernel.
|
|
Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
|
|
const OMPExecutableDirective &D, StringRef ParentName,
|
|
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
|
|
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
|
|
if (!IsOffloadEntry) // Nothing to do.
|
|
return;
|
|
|
|
assert(!ParentName.empty() && "Invalid target region parent name!");
|
|
|
|
bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
|
|
if (Mode)
|
|
emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
|
|
CodeGen);
|
|
else
|
|
emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
|
|
CodeGen);
|
|
|
|
setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
|
|
}
|
|
|
|
namespace {
|
|
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
|
|
/// Enum for accesseing the reserved_2 field of the ident_t struct.
|
|
enum ModeFlagsTy : unsigned {
|
|
/// Bit set to 1 when in SPMD mode.
|
|
KMP_IDENT_SPMD_MODE = 0x01,
|
|
/// Bit set to 1 when a simplified runtime is used.
|
|
KMP_IDENT_SIMPLE_RT_MODE = 0x02,
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
|
|
};
|
|
|
|
/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
|
|
static const ModeFlagsTy UndefinedMode =
|
|
(~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
|
|
} // anonymous namespace
|
|
|
|
unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
|
|
switch (getExecutionMode()) {
|
|
case EM_SPMD:
|
|
if (requiresFullRuntime())
|
|
return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
|
|
return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
|
|
case EM_NonSPMD:
|
|
assert(requiresFullRuntime() && "Expected full runtime.");
|
|
return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
|
|
case EM_Unknown:
|
|
return UndefinedMode;
|
|
}
|
|
llvm_unreachable("Unknown flags are requested.");
|
|
}
|
|
|
|
CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
|
|
: CGOpenMPRuntime(CGM, "_", "$") {
|
|
if (!CGM.getLangOpts().OpenMPIsDevice)
|
|
llvm_unreachable("OpenMP can only handle device code.");
|
|
|
|
llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
|
|
if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
|
|
OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
|
|
"__omp_rtl_debug_kind");
|
|
OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
|
|
"__omp_rtl_assume_teams_oversubscription");
|
|
OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
|
|
"__omp_rtl_assume_threads_oversubscription");
|
|
OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
|
|
"__omp_rtl_assume_no_thread_state");
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
|
|
ProcBindKind ProcBind,
|
|
SourceLocation Loc) {
|
|
// Do nothing in case of SPMD mode and L0 parallel.
|
|
if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
|
|
return;
|
|
|
|
CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
|
|
llvm::Value *NumThreads,
|
|
SourceLocation Loc) {
|
|
// Nothing to do.
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
|
|
const Expr *NumTeams,
|
|
const Expr *ThreadLimit,
|
|
SourceLocation Loc) {}
|
|
|
|
llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
// Emit target region as a standalone region.
|
|
class NVPTXPrePostActionTy : public PrePostActionTy {
|
|
bool &IsInParallelRegion;
|
|
bool PrevIsInParallelRegion;
|
|
|
|
public:
|
|
NVPTXPrePostActionTy(bool &IsInParallelRegion)
|
|
: IsInParallelRegion(IsInParallelRegion) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
PrevIsInParallelRegion = IsInParallelRegion;
|
|
IsInParallelRegion = true;
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
IsInParallelRegion = PrevIsInParallelRegion;
|
|
}
|
|
} Action(IsInParallelRegion);
|
|
CodeGen.setAction(Action);
|
|
bool PrevIsInTTDRegion = IsInTTDRegion;
|
|
IsInTTDRegion = false;
|
|
bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
|
|
IsInTargetMasterThreadRegion = false;
|
|
auto *OutlinedFun =
|
|
cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
|
|
D, ThreadIDVar, InnermostKind, CodeGen));
|
|
IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
|
|
IsInTTDRegion = PrevIsInTTDRegion;
|
|
if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
|
|
!IsInParallelRegion) {
|
|
llvm::Function *WrapperFun =
|
|
createParallelDataSharingWrapper(OutlinedFun, D);
|
|
WrapperFunctionsMap[OutlinedFun] = WrapperFun;
|
|
}
|
|
|
|
return OutlinedFun;
|
|
}
|
|
|
|
/// Get list of lastprivate variables from the teams distribute ... or
|
|
/// teams {distribute ...} directives.
|
|
static void
|
|
getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
|
|
llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
|
|
assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
|
|
"expected teams directive.");
|
|
const OMPExecutableDirective *Dir = &D;
|
|
if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
|
|
if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
|
|
Ctx,
|
|
D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
|
|
/*IgnoreCaptured=*/true))) {
|
|
Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
|
|
if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
|
|
Dir = nullptr;
|
|
}
|
|
}
|
|
if (!Dir)
|
|
return;
|
|
for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
|
|
for (const Expr *E : C->getVarRefs())
|
|
Vars.push_back(getPrivateItem(E));
|
|
}
|
|
}
|
|
|
|
/// Get list of reduction variables from the teams ... directives.
|
|
static void
|
|
getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
|
|
llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
|
|
assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
|
|
"expected teams directive.");
|
|
for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
|
|
for (const Expr *E : C->privates())
|
|
Vars.push_back(getPrivateItem(E));
|
|
}
|
|
}
|
|
|
|
llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
|
|
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
|
|
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
|
|
SourceLocation Loc = D.getBeginLoc();
|
|
|
|
const RecordDecl *GlobalizedRD = nullptr;
|
|
llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
|
|
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
|
|
unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
|
|
// Globalize team reductions variable unconditionally in all modes.
|
|
if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
|
|
getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
|
|
if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
|
|
getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
|
|
if (!LastPrivatesReductions.empty()) {
|
|
GlobalizedRD = ::buildRecordForGlobalizedVars(
|
|
CGM.getContext(), llvm::None, LastPrivatesReductions,
|
|
MappedDeclsFields, WarpSize);
|
|
}
|
|
} else if (!LastPrivatesReductions.empty()) {
|
|
assert(!TeamAndReductions.first &&
|
|
"Previous team declaration is not expected.");
|
|
TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
|
|
std::swap(TeamAndReductions.second, LastPrivatesReductions);
|
|
}
|
|
|
|
// Emit target region as a standalone region.
|
|
class NVPTXPrePostActionTy : public PrePostActionTy {
|
|
SourceLocation &Loc;
|
|
const RecordDecl *GlobalizedRD;
|
|
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&MappedDeclsFields;
|
|
|
|
public:
|
|
NVPTXPrePostActionTy(
|
|
SourceLocation &Loc, const RecordDecl *GlobalizedRD,
|
|
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&MappedDeclsFields)
|
|
: Loc(Loc), GlobalizedRD(GlobalizedRD),
|
|
MappedDeclsFields(MappedDeclsFields) {}
|
|
void Enter(CodeGenFunction &CGF) override {
|
|
auto &Rt =
|
|
static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
if (GlobalizedRD) {
|
|
auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
|
|
I->getSecond().MappedParams =
|
|
std::make_unique<CodeGenFunction::OMPMapVars>();
|
|
DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
|
|
for (const auto &Pair : MappedDeclsFields) {
|
|
assert(Pair.getFirst()->isCanonicalDecl() &&
|
|
"Expected canonical declaration");
|
|
Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
|
|
}
|
|
}
|
|
Rt.emitGenericVarsProlog(CGF, Loc);
|
|
}
|
|
void Exit(CodeGenFunction &CGF) override {
|
|
static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
|
|
.emitGenericVarsEpilog(CGF);
|
|
}
|
|
} Action(Loc, GlobalizedRD, MappedDeclsFields);
|
|
CodeGen.setAction(Action);
|
|
llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
|
|
D, ThreadIDVar, InnermostKind, CodeGen);
|
|
|
|
return OutlinedFun;
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
bool WithSPMDCheck) {
|
|
if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
|
|
getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
|
|
return;
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
|
|
if (I == FunctionGlobalizedDecls.end())
|
|
return;
|
|
|
|
for (auto &Rec : I->getSecond().LocalVarData) {
|
|
const auto *VD = cast<VarDecl>(Rec.first);
|
|
bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
|
|
QualType VarTy = VD->getType();
|
|
|
|
// Get the local allocation of a firstprivate variable before sharing
|
|
llvm::Value *ParValue;
|
|
if (EscapedParam) {
|
|
LValue ParLVal =
|
|
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
|
|
ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
|
|
}
|
|
|
|
// Allocate space for the variable to be globalized
|
|
llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
|
|
llvm::CallBase *VoidPtr =
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_alloc_shared),
|
|
AllocArgs, VD->getName());
|
|
// FIXME: We should use the variables actual alignment as an argument.
|
|
VoidPtr->addRetAttr(llvm::Attribute::get(
|
|
CGM.getLLVMContext(), llvm::Attribute::Alignment,
|
|
CGM.getContext().getTargetInfo().getNewAlign() / 8));
|
|
|
|
// Cast the void pointer and get the address of the globalized variable.
|
|
llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
|
|
llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
|
|
LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
|
|
Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
|
|
Rec.second.GlobalizedVal = VoidPtr;
|
|
|
|
// Assign the local allocation to the newly globalized location.
|
|
if (EscapedParam) {
|
|
CGF.EmitStoreOfScalar(ParValue, VarAddr);
|
|
I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
|
|
}
|
|
if (auto *DI = CGF.getDebugInfo())
|
|
VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
|
|
}
|
|
for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
|
|
// Use actual memory size of the VLA object including the padding
|
|
// for alignment purposes.
|
|
llvm::Value *Size = CGF.getTypeSize(VD->getType());
|
|
CharUnits Align = CGM.getContext().getDeclAlign(VD);
|
|
Size = Bld.CreateNUWAdd(
|
|
Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
|
|
llvm::Value *AlignVal =
|
|
llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
|
|
|
|
Size = Bld.CreateUDiv(Size, AlignVal);
|
|
Size = Bld.CreateNUWMul(Size, AlignVal);
|
|
|
|
// Allocate space for this VLA object to be globalized.
|
|
llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
|
|
llvm::CallBase *VoidPtr =
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_alloc_shared),
|
|
AllocArgs, VD->getName());
|
|
VoidPtr->addRetAttr(
|
|
llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
|
|
CGM.getContext().getTargetInfo().getNewAlign()));
|
|
|
|
I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
|
|
std::pair<llvm::Value *, llvm::Value *>(
|
|
{VoidPtr, CGF.getTypeSize(VD->getType())}));
|
|
LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
|
|
CGM.getContext().getDeclAlign(VD),
|
|
AlignmentSource::Decl);
|
|
I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
|
|
Base.getAddress(CGF));
|
|
}
|
|
I->getSecond().MappedParams->apply(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
|
|
bool WithSPMDCheck) {
|
|
if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
|
|
getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
|
|
return;
|
|
|
|
const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
|
|
if (I != FunctionGlobalizedDecls.end()) {
|
|
// Deallocate the memory for each globalized VLA object
|
|
for (auto AddrSizePair :
|
|
llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_free_shared),
|
|
{AddrSizePair.first, AddrSizePair.second});
|
|
}
|
|
// Deallocate the memory for each globalized value
|
|
for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
|
|
const auto *VD = cast<VarDecl>(Rec.first);
|
|
I->getSecond().MappedParams->restore(CGF);
|
|
|
|
llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
|
|
CGF.getTypeSize(VD->getType())};
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_free_shared),
|
|
FreeArgs);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
|
|
/*Name=*/".zero.addr");
|
|
CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
|
|
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
|
|
OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
|
|
OutlinedFnArgs.push_back(ZeroAddr.getPointer());
|
|
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
|
|
emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
llvm::Function *OutlinedFn,
|
|
ArrayRef<llvm::Value *> CapturedVars,
|
|
const Expr *IfCond,
|
|
llvm::Value *NumThreads) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
|
|
NumThreads](CodeGenFunction &CGF,
|
|
PrePostActionTy &Action) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
llvm::Value *NumThreadsVal = NumThreads;
|
|
llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
|
|
llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
|
|
if (WFn)
|
|
ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
|
|
llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
|
|
|
|
// Create a private scope that will globalize the arguments
|
|
// passed from the outside of the target region.
