llvm-project/clang/lib/CodeGen/Mangle.cpp

1354 lines
43 KiB
C++

//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
//===----------------------------------------------------------------------===//
#include "Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;
namespace {
class VISIBILITY_HIDDEN CXXNameMangler {
ASTContext &Context;
llvm::raw_ostream &Out;
const CXXMethodDecl *Structor;
unsigned StructorType;
CXXCtorType CtorType;
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
public:
CXXNameMangler(ASTContext &C, llvm::raw_ostream &os)
: Context(C), Out(os), Structor(0), StructorType(0) { }
bool mangle(const NamedDecl *D);
void mangleCalloffset(int64_t nv, int64_t v);
void mangleThunk(const FunctionDecl *FD, int64_t nv, int64_t v);
void mangleCovariantThunk(const FunctionDecl *FD,
int64_t nv_t, int64_t v_t,
int64_t nv_r, int64_t v_r);
void mangleGuardVariable(const VarDecl *D);
void mangleCXXVtable(QualType Type);
void mangleCXXRtti(QualType Type);
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type);
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type);
private:
bool mangleSubstitution(const NamedDecl *ND);
bool mangleSubstitution(QualType T);
bool mangleSubstitution(uintptr_t Ptr);
bool mangleStandardSubstitution(const NamedDecl *ND);
void addSubstitution(const NamedDecl *ND) {
addSubstitution(reinterpret_cast<uintptr_t>(ND));
}
void addSubstitution(QualType T);
void addSubstitution(uintptr_t Ptr);
bool mangleFunctionDecl(const FunctionDecl *FD);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleName(const NamedDecl *ND);
void mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleUnqualifiedName(const NamedDecl *ND);
void mangleUnscopedName(const NamedDecl *ND);
void mangleUnscopedTemplateName(const TemplateDecl *ND);
void mangleSourceName(const IdentifierInfo *II);
void mangleLocalName(const NamedDecl *ND);
void mangleNestedName(const NamedDecl *ND);
void mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void manglePrefix(const DeclContext *DC);
void mangleTemplatePrefix(const TemplateDecl *ND);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleQualifiers(Qualifiers Quals);
void mangleType(QualType T);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
void mangleType(const TagType*);
void mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType);
void mangleExpression(const Expr *E);
void mangleCXXCtorType(CXXCtorType T);
void mangleCXXDtorType(CXXDtorType T);
void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleTemplateArgumentList(const TemplateArgumentList &L);
void mangleTemplateArgument(const TemplateArgument &A);
void mangleTemplateParameter(unsigned Index);
};
}
static bool isInCLinkageSpecification(const Decl *D) {
for (const DeclContext *DC = D->getDeclContext();
!DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
}
return false;
}
bool CXXNameMangler::mangleFunctionDecl(const FunctionDecl *FD) {
// Clang's "overloadable" attribute extension to C/C++ implies name mangling
// (always).
if (!FD->hasAttr<OverloadableAttr>()) {
// C functions are not mangled, and "main" is never mangled.
if (!Context.getLangOptions().CPlusPlus || FD->isMain())
return false;
// No mangling in an "implicit extern C" header.
if (FD->getLocation().isValid() &&
Context.getSourceManager().isInExternCSystemHeader(FD->getLocation()))
return false;
// No name mangling in a C linkage specification.
if (!isa<CXXMethodDecl>(FD) && isInCLinkageSpecification(FD))
return false;
}
// If we get here, mangle the decl name!
Out << "_Z";
mangleFunctionEncoding(FD);
return true;
}
bool CXXNameMangler::mangle(const NamedDecl *D) {
// Any decl can be declared with __asm("foo") on it, and this takes precedence
// over all other naming in the .o file.
if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
// If we have an asm name, then we use it as the mangling.
Out << '\01'; // LLVM IR Marker for __asm("foo")
Out << ALA->getLabel();
return true;
}
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
// FIXME: Actually use a visitor to decode these?
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
return mangleFunctionDecl(FD);
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (!Context.getLangOptions().CPlusPlus ||
isInCLinkageSpecification(D) ||
D->getDeclContext()->isTranslationUnit())
return false;
Out << "_Z";
mangleName(VD);
return true;
}
return false;
}
void CXXNameMangler::mangleCXXCtor(const CXXConstructorDecl *D,
CXXCtorType Type) {
assert(!Structor && "Structor already set!");
Structor = D;
StructorType = Type;
mangle(D);
}
void CXXNameMangler::mangleCXXDtor(const CXXDestructorDecl *D,
CXXDtorType Type) {
assert(!Structor && "Structor already set!");
Structor = D;
StructorType = Type;
mangle(D);
}
void CXXNameMangler::mangleCXXVtable(QualType T) {
// <special-name> ::= TV <type> # virtual table
Out << "_ZTV";
mangleType(T);
}
void CXXNameMangler::mangleCXXRtti(QualType T) {
// <special-name> ::= TI <type> # typeinfo structure
Out << "_ZTI";
mangleType(T);
}
void CXXNameMangler::mangleGuardVariable(const VarDecl *D) {
// <special-name> ::= GV <object name> # Guard variable for one-time
// # initialization
Out << "_ZGV";
mangleName(D);
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
mangleName(FD);
// Whether the mangling of a function type includes the return type depends on
// the context and the nature of the function. The rules for deciding whether
// the return type is included are:
//
// 1. Template functions (names or types) have return types encoded, with
// the exceptions listed below.