|
|
// TODO: Is that needed?
|
|
CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
|
|
|
|
Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
|
|
llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
|
|
"captured_vars_addrs");
|
|
// There's something to share.
|
|
if (!CapturedVars.empty()) {
|
|
// Prepare for parallel region. Indicate the outlined function.
|
|
ASTContext &Ctx = CGF.getContext();
|
|
unsigned Idx = 0;
|
|
for (llvm::Value *V : CapturedVars) {
|
|
Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
|
|
llvm::Value *PtrV;
|
|
if (V->getType()->isIntegerTy())
|
|
PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
|
|
else
|
|
PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
|
|
CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
|
|
Ctx.getPointerType(Ctx.VoidPtrTy));
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
llvm::Value *IfCondVal = nullptr;
|
|
if (IfCond)
|
|
IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
|
|
/* isSigned */ false);
|
|
else
|
|
IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
|
|
|
|
if (!NumThreadsVal)
|
|
NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
|
|
else
|
|
NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
|
|
|
|
assert(IfCondVal && "Expected a value");
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
llvm::Value *Args[] = {
|
|
RTLoc,
|
|
getThreadID(CGF, Loc),
|
|
IfCondVal,
|
|
NumThreadsVal,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, -1),
|
|
FnPtr,
|
|
ID,
|
|
Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
|
|
CGF.VoidPtrPtrTy),
|
|
llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_parallel_51),
|
|
Args);
|
|
};
|
|
|
|
RegionCodeGenTy RCG(ParallelGen);
|
|
RCG(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
|
|
// Always emit simple barriers!
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_barrier_simple_spmd(nullptr, 0);
|
|
// This function does not use parameters, so we can emit just default values.
|
|
llvm::Value *Args[] = {
|
|
llvm::ConstantPointerNull::get(
|
|
cast<llvm::PointerType>(getIdentTyPointerTy())),
|
|
llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
|
|
Args);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
|
|
SourceLocation Loc,
|
|
OpenMPDirectiveKind Kind, bool,
|
|
bool) {
|
|
// Always emit simple barriers!
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
// Build call __kmpc_cancel_barrier(loc, thread_id);
|
|
unsigned Flags = getDefaultFlagsForBarriers(Kind);
|
|
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
|
|
getThreadID(CGF, Loc)};
|
|
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_barrier),
|
|
Args);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitCriticalRegion(
|
|
CodeGenFunction &CGF, StringRef CriticalName,
|
|
const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
|
|
const Expr *Hint) {
|
|
llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
|
|
llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
|
|
llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
|
|
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
|
|
|
|
auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
|
|
// Get the mask of active threads in the warp.
|
|
llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
|
|
// Fetch team-local id of the thread.
|
|
llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
|
|
|
|
// Get the width of the team.
|
|
llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
|
|
|
|
// Initialize the counter variable for the loop.
|
|
QualType Int32Ty =
|
|
CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
|
|
Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
|
|
LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
|
|
CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
|
|
/*isInit=*/true);
|
|
|
|
// Block checks if loop counter exceeds upper bound.
|
|
CGF.EmitBlock(LoopBB);
|
|
llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
|
|
llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
|
|
CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
|
|
|
|
// Block tests which single thread should execute region, and which threads
|
|
// should go straight to synchronisation point.
|
|
CGF.EmitBlock(TestBB);
|
|
CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
|
|
llvm::Value *CmpThreadToCounter =
|
|
CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
|
|
CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
|
|
|
|
// Block emits the body of the critical region.
|
|
CGF.EmitBlock(BodyBB);
|
|
|
|
// Output the critical statement.
|
|
CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
|
|
Hint);
|
|
|
|
// After the body surrounded by the critical region, the single executing
|
|
// thread will jump to the synchronisation point.
|
|
// Block waits for all threads in current team to finish then increments the
|
|
// counter variable and returns to the loop.
|
|
CGF.EmitBlock(SyncBB);
|
|
// Reconverge active threads in the warp.
|
|
(void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_syncwarp),
|
|
Mask);
|
|
|
|
llvm::Value *IncCounterVal =
|
|
CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
|
|
CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
|
|
CGF.EmitBranch(LoopBB);
|
|
|
|
// Block that is reached when all threads in the team complete the region.
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
/// Cast value to the specified type.
|
|
static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
|
|
QualType ValTy, QualType CastTy,
|
|
SourceLocation Loc) {
|
|
assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
|
|
"Cast type must sized.");
|
|
assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
|
|
"Val type must sized.");
|
|
llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
|
|
if (ValTy == CastTy)
|
|
return Val;
|
|
if (CGF.getContext().getTypeSizeInChars(ValTy) ==
|
|
CGF.getContext().getTypeSizeInChars(CastTy))
|
|
return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
|
|
if (CastTy->isIntegerType() && ValTy->isIntegerType())
|
|
return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
|
|
CastTy->hasSignedIntegerRepresentation());
|
|
Address CastItem = CGF.CreateMemTemp(CastTy);
|
|
Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
|
|
Val->getType());
|
|
CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
}
|
|
|
|
/// This function creates calls to one of two shuffle functions to copy
|
|
/// variables between lanes in a warp.
|
|
static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
|
|
llvm::Value *Elem,
|
|
QualType ElemType,
|
|
llvm::Value *Offset,
|
|
SourceLocation Loc) {
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
CGOpenMPRuntimeGPU &RT =
|
|
*(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
|
|
llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
|
|
|
|
CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
|
|
assert(Size.getQuantity() <= 8 &&
|
|
"Unsupported bitwidth in shuffle instruction.");
|
|
|
|
RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
|
|
? OMPRTL___kmpc_shuffle_int32
|
|
: OMPRTL___kmpc_shuffle_int64;
|
|
|
|
// Cast all types to 32- or 64-bit values before calling shuffle routines.
|
|
QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
|
|
Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
|
|
llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
|
|
llvm::Value *WarpSize =
|
|
Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
|
|
|
|
llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
|
|
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
|
|
{ElemCast, Offset, WarpSize});
|
|
|
|
return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
|
|
}
|
|
|
|
static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
|
|
Address DestAddr, QualType ElemType,
|
|
llvm::Value *Offset, SourceLocation Loc) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
|
|
// Create the loop over the big sized data.
|
|
// ptr = (void*)Elem;
|
|
// ptrEnd = (void*) Elem + 1;
|
|
// Step = 8;
|
|
// while (ptr + Step < ptrEnd)
|
|
// shuffle((int64_t)*ptr);
|
|
// Step = 4;
|
|
// while (ptr + Step < ptrEnd)
|
|
// shuffle((int32_t)*ptr);
|
|
// ...
|
|
Address ElemPtr = DestAddr;
|
|
Address Ptr = SrcAddr;
|
|
Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
|
|
for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
|
|
if (Size < CharUnits::fromQuantity(IntSize))
|
|
continue;
|
|
QualType IntType = CGF.getContext().getIntTypeForBitwidth(
|
|
CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
|
|
/*Signed=*/1);
|
|
llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
|
|
Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
|
|
IntTy);
|
|
ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
ElemPtr, IntTy->getPointerTo(), IntTy);
|
|
if (Size.getQuantity() / IntSize > 1) {
|
|
llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
|
|
llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
|
|
CGF.EmitBlock(PreCondBB);
|
|
llvm::PHINode *PhiSrc =
|
|
Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
|
|
PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
|
|
llvm::PHINode *PhiDest =
|
|
Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
|
|
PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
|
|
Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
|
|
ElemPtr =
|
|
Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
|
|
llvm::Value *PtrDiff = Bld.CreatePtrDiff(
|
|
CGF.Int8Ty, PtrEnd.getPointer(),
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
|
|
CGF.VoidPtrTy));
|
|
Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
|
|
ThenBB, ExitBB);
|
|
CGF.EmitBlock(ThenBB);
|
|
llvm::Value *Res = createRuntimeShuffleFunction(
|
|
CGF,
|
|
CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo()),
|
|
IntType, Offset, Loc);
|
|
CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
|
|
Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
|
|
PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
|
|
PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
|
|
CGF.EmitBranch(PreCondBB);
|
|
CGF.EmitBlock(ExitBB);
|
|
} else {
|
|
llvm::Value *Res = createRuntimeShuffleFunction(
|
|
CGF,
|
|
CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo()),
|
|
IntType, Offset, Loc);
|
|
CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
Ptr = Bld.CreateConstGEP(Ptr, 1);
|
|
ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
|
|
}
|
|
Size = Size % IntSize;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
enum CopyAction : unsigned {
|
|
// RemoteLaneToThread: Copy over a Reduce list from a remote lane in
|
|
// the warp using shuffle instructions.
|
|
RemoteLaneToThread,
|
|
// ThreadCopy: Make a copy of a Reduce list on the thread's stack.
|
|
ThreadCopy,
|
|
// ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
|
|
ThreadToScratchpad,
|
|
// ScratchpadToThread: Copy from a scratchpad array in global memory
|
|
// containing team-reduced data to a thread's stack.
|
|
ScratchpadToThread,
|
|
};
|
|
} // namespace
|
|
|
|
struct CopyOptionsTy {
|
|
llvm::Value *RemoteLaneOffset;
|
|
llvm::Value *ScratchpadIndex;
|
|
llvm::Value *ScratchpadWidth;
|
|
};
|
|
|
|
/// Emit instructions to copy a Reduce list, which contains partially
|
|
/// aggregated values, in the specified direction.
|
|
static void emitReductionListCopy(
|
|
CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
|
|
ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
|
|
CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
|
|
|
|
CodeGenModule &CGM = CGF.CGM;
|
|
ASTContext &C = CGM.getContext();
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
|
|
llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
|
|
llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
|
|
|
|
// Iterates, element-by-element, through the source Reduce list and
|
|
// make a copy.
|
|
unsigned Idx = 0;
|
|
unsigned Size = Privates.size();
|
|
for (const Expr *Private : Privates) {
|
|
Address SrcElementAddr = Address::invalid();
|
|
Address DestElementAddr = Address::invalid();
|
|
Address DestElementPtrAddr = Address::invalid();
|
|
// Should we shuffle in an element from a remote lane?
|
|
bool ShuffleInElement = false;
|
|
// Set to true to update the pointer in the dest Reduce list to a
|
|
// newly created element.
|
|
bool UpdateDestListPtr = false;
|
|
// Increment the src or dest pointer to the scratchpad, for each
|
|
// new element.
|
|
bool IncrScratchpadSrc = false;
|
|
bool IncrScratchpadDest = false;
|
|
QualType PrivatePtrType = C.getPointerType(Private->getType());
|
|
llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
|
|
|
|
switch (Action) {
|
|
case RemoteLaneToThread: {
|
|
// Step 1.1: Get the address for the src element in the Reduce list.
|
|
Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
|
|
SrcElementAddr =
|
|
CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
|
|
SrcElementPtrAddr, PrivateLlvmPtrType),
|
|
PrivatePtrType->castAs<PointerType>());
|
|
|
|
// Step 1.2: Create a temporary to store the element in the destination
|
|
// Reduce list.
|
|
DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
|
|
DestElementAddr =
|
|
CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
|
|
ShuffleInElement = true;
|
|
UpdateDestListPtr = true;
|
|
break;
|
|
}
|
|
case ThreadCopy: {
|
|
// Step 1.1: Get the address for the src element in the Reduce list.
|
|
Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
|
|
SrcElementAddr =
|
|
CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
|
|
SrcElementPtrAddr, PrivateLlvmPtrType),
|
|
PrivatePtrType->castAs<PointerType>());
|
|
|
|
// Step 1.2: Get the address for dest element. The destination
|
|
// element has already been created on the thread's stack.
|
|
DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
|
|
DestElementAddr =
|
|
CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
|
|
DestElementPtrAddr, PrivateLlvmPtrType),
|
|
PrivatePtrType->castAs<PointerType>());
|
|
break;
|
|
}
|
|
case ThreadToScratchpad: {
|
|
// Step 1.1: Get the address for the src element in the Reduce list.
|
|
Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
|
|
SrcElementAddr =
|
|
CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
|
|
SrcElementPtrAddr, PrivateLlvmPtrType),
|
|
PrivatePtrType->castAs<PointerType>());
|
|
|
|
// Step 1.2: Get the address for dest element:
|
|
// address = base + index * ElementSizeInChars.
|
|
llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
|
|
llvm::Value *CurrentOffset =
|
|
Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
|
|
llvm::Value *ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
|
|
ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
|
|
DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
|
|
C.getTypeAlignInChars(Private->getType()));
|
|
IncrScratchpadDest = true;
|
|
break;
|
|
}
|
|
case ScratchpadToThread: {
|
|
// Step 1.1: Get the address for the src element in the scratchpad.
|
|
// address = base + index * ElementSizeInChars.
|
|
llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
|
|
llvm::Value *CurrentOffset =
|
|
Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
|
|
llvm::Value *ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
|
|
ScratchPadElemAbsolutePtrVal =
|
|
Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
|
|
SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
|
|
C.getTypeAlignInChars(Private->getType()));
|
|
IncrScratchpadSrc = true;
|
|
|
|
// Step 1.2: Create a temporary to store the element in the destination
|
|
// Reduce list.
|
|
DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
|
|
DestElementAddr =
|
|
CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
|
|
UpdateDestListPtr = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Regardless of src and dest of copy, we emit the load of src
|
|
// element as this is required in all directions
|
|
SrcElementAddr = Bld.CreateElementBitCast(
|
|
SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
|
|
DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
|
|
SrcElementAddr.getElementType());
|
|
|
|
// Now that all active lanes have read the element in the
|
|
// Reduce list, shuffle over the value from the remote lane.
|
|
if (ShuffleInElement) {
|
|
shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
|
|
RemoteLaneOffset, Private->getExprLoc());
|
|
} else {
|
|
switch (CGF.getEvaluationKind(Private->getType())) {
|
|
case TEK_Scalar: {
|
|
llvm::Value *Elem = CGF.EmitLoadOfScalar(
|
|
SrcElementAddr, /*Volatile=*/false, Private->getType(),
|
|
Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
// Store the source element value to the dest element address.
|
|
CGF.EmitStoreOfScalar(
|
|
Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
|
|
LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
|
|
break;
|
|
}
|
|
case TEK_Complex: {
|
|
CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
|
|
CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
|
|
Private->getExprLoc());
|
|
CGF.EmitStoreOfComplex(
|
|
Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
|
|
/*isInit=*/false);
|
|
break;
|
|
}
|
|
case TEK_Aggregate:
|
|
CGF.EmitAggregateCopy(
|
|
CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
|
|
CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
|
|
Private->getType(), AggValueSlot::DoesNotOverlap);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Step 3.1: Modify reference in dest Reduce list as needed.
|
|
// Modifying the reference in Reduce list to point to the newly
|
|
// created element. The element is live in the current function
|
|
// scope and that of functions it invokes (i.e., reduce_function).
|
|
// RemoteReduceData[i] = (void*)&RemoteElem
|
|
if (UpdateDestListPtr) {
|
|
CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
DestElementAddr.getPointer(), CGF.VoidPtrTy),
|
|
DestElementPtrAddr, /*Volatile=*/false,
|
|
C.VoidPtrTy);
|
|
}
|
|
|
|
// Step 4.1: Increment SrcBase/DestBase so that it points to the starting
|
|
// address of the next element in scratchpad memory, unless we're currently
|
|
// processing the last one. Memory alignment is also taken care of here.
|
|
if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
|
|
// FIXME: This code doesn't make any sense, it's trying to perform
|
|
// integer arithmetic on pointers.
|
|
llvm::Value *ScratchpadBasePtr =
|
|
IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
|
|
llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
|
|
ScratchpadBasePtr = Bld.CreateNUWAdd(
|
|
ScratchpadBasePtr,
|
|
Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
|
|
|
|
// Take care of global memory alignment for performance
|
|
ScratchpadBasePtr = Bld.CreateNUWSub(
|
|
ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
|
|
ScratchpadBasePtr = Bld.CreateUDiv(
|
|
ScratchpadBasePtr,
|
|
llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
|
|
ScratchpadBasePtr = Bld.CreateNUWAdd(
|
|
ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
|
|
ScratchpadBasePtr = Bld.CreateNUWMul(
|
|
ScratchpadBasePtr,
|
|
llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
|
|
|
|
if (IncrScratchpadDest)
|
|
DestBase =
|
|
Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
|
|
else /* IncrScratchpadSrc = true */
|
|
SrcBase =
|
|
Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
|
|
}
|
|
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
/// This function emits a helper that gathers Reduce lists from the first
|
|
/// lane of every active warp to lanes in the first warp.
|
|
///
|
|
/// void inter_warp_copy_func(void* reduce_data, num_warps)
|
|
/// shared smem[warp_size];
|
|
/// For all data entries D in reduce_data:
|
|
/// sync
|
|
/// If (I am the first lane in each warp)
|
|
/// Copy my local D to smem[warp_id]
|
|
/// sync
|
|
/// if (I am the first warp)
|
|
/// Copy smem[thread_id] to my local D
|
|
static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
|
|
ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy,
|
|
SourceLocation Loc) {
|
|
ASTContext &C = CGM.getContext();
|
|
llvm::Module &M = CGM.getModule();
|
|
|
|
// ReduceList: thread local Reduce list.
|
|
// At the stage of the computation when this function is called, partially
|
|
// aggregated values reside in the first lane of every active warp.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// NumWarps: number of warps active in the parallel region. This could
|
|
// be smaller than 32 (max warps in a CTA) for partial block reduction.
|
|
ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.getIntTypeForBitwidth(32, /* Signed */ true),
|
|
ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&ReduceListArg);
|
|
Args.push_back(&NumWarpsArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_inter_warp_copy_func", &M);
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
// This array is used as a medium to transfer, one reduce element at a time,
|
|
// the data from the first lane of every warp to lanes in the first warp
|
|
// in order to perform the final step of a reduction in a parallel region
|
|
// (reduction across warps). The array is placed in NVPTX __shared__ memory
|
|
// for reduced latency, as well as to have a distinct copy for concurrently
|
|
// executing target regions. The array is declared with common linkage so
|
|
// as to be shared across compilation units.
|
|
StringRef TransferMediumName =
|
|
"__openmp_nvptx_data_transfer_temporary_storage";
|
|
llvm::GlobalVariable *TransferMedium =
|
|
M.getGlobalVariable(TransferMediumName);
|
|
unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
|
|
if (!TransferMedium) {
|
|
auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
|
|
unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
|
|
TransferMedium = new llvm::GlobalVariable(
|
|
M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
|
|
llvm::UndefValue::get(Ty), TransferMediumName,
|
|
/*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
|
|
SharedAddressSpace);
|
|
CGM.addCompilerUsedGlobal(TransferMedium);
|
|
}
|
|
|
|
auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
// Get the CUDA thread id of the current OpenMP thread on the GPU.
|
|
llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
|
|
// nvptx_lane_id = nvptx_id % warpsize
|
|
llvm::Value *LaneID = getNVPTXLaneID(CGF);
|
|
// nvptx_warp_id = nvptx_id / warpsize
|
|
llvm::Value *WarpID = getNVPTXWarpID(CGF);
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
|
|
Address LocalReduceList(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(
|
|
AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
|
|
LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
|
|
ElemTy->getPointerTo()),
|
|
ElemTy, CGF.getPointerAlign());
|
|
|
|
unsigned Idx = 0;
|
|
for (const Expr *Private : Privates) {
|
|
//
|
|
// Warp master copies reduce element to transfer medium in __shared__
|
|
// memory.
|
|
//
|
|
unsigned RealTySize =
|
|
C.getTypeSizeInChars(Private->getType())
|
|
.alignTo(C.getTypeAlignInChars(Private->getType()))
|
|
.getQuantity();
|
|
for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
|
|
unsigned NumIters = RealTySize / TySize;
|
|
if (NumIters == 0)
|
|
continue;
|
|
QualType CType = C.getIntTypeForBitwidth(
|
|
C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
|
|
llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
|
|
CharUnits Align = CharUnits::fromQuantity(TySize);
|
|
llvm::Value *Cnt = nullptr;
|
|
Address CntAddr = Address::invalid();
|
|
llvm::BasicBlock *PrecondBB = nullptr;
|
|
llvm::BasicBlock *ExitBB = nullptr;
|
|
if (NumIters > 1) {
|
|
CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
|
|
CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
|
|
/*Volatile=*/false, C.IntTy);
|
|
PrecondBB = CGF.createBasicBlock("precond");
|
|
ExitBB = CGF.createBasicBlock("exit");
|
|
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
|
|
// There is no need to emit line number for unconditional branch.
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(PrecondBB);
|
|
Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
|
|
llvm::Value *Cmp =
|
|
Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
|
|
Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
|
|
CGF.EmitBlock(BodyBB);
|
|
}
|
|
// kmpc_barrier.
|
|
CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
|
|
/*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
|
|
|
|
// if (lane_id == 0)
|
|
llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
|
|
Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
|
|
CGF.EmitBlock(ThenBB);
|
|
|
|
// Reduce element = LocalReduceList[i]
|
|
Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
|
|
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
|
|
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
|
|
// elemptr = ((CopyType*)(elemptrptr)) + I
|
|
Address ElemPtr(ElemPtrPtr, CGF.Int8Ty, Align);
|
|
ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
|
|
if (NumIters > 1)
|
|
ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
|
|
|
|
// Get pointer to location in transfer medium.
|
|
// MediumPtr = &medium[warp_id]
|
|
llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
|
|
TransferMedium->getValueType(), TransferMedium,
|
|
{llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
|
|
// Casting to actual data type.
|
|
// MediumPtr = (CopyType*)MediumPtrAddr;
|
|
Address MediumPtr(
|
|
Bld.CreateBitCast(
|
|
MediumPtrVal,
|
|
CopyType->getPointerTo(
|
|
MediumPtrVal->getType()->getPointerAddressSpace())),
|
|
CopyType, Align);
|
|
|
|
// elem = *elemptr
|
|
//*MediumPtr = elem
|
|
llvm::Value *Elem = CGF.EmitLoadOfScalar(
|
|
ElemPtr, /*Volatile=*/false, CType, Loc,
|
|
LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
|
|
// Store the source element value to the dest element address.
|
|
CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(ElseBB);
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(MergeBB);
|
|
|
|
// kmpc_barrier.
|
|
CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
|
|
/*EmitChecks=*/false,
|
|
/*ForceSimpleCall=*/true);
|
|
|
|
//
|
|
// Warp 0 copies reduce element from transfer medium.
|
|
//
|
|
llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
|
|
|
|
Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
|
|
llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
|
|
AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
|
|
|
|
// Up to 32 threads in warp 0 are active.
|
|
llvm::Value *IsActiveThread =
|
|
Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
|
|
Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
|
|
|
|
CGF.EmitBlock(W0ThenBB);
|
|
|
|
// SrcMediumPtr = &medium[tid]
|
|
llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
|
|
TransferMedium->getValueType(), TransferMedium,
|
|
{llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
|
|
// SrcMediumVal = *SrcMediumPtr;
|
|
Address SrcMediumPtr(
|
|
Bld.CreateBitCast(
|
|
SrcMediumPtrVal,
|
|
CopyType->getPointerTo(
|
|
SrcMediumPtrVal->getType()->getPointerAddressSpace())),
|
|
CopyType, Align);
|
|
|
|
// TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
|
|
Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
|
|
llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
|
|
TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
|
|
Address TargetElemPtr(TargetElemPtrVal, CGF.Int8Ty, Align);
|
|
TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
|
|
if (NumIters > 1)
|
|
TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
|
|
|
|
// *TargetElemPtr = SrcMediumVal;
|
|
llvm::Value *SrcMediumValue =
|
|
CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
|
|
CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
|
|
CType);
|
|
Bld.CreateBr(W0MergeBB);
|
|
|
|
CGF.EmitBlock(W0ElseBB);
|
|
Bld.CreateBr(W0MergeBB);
|
|
|
|
CGF.EmitBlock(W0MergeBB);
|
|
|
|
if (NumIters > 1) {
|
|
Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
|
|
CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
|
|
CGF.EmitBranch(PrecondBB);
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(ExitBB);
|
|
}
|
|
RealTySize %= TySize;
|
|
}
|
|
++Idx;
|
|
}
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// Emit a helper that reduces data across two OpenMP threads (lanes)
|
|
/// in the same warp. It uses shuffle instructions to copy over data from
|
|
/// a remote lane's stack. The reduction algorithm performed is specified
|
|
/// by the fourth parameter.
|
|
///
|
|
/// Algorithm Versions.
|
|
/// Full Warp Reduce (argument value 0):
|
|
/// This algorithm assumes that all 32 lanes are active and gathers
|
|
/// data from these 32 lanes, producing a single resultant value.
|
|
/// Contiguous Partial Warp Reduce (argument value 1):
|
|
/// This algorithm assumes that only a *contiguous* subset of lanes
|
|
/// are active. This happens for the last warp in a parallel region
|
|
/// when the user specified num_threads is not an integer multiple of
|
|
/// 32. This contiguous subset always starts with the zeroth lane.
|
|
/// Partial Warp Reduce (argument value 2):
|
|
/// This algorithm gathers data from any number of lanes at any position.
|
|
/// All reduced values are stored in the lowest possible lane. The set
|
|
/// of problems every algorithm addresses is a super set of those
|
|
/// addressable by algorithms with a lower version number. Overhead
|
|
/// increases as algorithm version increases.
|
|
///
|
|
/// Terminology
|
|
/// Reduce element:
|
|
/// Reduce element refers to the individual data field with primitive
|
|
/// data types to be combined and reduced across threads.
|
|
/// Reduce list:
|
|
/// Reduce list refers to a collection of local, thread-private
|
|
/// reduce elements.
|
|
/// Remote Reduce list:
|
|
/// Remote Reduce list refers to a collection of remote (relative to
|
|
/// the current thread) reduce elements.
|
|
///
|
|
/// We distinguish between three states of threads that are important to
|
|
/// the implementation of this function.
|
|
/// Alive threads:
|
|
/// Threads in a warp executing the SIMT instruction, as distinguished from
|
|
/// threads that are inactive due to divergent control flow.
|
|
/// Active threads:
|
|
/// The minimal set of threads that has to be alive upon entry to this
|
|
/// function. The computation is correct iff active threads are alive.
|
|
/// Some threads are alive but they are not active because they do not
|
|
/// contribute to the computation in any useful manner. Turning them off
|
|
/// may introduce control flow overheads without any tangible benefits.
|
|
/// Effective threads:
|
|
/// In order to comply with the argument requirements of the shuffle
|
|
/// function, we must keep all lanes holding data alive. But at most
|
|
/// half of them perform value aggregation; we refer to this half of
|
|
/// threads as effective. The other half is simply handing off their
|
|
/// data.
|
|
///
|
|
/// Procedure
|
|
/// Value shuffle:
|
|
/// In this step active threads transfer data from higher lane positions
|
|
/// in the warp to lower lane positions, creating Remote Reduce list.
|
|
/// Value aggregation:
|
|
/// In this step, effective threads combine their thread local Reduce list
|
|
/// with Remote Reduce list and store the result in the thread local
|
|
/// Reduce list.
|
|
/// Value copy:
|
|
/// In this step, we deal with the assumption made by algorithm 2
|
|
/// (i.e. contiguity assumption). When we have an odd number of lanes
|
|
/// active, say 2k+1, only k threads will be effective and therefore k
|
|
/// new values will be produced. However, the Reduce list owned by the
|
|
/// (2k+1)th thread is ignored in the value aggregation. Therefore
|
|
/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
|
|
/// that the contiguity assumption still holds.
|
|
static llvm::Function *emitShuffleAndReduceFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// Thread local Reduce list used to host the values of data to be reduced.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Current lane id; could be logical.
|
|
ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
|
|
ImplicitParamDecl::Other);
|
|
// Offset of the remote source lane relative to the current lane.
|
|
ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.ShortTy, ImplicitParamDecl::Other);
|
|
// Algorithm version. This is expected to be known at compile time.
|
|
ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.ShortTy, ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&ReduceListArg);
|
|
Args.push_back(&LaneIDArg);
|
|
Args.push_back(&RemoteLaneOffsetArg);
|
|
Args.push_back(&AlgoVerArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
|
|
Address LocalReduceList(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, SourceLocation()),
|
|
ElemTy->getPointerTo()),
|
|
ElemTy, CGF.getPointerAlign());
|
|
|
|
Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
|
|
llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
|
|
AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
|
|
|
|
Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
|
|
llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
|
|
AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
|
|
|
|
Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
|
|
llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
|
|
AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
|
|
|
|
// Create a local thread-private variable to host the Reduce list
|
|
// from a remote lane.
|
|
Address RemoteReduceList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
|
|
|
|
// This loop iterates through the list of reduce elements and copies,
|
|
// element by element, from a remote lane in the warp to RemoteReduceList,
|
|
// hosted on the thread's stack.
|
|
emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
|
|
LocalReduceList, RemoteReduceList,
|
|
{/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
|
|
/*ScratchpadIndex=*/nullptr,
|
|
/*ScratchpadWidth=*/nullptr});
|
|
|
|
// The actions to be performed on the Remote Reduce list is dependent
|
|
// on the algorithm version.
|
|
//
|
|
// if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
|
|
// LaneId % 2 == 0 && Offset > 0):
|
|
// do the reduction value aggregation
|
|
//
|
|
// The thread local variable Reduce list is mutated in place to host the
|
|
// reduced data, which is the aggregated value produced from local and
|
|
// remote lanes.
|
|
//
|
|
// Note that AlgoVer is expected to be a constant integer known at compile
|
|
// time.
|
|
// When AlgoVer==0, the first conjunction evaluates to true, making
|
|
// the entire predicate true during compile time.
|
|
// When AlgoVer==1, the second conjunction has only the second part to be
|
|
// evaluated during runtime. Other conjunctions evaluates to false
|
|
// during compile time.
|
|
// When AlgoVer==2, the third conjunction has only the second part to be
|
|
// evaluated during runtime. Other conjunctions evaluates to false
|
|
// during compile time.
|
|
llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
|
|
|
|
llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
|
|
llvm::Value *CondAlgo1 = Bld.CreateAnd(
|
|
Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
|
|
|
|
llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
|
|
llvm::Value *CondAlgo2 = Bld.CreateAnd(
|
|
Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
|
|
CondAlgo2 = Bld.CreateAnd(
|
|
CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
|
|
|
|
llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
|
|
CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
|
|
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
|
|
Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
|
|
|
|
CGF.EmitBlock(ThenBB);
|
|
// reduce_function(LocalReduceList, RemoteReduceList)
|
|
llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
LocalReduceList.getPointer(), CGF.VoidPtrTy);
|
|
llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
RemoteReduceList.getPointer(), CGF.VoidPtrTy);
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(ElseBB);
|
|
Bld.CreateBr(MergeBB);
|
|
|
|
CGF.EmitBlock(MergeBB);
|
|
|
|
// if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
|
|
// Reduce list.
|
|
Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
|
|
llvm::Value *CondCopy = Bld.CreateAnd(
|
|
Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
|
|
|
|
llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
|
|
llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
|
|
llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
|
|
Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
|
|
|
|
CGF.EmitBlock(CpyThenBB);
|
|
emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
|
|
RemoteReduceList, LocalReduceList);
|
|
Bld.CreateBr(CpyMergeBB);
|
|
|
|
CGF.EmitBlock(CpyElseBB);
|
|
Bld.CreateBr(CpyMergeBB);
|
|
|
|
CGF.EmitBlock(CpyMergeBB);
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// This function emits a helper that copies all the reduction variables from
|
|
/// the team into the provided global buffer for the reduction variables.
|
|
///
|
|
/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
|
|
/// For all data entries D in reduce_data:
|
|
/// Copy local D to buffer.D[Idx]
|
|
static llvm::Value *emitListToGlobalCopyFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, SourceLocation Loc,
|
|
const RecordDecl *TeamReductionRec,
|
|
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&VarFieldMap) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// Buffer: global reduction buffer.
|
|
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Idx: index of the buffer.
|
|
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
|
|
ImplicitParamDecl::Other);
|
|
// ReduceList: thread local Reduce list.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&BufferArg);
|
|
Args.push_back(&IdxArg);
|
|
Args.push_back(&ReduceListArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_list_to_global_copy_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
|
|
llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
|
|
Address LocalReduceList(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, Loc),
|
|
ElemTy->getPointerTo()),
|
|
ElemTy, CGF.getPointerAlign());
|
|
QualType StaticTy = C.getRecordType(TeamReductionRec);
|
|
llvm::Type *LLVMReductionsBufferTy =
|
|
CGM.getTypes().ConvertTypeForMem(StaticTy);
|
|
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
|
|
LLVMReductionsBufferTy->getPointerTo());
|
|
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
|
|
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
|
|
/*Volatile=*/false, C.IntTy,
|
|
Loc)};
|
|
unsigned Idx = 0;
|
|
for (const Expr *Private : Privates) {
|
|
// Reduce element = LocalReduceList[i]
|
|
Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
|
|
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
|
|
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
|
|
// elemptr = ((CopyType*)(elemptrptr)) + I
|
|
ElemTy = CGF.ConvertTypeForMem(Private->getType());
|
|
ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
ElemPtrPtr, ElemTy->getPointerTo());
|
|
Address ElemPtr =
|
|
Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
|
|
const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
|
|
// Global = Buffer.VD[Idx];
|
|
const FieldDecl *FD = VarFieldMap.lookup(VD);
|
|
LValue GlobLVal = CGF.EmitLValueForField(
|
|
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
|
|
Address GlobAddr = GlobLVal.getAddress(CGF);
|
|
llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
|
|
GlobAddr.getPointer(), Idxs);
|
|
GlobLVal.setAddress(Address(BufferPtr,
|
|
CGF.ConvertTypeForMem(Private->getType()),
|
|
GlobAddr.getAlignment()));
|
|
switch (CGF.getEvaluationKind(Private->getType())) {
|
|
case TEK_Scalar: {
|
|
llvm::Value *V = CGF.EmitLoadOfScalar(
|
|
ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
|
|
LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
|
|
CGF.EmitStoreOfScalar(V, GlobLVal);
|
|
break;
|
|
}
|
|
case TEK_Complex: {
|
|
CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
|
|
CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
|
|
CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
|
|
break;
|
|
}
|
|
case TEK_Aggregate:
|
|
CGF.EmitAggregateCopy(GlobLVal,
|
|
CGF.MakeAddrLValue(ElemPtr, Private->getType()),
|
|
Private->getType(), AggValueSlot::DoesNotOverlap);
|
|
break;
|
|
}
|
|
++Idx;
|
|
}
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// This function emits a helper that reduces all the reduction variables from
|
|
/// the team into the provided global buffer for the reduction variables.
|
|
///
|
|
/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
|
|
/// void *GlobPtrs[];
|
|
/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
|
|
/// ...
|
|
/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
|
|
/// reduce_function(GlobPtrs, reduce_data);
|
|
static llvm::Value *emitListToGlobalReduceFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, SourceLocation Loc,
|
|
const RecordDecl *TeamReductionRec,
|
|
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&VarFieldMap,
|
|
llvm::Function *ReduceFn) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// Buffer: global reduction buffer.
|
|
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Idx: index of the buffer.
|
|
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
|
|
ImplicitParamDecl::Other);
|
|
// ReduceList: thread local Reduce list.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&BufferArg);
|
|
Args.push_back(&IdxArg);
|
|
Args.push_back(&ReduceListArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
|
|
QualType StaticTy = C.getRecordType(TeamReductionRec);
|
|
llvm::Type *LLVMReductionsBufferTy =
|
|
CGM.getTypes().ConvertTypeForMem(StaticTy);
|
|
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
|
|
LLVMReductionsBufferTy->getPointerTo());
|
|
|
|
// 1. Build a list of reduction variables.
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
Address ReductionList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
|
|
auto IPriv = Privates.begin();
|
|
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
|
|
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
|
|
/*Volatile=*/false, C.IntTy,
|
|
Loc)};
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
// Global = Buffer.VD[Idx];
|
|
const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
|
|
const FieldDecl *FD = VarFieldMap.lookup(VD);
|
|
LValue GlobLVal = CGF.EmitLValueForField(
|
|
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
|
|
Address GlobAddr = GlobLVal.getAddress(CGF);
|
|
llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
|
|
GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
|
|
llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
|
|
CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
|
|
if ((*IPriv)->getType()->isVariablyModifiedType()) {
|
|
// Store array size.
|
|
++Idx;
|
|
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(
|
|
CGF.getVLASize(
|
|
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
|
|
.NumElts,
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
}
|
|
|
|
// Call reduce_function(GlobalReduceList, ReduceList)
|
|
llvm::Value *GlobalReduceList =
|
|
CGF.EmitCastToVoidPtr(ReductionList.getPointer());
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
|
|
AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// This function emits a helper that copies all the reduction variables from
|
|
/// the team into the provided global buffer for the reduction variables.
|
|
///
|
|
/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
|
|
/// For all data entries D in reduce_data:
|
|
/// Copy buffer.D[Idx] to local D;
|
|
static llvm::Value *emitGlobalToListCopyFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, SourceLocation Loc,
|
|
const RecordDecl *TeamReductionRec,
|
|
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&VarFieldMap) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// Buffer: global reduction buffer.
|
|
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Idx: index of the buffer.
|
|
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
|
|
ImplicitParamDecl::Other);
|
|
// ReduceList: thread local Reduce list.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&BufferArg);
|
|
Args.push_back(&IdxArg);
|
|
Args.push_back(&ReduceListArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_global_to_list_copy_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
|
|
llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
|
|
Address LocalReduceList(
|
|
Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
|
|
C.VoidPtrTy, Loc),
|
|
ElemTy->getPointerTo()),
|
|
ElemTy, CGF.getPointerAlign());
|
|
QualType StaticTy = C.getRecordType(TeamReductionRec);
|
|
llvm::Type *LLVMReductionsBufferTy =
|
|
CGM.getTypes().ConvertTypeForMem(StaticTy);
|
|
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
|
|
LLVMReductionsBufferTy->getPointerTo());
|
|
|
|
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
|
|
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
|
|
/*Volatile=*/false, C.IntTy,
|
|
Loc)};
|
|
unsigned Idx = 0;
|
|
for (const Expr *Private : Privates) {
|
|
// Reduce element = LocalReduceList[i]
|
|
Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
|
|
llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
|
|
ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
|
|
// elemptr = ((CopyType*)(elemptrptr)) + I
|
|
ElemTy = CGF.ConvertTypeForMem(Private->getType());
|
|
ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
ElemPtrPtr, ElemTy->getPointerTo());
|
|
Address ElemPtr =
|
|
Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
|
|
const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
|
|
// Global = Buffer.VD[Idx];
|
|
const FieldDecl *FD = VarFieldMap.lookup(VD);
|
|
LValue GlobLVal = CGF.EmitLValueForField(
|
|
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
|
|
Address GlobAddr = GlobLVal.getAddress(CGF);
|
|
llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
|
|
GlobAddr.getPointer(), Idxs);
|
|
GlobLVal.setAddress(Address(BufferPtr,
|
|
CGF.ConvertTypeForMem(Private->getType()),
|
|
GlobAddr.getAlignment()));
|
|
switch (CGF.getEvaluationKind(Private->getType())) {
|
|
case TEK_Scalar: {
|
|
llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
|
|
CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
|
|
LValueBaseInfo(AlignmentSource::Type),
|
|
TBAAAccessInfo());
|
|
break;
|
|
}
|
|
case TEK_Complex: {
|
|
CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
|
|
CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
|
|
/*isInit=*/false);
|
|
break;
|
|
}
|
|
case TEK_Aggregate:
|
|
CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
|
|
GlobLVal, Private->getType(),
|
|
AggValueSlot::DoesNotOverlap);
|
|
break;
|
|
}
|
|
++Idx;
|
|
}
|
|
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
/// This function emits a helper that reduces all the reduction variables from
|
|
/// the team into the provided global buffer for the reduction variables.
|
|
///
|
|
/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
|
|
/// void *GlobPtrs[];
|
|
/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
|
|
/// ...
|
|
/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
|
|
/// reduce_function(reduce_data, GlobPtrs);
|
|
static llvm::Value *emitGlobalToListReduceFunction(
|
|
CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
|
|
QualType ReductionArrayTy, SourceLocation Loc,
|
|
const RecordDecl *TeamReductionRec,
|
|
const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
|
|
&VarFieldMap,
|
|
llvm::Function *ReduceFn) {
|
|
ASTContext &C = CGM.getContext();
|
|
|
|
// Buffer: global reduction buffer.
|
|
ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
// Idx: index of the buffer.
|
|
ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
|
|
ImplicitParamDecl::Other);
|
|
// ReduceList: thread local Reduce list.
|
|
ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
|
|
C.VoidPtrTy, ImplicitParamDecl::Other);
|
|
FunctionArgList Args;
|
|
Args.push_back(&BufferArg);
|
|
Args.push_back(&IdxArg);
|
|
Args.push_back(&ReduceListArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
"_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setDoesNotRecurse();
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
|
|
Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
|
|
QualType StaticTy = C.getRecordType(TeamReductionRec);
|
|
llvm::Type *LLVMReductionsBufferTy =
|
|
CGM.getTypes().ConvertTypeForMem(StaticTy);
|
|
llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
|
|
LLVMReductionsBufferTy->getPointerTo());
|
|
|
|
// 1. Build a list of reduction variables.
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
Address ReductionList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
|
|
auto IPriv = Privates.begin();
|
|
llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
|
|
CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
|
|
/*Volatile=*/false, C.IntTy,
|
|
Loc)};
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
// Global = Buffer.VD[Idx];
|
|
const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
|
|
const FieldDecl *FD = VarFieldMap.lookup(VD);
|
|
LValue GlobLVal = CGF.EmitLValueForField(
|
|
CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
|
|
Address GlobAddr = GlobLVal.getAddress(CGF);
|
|
llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
|
|
GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
|
|
llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
|
|
CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
|
|
if ((*IPriv)->getType()->isVariablyModifiedType()) {
|
|
// Store array size.
|
|
++Idx;
|
|
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(
|
|
CGF.getVLASize(
|
|
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
|
|
.NumElts,
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
}
|
|
|
|
// Call reduce_function(ReduceList, GlobalReduceList)
|
|
llvm::Value *GlobalReduceList =
|
|
CGF.EmitCastToVoidPtr(ReductionList.getPointer());
|
|
Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
|
|
llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
|
|
AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
|
|
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
|
|
CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
///
|
|
/// Design of OpenMP reductions on the GPU
|
|
///
|
|
/// Consider a typical OpenMP program with one or more reduction
|
|
/// clauses:
|
|
///
|
|
/// float foo;
|
|
/// double bar;
|
|
/// #pragma omp target teams distribute parallel for \
|
|
/// reduction(+:foo) reduction(*:bar)
|
|
/// for (int i = 0; i < N; i++) {
|
|
/// foo += A[i]; bar *= B[i];
|
|
/// }
|
|
///
|
|
/// where 'foo' and 'bar' are reduced across all OpenMP threads in
|
|
/// all teams. In our OpenMP implementation on the NVPTX device an
|
|
/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
|
|
/// within a team are mapped to CUDA threads within a threadblock.
|
|
/// Our goal is to efficiently aggregate values across all OpenMP
|
|
/// threads such that:
|
|
///
|
|
/// - the compiler and runtime are logically concise, and
|
|
/// - the reduction is performed efficiently in a hierarchical
|
|
/// manner as follows: within OpenMP threads in the same warp,
|
|
/// across warps in a threadblock, and finally across teams on
|
|
/// the NVPTX device.
|
|
///
|
|
/// Introduction to Decoupling
|
|
///
|
|
/// We would like to decouple the compiler and the runtime so that the
|
|
/// latter is ignorant of the reduction variables (number, data types)
|
|
/// and the reduction operators. This allows a simpler interface
|
|
/// and implementation while still attaining good performance.
|
|
///
|
|
/// Pseudocode for the aforementioned OpenMP program generated by the
|
|
/// compiler is as follows:
|
|
///
|
|
/// 1. Create private copies of reduction variables on each OpenMP
|
|
/// thread: 'foo_private', 'bar_private'
|
|
/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
|
|
/// to it and writes the result in 'foo_private' and 'bar_private'
|
|
/// respectively.
|
|
/// 3. Call the OpenMP runtime on the GPU to reduce within a team
|
|
/// and store the result on the team master:
|
|
///
|
|
/// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
|
|
/// reduceData, shuffleReduceFn, interWarpCpyFn)
|
|
///
|
|
/// where:
|
|
/// struct ReduceData {
|
|
/// double *foo;
|
|
/// double *bar;
|
|
/// } reduceData
|
|
/// reduceData.foo = &foo_private
|
|
/// reduceData.bar = &bar_private
|
|
///
|
|
/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
|
|
/// auxiliary functions generated by the compiler that operate on
|
|
/// variables of type 'ReduceData'. They aid the runtime perform
|
|
/// algorithmic steps in a data agnostic manner.
|
|
///
|
|
/// 'shuffleReduceFn' is a pointer to a function that reduces data
|
|
/// of type 'ReduceData' across two OpenMP threads (lanes) in the
|
|
/// same warp. It takes the following arguments as input:
|
|
///
|
|
/// a. variable of type 'ReduceData' on the calling lane,
|
|
/// b. its lane_id,
|
|
/// c. an offset relative to the current lane_id to generate a
|
|
/// remote_lane_id. The remote lane contains the second
|
|
/// variable of type 'ReduceData' that is to be reduced.
|
|
/// d. an algorithm version parameter determining which reduction
|
|
/// algorithm to use.
|
|
///
|
|
/// 'shuffleReduceFn' retrieves data from the remote lane using
|
|
/// efficient GPU shuffle intrinsics and reduces, using the
|
|
/// algorithm specified by the 4th parameter, the two operands
|
|
/// element-wise. The result is written to the first operand.
|
|
///
|
|
/// Different reduction algorithms are implemented in different
|
|
/// runtime functions, all calling 'shuffleReduceFn' to perform
|
|
/// the essential reduction step. Therefore, based on the 4th
|
|
/// parameter, this function behaves slightly differently to
|
|
/// cooperate with the runtime to ensure correctness under
|
|
/// different circumstances.
|
|
///
|
|
/// 'InterWarpCpyFn' is a pointer to a function that transfers
|
|
/// reduced variables across warps. It tunnels, through CUDA
|
|
/// shared memory, the thread-private data of type 'ReduceData'
|
|
/// from lane 0 of each warp to a lane in the first warp.
|
|
/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
|
|
/// The last team writes the global reduced value to memory.
|
|
///
|
|
/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
|
|
/// reduceData, shuffleReduceFn, interWarpCpyFn,
|
|
/// scratchpadCopyFn, loadAndReduceFn)
|
|
///
|
|
/// 'scratchpadCopyFn' is a helper that stores reduced
|
|
/// data from the team master to a scratchpad array in
|
|
/// global memory.
|
|
///
|
|
/// 'loadAndReduceFn' is a helper that loads data from
|
|
/// the scratchpad array and reduces it with the input
|
|
/// operand.
|
|
///
|
|
/// These compiler generated functions hide address
|
|
/// calculation and alignment information from the runtime.
|
|
/// 5. if ret == 1:
|
|
/// The team master of the last team stores the reduced
|
|
/// result to the globals in memory.
|
|
/// foo += reduceData.foo; bar *= reduceData.bar
|
|
///
|
|
///
|
|
/// Warp Reduction Algorithms
|
|
///
|
|
/// On the warp level, we have three algorithms implemented in the
|
|
/// OpenMP runtime depending on the number of active lanes:
|
|
///
|
|
/// Full Warp Reduction
|
|
///
|
|
/// The reduce algorithm within a warp where all lanes are active
|
|
/// is implemented in the runtime as follows:
|
|
///
|
|
/// full_warp_reduce(void *reduce_data,
|
|
/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
|
|
/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
|
|
/// ShuffleReduceFn(reduce_data, 0, offset, 0);
|
|
/// }
|
|
///
|
|
/// The algorithm completes in log(2, WARPSIZE) steps.
|
|
///
|
|
/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
|
|
/// not used therefore we save instructions by not retrieving lane_id
|
|
/// from the corresponding special registers. The 4th parameter, which
|
|
/// represents the version of the algorithm being used, is set to 0 to
|
|
/// signify full warp reduction.
|
|
///
|
|
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
|
|
///
|
|
/// #reduce_elem refers to an element in the local lane's data structure
|
|
/// #remote_elem is retrieved from a remote lane
|
|
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
|
|
/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
|
|
///
|
|
/// Contiguous Partial Warp Reduction
|
|
///
|
|
/// This reduce algorithm is used within a warp where only the first
|
|
/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
|
|
/// number of OpenMP threads in a parallel region is not a multiple of
|
|
/// WARPSIZE. The algorithm is implemented in the runtime as follows:
|
|
///
|
|
/// void
|
|
/// contiguous_partial_reduce(void *reduce_data,
|
|
/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
|
|
/// int size, int lane_id) {
|
|
/// int curr_size;
|
|
/// int offset;
|
|
/// curr_size = size;
|
|
/// mask = curr_size/2;
|
|
/// while (offset>0) {
|
|
/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
|
|
/// curr_size = (curr_size+1)/2;
|
|
/// offset = curr_size/2;
|
|
/// }
|
|
/// }
|
|
///
|
|
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
|
|
///
|
|
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
|
|
/// if (lane_id < offset)
|
|
/// reduce_elem = reduce_elem REDUCE_OP remote_elem
|
|
/// else
|
|
/// reduce_elem = remote_elem
|
|
///
|
|
/// This algorithm assumes that the data to be reduced are located in a
|
|
/// contiguous subset of lanes starting from the first. When there is
|
|
/// an odd number of active lanes, the data in the last lane is not
|
|
/// aggregated with any other lane's dat but is instead copied over.
|
|
///
|
|
/// Dispersed Partial Warp Reduction
|
|
///
|
|
/// This algorithm is used within a warp when any discontiguous subset of
|
|
/// lanes are active. It is used to implement the reduction operation
|
|
/// across lanes in an OpenMP simd region or in a nested parallel region.
|
|
///
|
|
/// void
|
|
/// dispersed_partial_reduce(void *reduce_data,
|
|
/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
|
|
/// int size, remote_id;
|
|
/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
|
|
/// do {
|
|
/// remote_id = next_active_lane_id_right_after_me();
|
|
/// # the above function returns 0 of no active lane
|
|
/// # is present right after the current lane.
|
|
/// size = number_of_active_lanes_in_this_warp();
|
|
/// logical_lane_id /= 2;
|
|
/// ShuffleReduceFn(reduce_data, logical_lane_id,
|
|
/// remote_id-1-threadIdx.x, 2);
|
|
/// } while (logical_lane_id % 2 == 0 && size > 1);
|
|
/// }
|
|
///
|
|
/// There is no assumption made about the initial state of the reduction.
|
|
/// Any number of lanes (>=1) could be active at any position. The reduction
|
|
/// result is returned in the first active lane.
|
|
///
|
|
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
|
|
///
|
|
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
|
|
/// if (lane_id % 2 == 0 && offset > 0)
|
|
/// reduce_elem = reduce_elem REDUCE_OP remote_elem
|
|
/// else
|
|
/// reduce_elem = remote_elem
|
|
///
|
|
///
|
|
/// Intra-Team Reduction
|
|
///
|
|
/// This function, as implemented in the runtime call
|
|
/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
|
|
/// threads in a team. It first reduces within a warp using the
|
|
/// aforementioned algorithms. We then proceed to gather all such
|
|
/// reduced values at the first warp.
|
|
///
|
|
/// The runtime makes use of the function 'InterWarpCpyFn', which copies
|
|
/// data from each of the "warp master" (zeroth lane of each warp, where
|
|
/// warp-reduced data is held) to the zeroth warp. This step reduces (in
|
|
/// a mathematical sense) the problem of reduction across warp masters in
|
|
/// a block to the problem of warp reduction.
|
|
///
|
|
///
|
|
/// Inter-Team Reduction
|
|
///
|
|
/// Once a team has reduced its data to a single value, it is stored in
|
|
/// a global scratchpad array. Since each team has a distinct slot, this
|
|
/// can be done without locking.
|
|
///
|
|
/// The last team to write to the scratchpad array proceeds to reduce the
|
|
/// scratchpad array. One or more workers in the last team use the helper
|
|
/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
|
|
/// the k'th worker reduces every k'th element.
|
|
///
|
|
/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
|
|
/// reduce across workers and compute a globally reduced value.
|
|
///
|
|
void CGOpenMPRuntimeGPU::emitReduction(
|
|
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
|
|
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
|
|
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
|
|
if (!CGF.HaveInsertPoint())
|
|
return;
|
|
|
|
bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
|
|
#ifndef NDEBUG
|
|
bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
|
|
#endif
|
|
|
|
if (Options.SimpleReduction) {
|
|
assert(!TeamsReduction && !ParallelReduction &&
|
|
"Invalid reduction selection in emitReduction.");
|
|
CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
|
|
ReductionOps, Options);
|
|
return;
|
|
}
|
|
|
|
assert((TeamsReduction || ParallelReduction) &&
|
|
"Invalid reduction selection in emitReduction.");
|
|
|
|
// Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
|
|
// RedList, shuffle_reduce_func, interwarp_copy_func);
|
|
// or
|
|
// Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
|
|
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
|
|
llvm::Value *ThreadId = getThreadID(CGF, Loc);
|
|
|
|
llvm::Value *Res;
|
|
ASTContext &C = CGM.getContext();
|
|
// 1. Build a list of reduction variables.
|
|
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
|
|
auto Size = RHSExprs.size();
|
|
for (const Expr *E : Privates) {
|
|
if (E->getType()->isVariablyModifiedType())
|
|
// Reserve place for array size.
|
|
++Size;
|
|
}
|
|
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
|
|
QualType ReductionArrayTy =
|
|
C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
|
|
/*IndexTypeQuals=*/0);
|
|
Address ReductionList =
|
|
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
|
|
auto IPriv = Privates.begin();
|
|
unsigned Idx = 0;
|
|
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
|
|
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
CGF.Builder.CreateStore(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
|
|
Elem);
|
|
if ((*IPriv)->getType()->isVariablyModifiedType()) {
|
|
// Store array size.
|
|
++Idx;
|
|
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
|
|
llvm::Value *Size = CGF.Builder.CreateIntCast(
|
|
CGF.getVLASize(
|
|
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
|
|
.NumElts,
|
|
CGF.SizeTy, /*isSigned=*/false);
|
|
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
|
|
Elem);
|
|
}
|
|
}
|
|
|
|
llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
ReductionList.getPointer(), CGF.VoidPtrTy);
|
|
llvm::Function *ReductionFn =
|
|
emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
|
|
Privates, LHSExprs, RHSExprs, ReductionOps);
|
|
llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
|
|
llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
|
|
CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
|
|
llvm::Value *InterWarpCopyFn =
|
|
emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
|
|
|
|
if (ParallelReduction) {
|
|
llvm::Value *Args[] = {RTLoc,
|
|
ThreadId,
|
|
CGF.Builder.getInt32(RHSExprs.size()),
|
|
ReductionArrayTySize,
|
|
RL,
|
|
ShuffleAndReduceFn,
|
|
InterWarpCopyFn};
|
|
|
|
Res = CGF.EmitRuntimeCall(
|
|
OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
|
|
Args);
|
|
} else {
|
|
assert(TeamsReduction && "expected teams reduction.");
|
|
llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
|
|
llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
|
|
int Cnt = 0;
|
|
for (const Expr *DRE : Privates) {
|
|
PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
|
|
++Cnt;
|
|
}
|
|
const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
|
|
CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
|
|
C.getLangOpts().OpenMPCUDAReductionBufNum);
|
|
TeamsReductions.push_back(TeamReductionRec);
|
|
if (!KernelTeamsReductionPtr) {
|
|
KernelTeamsReductionPtr = new llvm::GlobalVariable(
|
|
CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
|
|
llvm::GlobalValue::InternalLinkage, nullptr,
|
|
"_openmp_teams_reductions_buffer_$_$ptr");
|
|
}
|
|
llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
|
|
Address(KernelTeamsReductionPtr, CGF.VoidPtrTy, CGM.getPointerAlign()),
|
|
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
|
|
llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
|
|
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
|
|
llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
|
|
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
|
|
ReductionFn);
|
|
llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
|
|
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
|
|
llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
|
|
CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
|
|
ReductionFn);
|
|
|
|
llvm::Value *Args[] = {
|
|
RTLoc,
|
|
ThreadId,
|
|
GlobalBufferPtr,
|
|
CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
|
|
RL,
|
|
ShuffleAndReduceFn,
|
|
InterWarpCopyFn,
|
|
GlobalToBufferCpyFn,
|
|
GlobalToBufferRedFn,
|
|
BufferToGlobalCpyFn,
|
|
BufferToGlobalRedFn};
|
|
|
|
Res = CGF.EmitRuntimeCall(
|
|
OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
|
|
Args);
|
|
}
|
|
|
|
// 5. Build if (res == 1)
|
|
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
|
|
llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
|
|
llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
|
|
Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
|
|
CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
|
|
|
|
// 6. Build then branch: where we have reduced values in the master
|
|
// thread in each team.
|
|
// __kmpc_end_reduce{_nowait}(<gtid>);
|
|
// break;
|
|
CGF.EmitBlock(ThenBB);
|
|
|
|
// Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
|
|
auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
|
|
this](CodeGenFunction &CGF, PrePostActionTy &Action) {
|
|
auto IPriv = Privates.begin();
|
|
auto ILHS = LHSExprs.begin();
|
|
auto IRHS = RHSExprs.begin();
|
|
for (const Expr *E : ReductionOps) {
|
|
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
|
|
cast<DeclRefExpr>(*IRHS));
|
|
++IPriv;
|
|
++ILHS;
|
|
++IRHS;
|
|
}
|
|
};
|
|
llvm::Value *EndArgs[] = {ThreadId};
|
|
RegionCodeGenTy RCG(CodeGen);
|
|
NVPTXActionTy Action(
|
|
nullptr, llvm::None,
|
|
OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
|
|
EndArgs);
|
|
RCG.setAction(Action);
|
|
RCG(CGF);
|
|
// There is no need to emit line number for unconditional branch.
|
|
(void)ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
}
|
|
|
|
const VarDecl *
|
|
CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
|
|
const VarDecl *NativeParam) const {
|
|
if (!NativeParam->getType()->isReferenceType())
|
|
return NativeParam;
|
|
QualType ArgType = NativeParam->getType();
|
|
QualifierCollector QC;
|
|
const Type *NonQualTy = QC.strip(ArgType);
|
|
QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
|
|
if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
|
|
if (Attr->getCaptureKind() == OMPC_map) {
|
|
PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
|
|
LangAS::opencl_global);
|
|
}
|
|
}
|
|
ArgType = CGM.getContext().getPointerType(PointeeTy);
|
|
QC.addRestrict();
|
|
enum { NVPTX_local_addr = 5 };
|
|
QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
|
|
ArgType = QC.apply(CGM.getContext(), ArgType);
|
|
if (isa<ImplicitParamDecl>(NativeParam))
|
|
return ImplicitParamDecl::Create(
|
|
CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
|
|
NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
|
|
return ParmVarDecl::Create(
|
|
CGM.getContext(),
|
|
const_cast<DeclContext *>(NativeParam->getDeclContext()),
|
|
NativeParam->getBeginLoc(), NativeParam->getLocation(),
|
|
NativeParam->getIdentifier(), ArgType,
|
|
/*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
|
|
}
|
|
|
|
Address
|
|
CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
|
|
const VarDecl *NativeParam,
|
|
const VarDecl *TargetParam) const {
|
|
assert(NativeParam != TargetParam &&
|
|
NativeParam->getType()->isReferenceType() &&
|
|
"Native arg must not be the same as target arg.");
|
|
Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
|
|
QualType NativeParamType = NativeParam->getType();
|
|
QualifierCollector QC;
|
|
const Type *NonQualTy = QC.strip(NativeParamType);
|
|
QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
|
|
unsigned NativePointeeAddrSpace =
|
|
CGF.getContext().getTargetAddressSpace(NativePointeeTy);
|
|
QualType TargetTy = TargetParam->getType();
|
|
llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
|
|
LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
|
|
// First cast to generic.
|
|
TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TargetAddr, llvm::PointerType::getWithSamePointeeType(
|
|
cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
|
|
// Cast from generic to native address space.
|
|
TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
TargetAddr, llvm::PointerType::getWithSamePointeeType(
|
|
cast<llvm::PointerType>(TargetAddr->getType()),
|
|
NativePointeeAddrSpace));
|
|
Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
|
|
CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
|
|
NativeParamType);
|
|
return NativeParamAddr;
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
|
|
CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
|
|
ArrayRef<llvm::Value *> Args) const {
|
|
SmallVector<llvm::Value *, 4> TargetArgs;
|
|
TargetArgs.reserve(Args.size());
|
|
auto *FnType = OutlinedFn.getFunctionType();
|
|
for (unsigned I = 0, E = Args.size(); I < E; ++I) {
|
|
if (FnType->isVarArg() && FnType->getNumParams() <= I) {
|
|
TargetArgs.append(std::next(Args.begin(), I), Args.end());
|
|
break;
|
|
}
|
|
llvm::Type *TargetType = FnType->getParamType(I);
|
|
llvm::Value *NativeArg = Args[I];
|
|
if (!TargetType->isPointerTy()) {
|
|
TargetArgs.emplace_back(NativeArg);
|
|
continue;
|
|
}
|
|
llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
NativeArg, llvm::PointerType::getWithSamePointeeType(
|
|
cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
|
|
TargetArgs.emplace_back(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
|
|
}
|
|
CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
|
|
}
|
|
|
|
/// Emit function which wraps the outline parallel region
|
|
/// and controls the arguments which are passed to this function.
|
|
/// The wrapper ensures that the outlined function is called
|
|
/// with the correct arguments when data is shared.
|
|
llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
|
|
llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
|
|
ASTContext &Ctx = CGM.getContext();
|
|
const auto &CS = *D.getCapturedStmt(OMPD_parallel);
|
|
|
|
// Create a function that takes as argument the source thread.
|
|
FunctionArgList WrapperArgs;
|
|
QualType Int16QTy =
|
|
Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
|
|
QualType Int32QTy =
|
|
Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
|
|
ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
|
|
/*Id=*/nullptr, Int16QTy,
|
|
ImplicitParamDecl::Other);
|
|
ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
|
|
/*Id=*/nullptr, Int32QTy,
|
|
ImplicitParamDecl::Other);
|
|
WrapperArgs.emplace_back(&ParallelLevelArg);
|
|
WrapperArgs.emplace_back(&WrapperArg);
|
|
|
|
const CGFunctionInfo &CGFI =
|
|
CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
|
|
|
|
auto *Fn = llvm::Function::Create(
|
|
CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
|
|
Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
|
|
|
|
// Ensure we do not inline the function. This is trivially true for the ones
|
|
// passed to __kmpc_fork_call but the ones calles in serialized regions
|
|
// could be inlined. This is not a perfect but it is closer to the invariant
|
|
// we want, namely, every data environment starts with a new function.
|
|
// TODO: We should pass the if condition to the runtime function and do the
|
|
// handling there. Much cleaner code.
|
|
Fn->addFnAttr(llvm::Attribute::NoInline);
|
|
|
|
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
|
|
Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
Fn->setDoesNotRecurse();
|
|
|
|
CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
|
|
CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
|
|
D.getBeginLoc(), D.getBeginLoc());
|
|
|
|
const auto *RD = CS.getCapturedRecordDecl();
|
|
auto CurField = RD->field_begin();
|
|
|
|
Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
|
|
/*Name=*/".zero.addr");
|
|
CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
|
|
// Get the array of arguments.
|
|
SmallVector<llvm::Value *, 8> Args;
|
|
|
|
Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
|
|
Args.emplace_back(ZeroAddr.getPointer());
|
|
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
auto CI = CS.capture_begin();
|
|
|
|
// Use global memory for data sharing.
|
|
// Handle passing of global args to workers.
|
|
Address GlobalArgs =
|
|
CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
|
|
llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
|
|
llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
|
|
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
|
|
DataSharingArgs);
|
|
|
|
// Retrieve the shared variables from the list of references returned
|
|
// by the runtime. Pass the variables to the outlined function.
|
|
Address SharedArgListAddress = Address::invalid();
|
|
if (CS.capture_size() > 0 ||
|
|
isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
|
|
SharedArgListAddress = CGF.EmitLoadOfPointer(
|
|
GlobalArgs, CGF.getContext()
|
|
.getPointerType(CGF.getContext().VoidPtrTy)
|
|
.castAs<PointerType>());
|
|
}
|
|
unsigned Idx = 0;
|
|
if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
|
|
Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
|
|
Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
|
|
llvm::Value *LB = CGF.EmitLoadOfScalar(
|
|
TypedAddress,
|
|
/*Volatile=*/false,
|
|
CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
|
|
cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
|
|
Args.emplace_back(LB);
|
|
++Idx;
|
|
Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
|
|
TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
|
|
llvm::Value *UB = CGF.EmitLoadOfScalar(
|
|
TypedAddress,
|
|
/*Volatile=*/false,
|
|
CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
|
|
cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
|
|
Args.emplace_back(UB);
|
|
++Idx;
|
|
}
|
|
if (CS.capture_size() > 0) {
|
|
ASTContext &CGFContext = CGF.getContext();
|
|
for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
|
|
QualType ElemTy = CurField->getType();
|
|
Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
|
|
Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
|
|
Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
|
|
CGF.ConvertTypeForMem(ElemTy));
|
|
llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
|
|
/*Volatile=*/false,
|
|
CGFContext.getPointerType(ElemTy),
|
|
CI->getLocation());
|
|
if (CI->capturesVariableByCopy() &&
|
|
!CI->getCapturedVar()->getType()->isAnyPointerType()) {
|
|
Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
|
|
CI->getLocation());
|
|
}
|
|
Args.emplace_back(Arg);
|
|
}
|
|
}
|
|
|
|
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
|
|
CGF.FinishFunction();
|
|
return Fn;
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
|
|
const Decl *D) {
|
|
if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
|
|
return;
|
|
|
|
assert(D && "Expected function or captured|block decl.");
|
|
assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
|
|
"Function is registered already.");
|
|
assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
|
|
"Team is set but not processed.");
|
|
const Stmt *Body = nullptr;
|
|
bool NeedToDelayGlobalization = false;
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
|
|
Body = FD->getBody();
|
|
} else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
|
|
Body = BD->getBody();
|
|
} else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
|
|
Body = CD->getBody();
|
|
NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
|
|
if (NeedToDelayGlobalization &&
|
|
getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
|
|
return;
|
|
}
|
|
if (!Body)
|
|
return;
|
|
CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
|
|
VarChecker.Visit(Body);
|
|
const RecordDecl *GlobalizedVarsRecord =
|
|
VarChecker.getGlobalizedRecord(IsInTTDRegion);
|
|
TeamAndReductions.first = nullptr;
|
|
TeamAndReductions.second.clear();
|
|
ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
|
|
VarChecker.getEscapedVariableLengthDecls();
|
|
if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
|
|
return;
|
|
auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
|
|
I->getSecond().MappedParams =
|
|
std::make_unique<CodeGenFunction::OMPMapVars>();
|
|
I->getSecond().EscapedParameters.insert(
|
|
VarChecker.getEscapedParameters().begin(),
|
|
VarChecker.getEscapedParameters().end());
|
|
I->getSecond().EscapedVariableLengthDecls.append(
|
|
EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
|
|
DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
|
|
for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
|
|
assert(VD->isCanonicalDecl() && "Expected canonical declaration");
|
|
Data.insert(std::make_pair(VD, MappedVarData()));
|
|
}
|
|
if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
|
|
CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
|
|
VarChecker.Visit(Body);
|
|
I->getSecond().SecondaryLocalVarData.emplace();
|
|
DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
|
|
for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
|
|
assert(VD->isCanonicalDecl() && "Expected canonical declaration");
|
|
Data.insert(std::make_pair(VD, MappedVarData()));
|
|
}
|
|
}
|
|
if (!NeedToDelayGlobalization) {
|
|
emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
|
|
struct GlobalizationScope final : EHScopeStack::Cleanup {
|
|
GlobalizationScope() = default;
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
|
|
.emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
|
|
}
|
|
};
|
|
CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
|
|
}
|
|
}
|
|
|
|
Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
|
|
const VarDecl *VD) {
|
|
if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
|
|
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
|
|
auto AS = LangAS::Default;
|
|
switch (A->getAllocatorType()) {
|
|
// Use the default allocator here as by default local vars are
|
|
// threadlocal.
|
|
case OMPAllocateDeclAttr::OMPNullMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
|
|
// Follow the user decision - use default allocation.
|
|
return Address::invalid();
|
|
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
|
|
// TODO: implement aupport for user-defined allocators.
|
|
return Address::invalid();
|
|
case OMPAllocateDeclAttr::OMPConstMemAlloc:
|
|
AS = LangAS::cuda_constant;
|
|
break;
|
|
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
|
|
AS = LangAS::cuda_shared;
|
|
break;
|
|
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
|
|
break;
|
|
}
|
|
llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGM.getModule(), VarTy, /*isConstant=*/false,
|
|
llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
|
|
VD->getName(),
|
|
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
|
|
CGM.getContext().getTargetAddressSpace(AS));
|
|
CharUnits Align = CGM.getContext().getDeclAlign(VD);
|
|
GV->setAlignment(Align.getAsAlign());
|
|
return Address(
|
|
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
|
|
VD->getType().getAddressSpace()))),
|
|
VarTy, Align);
|
|
}
|
|
|
|
if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
|
|
return Address::invalid();
|
|
|
|
VD = VD->getCanonicalDecl();
|
|
auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
|
|
if (I == FunctionGlobalizedDecls.end())
|
|
return Address::invalid();
|
|
auto VDI = I->getSecond().LocalVarData.find(VD);
|
|
if (VDI != I->getSecond().LocalVarData.end())
|
|
return VDI->second.PrivateAddr;
|
|
if (VD->hasAttrs()) {
|
|
for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
|
|
E(VD->attr_end());
|
|
IT != E; ++IT) {
|
|
auto VDI = I->getSecond().LocalVarData.find(
|
|
cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
|
|
->getCanonicalDecl());
|
|
if (VDI != I->getSecond().LocalVarData.end())
|
|
return VDI->second.PrivateAddr;
|
|
}
|
|
}
|
|
|
|
return Address::invalid();
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
|
|
FunctionGlobalizedDecls.erase(CGF.CurFn);
|
|
CGOpenMPRuntime::functionFinished(CGF);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
OpenMPDistScheduleClauseKind &ScheduleKind,
|
|
llvm::Value *&Chunk) const {
|
|
auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
|
|
if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
|
|
ScheduleKind = OMPC_DIST_SCHEDULE_static;
|
|
Chunk = CGF.EmitScalarConversion(
|
|
RT.getGPUNumThreads(CGF),
|
|
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
|
|
S.getIterationVariable()->getType(), S.getBeginLoc());
|
|
return;
|
|
}
|
|
CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
|
|
CGF, S, ScheduleKind, Chunk);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
|
|
CodeGenFunction &CGF, const OMPLoopDirective &S,
|
|
OpenMPScheduleClauseKind &ScheduleKind,
|
|
const Expr *&ChunkExpr) const {
|
|
ScheduleKind = OMPC_SCHEDULE_static;
|
|
// Chunk size is 1 in this case.
|
|
llvm::APInt ChunkSize(32, 1);
|
|
ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
|
|
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
|
|
SourceLocation());
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
|
|
CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
|
|
assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
|
|
" Expected target-based directive.");
|
|
const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
|
|
for (const CapturedStmt::Capture &C : CS->captures()) {
|
|
// Capture variables captured by reference in lambdas for target-based
|
|
// directives.
|
|
if (!C.capturesVariable())
|
|
continue;
|
|
const VarDecl *VD = C.getCapturedVar();
|
|
const auto *RD = VD->getType()
|
|
.getCanonicalType()
|
|
.getNonReferenceType()
|
|
->getAsCXXRecordDecl();
|
|
if (!RD || !RD->isLambda())
|
|
continue;
|
|
Address VDAddr = CGF.GetAddrOfLocalVar(VD);
|
|
LValue VDLVal;
|
|
if (VD->getType().getCanonicalType()->isReferenceType())
|
|
VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
|
|
else
|
|
VDLVal = CGF.MakeAddrLValue(
|
|
VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
|
|
llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
|
|
FieldDecl *ThisCapture = nullptr;
|
|
RD->getCaptureFields(Captures, ThisCapture);
|
|
if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
|
|
LValue ThisLVal =
|
|
CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
|
|
llvm::Value *CXXThis = CGF.LoadCXXThis();
|
|
CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
|
|
}
|
|
for (const LambdaCapture &LC : RD->captures()) {
|
|
if (LC.getCaptureKind() != LCK_ByRef)
|
|
continue;
|
|
const VarDecl *VD = LC.getCapturedVar();
|
|
if (!CS->capturesVariable(VD))
|
|
continue;
|
|
auto It = Captures.find(VD);
|
|
assert(It != Captures.end() && "Found lambda capture without field.");
|
|
LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
|
|
Address VDAddr = CGF.GetAddrOfLocalVar(VD);
|
|
if (VD->getType().getCanonicalType()->isReferenceType())
|
|
VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
|
|
VD->getType().getCanonicalType())
|
|
.getAddress(CGF);
|
|
CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
|
|
LangAS &AS) {
|
|
if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
|
|
return false;
|
|
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
|
|
switch(A->getAllocatorType()) {
|
|
case OMPAllocateDeclAttr::OMPNullMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
|
|
// Not supported, fallback to the default mem space.
|
|
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
|
|
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
|
|
AS = LangAS::Default;
|
|
return true;
|
|
case OMPAllocateDeclAttr::OMPConstMemAlloc:
|
|
AS = LangAS::cuda_constant;
|
|
return true;
|
|
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
|
|
AS = LangAS::cuda_shared;
|
|
return true;
|
|
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
|
|
llvm_unreachable("Expected predefined allocator for the variables with the "
|
|
"static storage.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Get current CudaArch and ignore any unknown values
|
|
static CudaArch getCudaArch(CodeGenModule &CGM) {
|
|
if (!CGM.getTarget().hasFeature("ptx"))
|
|
return CudaArch::UNKNOWN;
|
|
for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
|
|
if (Feature.getValue()) {
|
|
CudaArch Arch = StringToCudaArch(Feature.getKey());
|
|
if (Arch != CudaArch::UNKNOWN)
|
|
return Arch;
|
|
}
|
|
}
|
|
return CudaArch::UNKNOWN;
|
|
}
|
|
|
|
/// Check to see if target architecture supports unified addressing which is
|
|
/// a restriction for OpenMP requires clause "unified_shared_memory".
|
|
void CGOpenMPRuntimeGPU::processRequiresDirective(
|
|
const OMPRequiresDecl *D) {
|
|
for (const OMPClause *Clause : D->clauselists()) {
|
|
if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
|
|
CudaArch Arch = getCudaArch(CGM);
|
|
switch (Arch) {
|
|
case CudaArch::SM_20:
|
|
case CudaArch::SM_21:
|
|
case CudaArch::SM_30:
|
|
case CudaArch::SM_32:
|
|
case CudaArch::SM_35:
|
|
case CudaArch::SM_37:
|
|
case CudaArch::SM_50:
|
|
case CudaArch::SM_52:
|
|
case CudaArch::SM_53: {
|
|
SmallString<256> Buffer;
|
|
llvm::raw_svector_ostream Out(Buffer);
|
|
Out << "Target architecture " << CudaArchToString(Arch)
|
|
<< " does not support unified addressing";
|
|
CGM.Error(Clause->getBeginLoc(), Out.str());
|
|
return;
|
|
}
|
|
case CudaArch::SM_60:
|
|
case CudaArch::SM_61:
|
|
case CudaArch::SM_62:
|
|
case CudaArch::SM_70:
|
|
case CudaArch::SM_72:
|
|
case CudaArch::SM_75:
|
|
case CudaArch::SM_80:
|
|
case CudaArch::SM_86:
|
|
case CudaArch::GFX600:
|
|
case CudaArch::GFX601:
|
|
case CudaArch::GFX602:
|
|
case CudaArch::GFX700:
|
|
case CudaArch::GFX701:
|
|
case CudaArch::GFX702:
|
|
case CudaArch::GFX703:
|
|
case CudaArch::GFX704:
|
|
case CudaArch::GFX705:
|
|
case CudaArch::GFX801:
|
|
case CudaArch::GFX802:
|
|
case CudaArch::GFX803:
|
|
case CudaArch::GFX805:
|
|
case CudaArch::GFX810:
|
|
case CudaArch::GFX900:
|
|
case CudaArch::GFX902:
|
|
case CudaArch::GFX904:
|
|
case CudaArch::GFX906:
|
|
case CudaArch::GFX908:
|
|
case CudaArch::GFX909:
|
|
case CudaArch::GFX90a:
|
|
case CudaArch::GFX90c:
|
|
case CudaArch::GFX940:
|
|
case CudaArch::GFX1010:
|
|
case CudaArch::GFX1011:
|
|
case CudaArch::GFX1012:
|
|
case CudaArch::GFX1013:
|
|
case CudaArch::GFX1030:
|
|
case CudaArch::GFX1031:
|
|
case CudaArch::GFX1032:
|
|
case CudaArch::GFX1033:
|
|
case CudaArch::GFX1034:
|
|
case CudaArch::GFX1035:
|
|
case CudaArch::GFX1036:
|
|
case CudaArch::Generic:
|
|
case CudaArch::UNUSED:
|
|
case CudaArch::UNKNOWN:
|
|
break;
|
|
case CudaArch::LAST:
|
|
llvm_unreachable("Unexpected Cuda arch.");
|
|
}
|
|
}
|
|
}
|
|
CGOpenMPRuntime::processRequiresDirective(D);
|
|
}
|
|
|
|
void CGOpenMPRuntimeGPU::clear() {
|
|
|
|
if (!TeamsReductions.empty()) {
|
|
ASTContext &C = CGM.getContext();
|
|
RecordDecl *StaticRD = C.buildImplicitRecord(
|
|
"_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
|
|
StaticRD->startDefinition();
|
|
for (const RecordDecl *TeamReductionRec : TeamsReductions) {
|
|
QualType RecTy = C.getRecordType(TeamReductionRec);
|
|
auto *Field = FieldDecl::Create(
|
|
C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
|
|
C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
|
|
/*BW=*/nullptr, /*Mutable=*/false,
|
|
/*InitStyle=*/ICIS_NoInit);
|
|
Field->setAccess(AS_public);
|
|
StaticRD->addDecl(Field);
|
|
}
|
|
StaticRD->completeDefinition();
|
|
QualType StaticTy = C.getRecordType(StaticRD);
|
|
llvm::Type *LLVMReductionsBufferTy =
|
|
CGM.getTypes().ConvertTypeForMem(StaticTy);
|
|
// FIXME: nvlink does not handle weak linkage correctly (object with the
|
|
// different size are reported as erroneous).
|
|
// Restore CommonLinkage as soon as nvlink is fixed.
|
|
auto *GV = new llvm::GlobalVariable(
|
|
CGM.getModule(), LLVMReductionsBufferTy,
|
|
/*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
|
|
llvm::Constant::getNullValue(LLVMReductionsBufferTy),
|
|
"_openmp_teams_reductions_buffer_$_");
|
|
KernelTeamsReductionPtr->setInitializer(
|
|
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
|
|
CGM.VoidPtrTy));
|
|
}
|
|
CGOpenMPRuntime::clear();
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
|
|
CGBuilderTy &Bld = CGF.Builder;
|
|
llvm::Module *M = &CGF.CGM.getModule();
|
|
const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
|
|
llvm::Function *F = M->getFunction(LocSize);
|
|
if (!F) {
|
|
F = llvm::Function::Create(
|
|
llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
|
|
llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
|
|
}
|
|
return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
|
|
ArrayRef<llvm::Value *> Args{};
|
|
return CGF.EmitRuntimeCall(
|
|
OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
|
|
Args);
|
|
}
|
|
|
|
llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
|
|
ArrayRef<llvm::Value *> Args{};
|
|
return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
|
|
CGM.getModule(), OMPRTL___kmpc_get_warp_size),
|
|
Args);
|
|
}
|