// 2. Function types not appearing as part of a function name mangling,
// e.g. parameters, pointer types, etc., have return type encoded, with the
// exceptions listed below.
// 3. Non-template function names do not have return types encoded.
//
// The exceptions mentioned in (1) and (2) above, for which the return type is
// never included, are
// 1. Constructors.
// 2. Destructors.
// 3. Conversion operator functions, e.g. operator int.
bool MangleReturnType = false;
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
isa<CXXConversionDecl>(FD)))
MangleReturnType = true;
// Mangle the type of the primary template.
FD = PrimaryTemplate->getTemplatedDecl();
}
mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), MangleReturnType);
}
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace() || !DC->getParent()->isTranslationUnit())
return false;
const NamespaceDecl *NS = cast<NamespaceDecl>(DC);
return NS->getOriginalNamespace()->getIdentifier()->isStr("std");
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
TemplateArgs = FD->getTemplateSpecializationArgs();
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
return 0;
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <nested-name>
// ::= <unscoped-name>
// ::= <unscoped-template-name> <template-args>
// ::= <local-name>
//
const DeclContext *DC = ND->getDeclContext();
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgumentList(*TemplateArgs);
return;
}
mangleUnscopedName(ND);
return;
}
if (isa<FunctionDecl>(DC)) {
mangleLocalName(ND);
return;
}
mangleNestedName(ND);
}
void CXXNameMangler::mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
const DeclContext *DC = TD->getDeclContext();
while (isa<LinkageSpecDecl>(DC)) {
assert(cast<LinkageSpecDecl>(DC)->getLanguage() ==
LinkageSpecDecl::lang_cxx && "Unexpected linkage decl!");
DC = DC->getParent();
}
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
} else {
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
}
}
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (isStdNamespace(ND->getDeclContext()))
Out << "St";
mangleUnqualifiedName(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (mangleSubstitution(ND))
return;
mangleUnscopedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
void CXXNameMangler::mangleCalloffset(int64_t nv, int64_t v) {
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
// <nv-offset> ::= <offset number> # non-virtual base override
// <v-offset> ::= <offset nubmer> _ <virtual offset number>
// # virtual base override, with vcall offset
if (v == 0) {
Out << "h";
if (nv < 0) {
Out << "n";
nv = -nv;
}
Out << nv;
} else {
Out << "v";
if (nv < 0) {
Out << "n";
nv = -nv;
}
Out << nv;
Out << "_";
if (v < 0) {
Out << "n";
v = -v;
}
Out << v;
}
Out << "_";
}
void CXXNameMangler::mangleThunk(const FunctionDecl *FD, int64_t nv,
int64_t v) {
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
Out << "_ZT";
mangleCalloffset(nv, v);
mangleFunctionEncoding(FD);
}
void CXXNameMangler::mangleCovariantThunk(const FunctionDecl *FD,
int64_t nv_t, int64_t v_t,
int64_t nv_r, int64_t v_r) {
// <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
Out << "_ZTc";
mangleCalloffset(nv_t, v_t);
mangleCalloffset(nv_r, v_r);
mangleFunctionEncoding(FD);
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
DeclarationName Name = ND->getDeclName();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
mangleSourceName(Name.getAsIdentifierInfo());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
assert(false && "Can't mangle Objective-C selector names here!");
break;
case DeclarationName::CXXConstructorName:
if (ND == Structor)
// If the named decl is the C++ constructor we're mangling, use the type
// we were given.
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
else
// Otherwise, use the complete constructor name. This is relevant if a
// class with a constructor is declared within a constructor.
mangleCXXCtorType(Ctor_Complete);
break;
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling, use the type we
// were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the complete destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Complete);
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Context.getCanonicalType(Name.getCXXNameType()));
break;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(),
cast<FunctionDecl>(ND)->getNumParams());
break;
case DeclarationName::CXXUsingDirective:
assert(false && "Can't mangle a using directive name!");
break;
}
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND) {
// <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgumentList(*TemplateArgs);
} else {
manglePrefix(ND->getDeclContext());
mangleUnqualifiedName(ND);
}
Out << 'E';
}
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
mangleTemplatePrefix(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
Out << 'E';
}
void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// <discriminator> := _ <non-negative number>
Out << 'Z';
mangleFunctionEncoding(cast<FunctionDecl>(ND->getDeclContext()));
Out << 'E';
mangleSourceName(ND->getIdentifier());
}
void CXXNameMangler::manglePrefix(const DeclContext *DC) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
// FIXME: We only handle mangling of namespaces and classes at the moment.
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
if (DC->isTranslationUnit())
return;
if (mangleSubstitution(cast<NamedDecl>(DC)))
return;
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = 0;
if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgumentList(*TemplateArgs);
} else {
manglePrefix(DC->getParent());
mangleUnqualifiedName(cast<NamedDecl>(DC));
}
addSubstitution(cast<NamedDecl>(DC));
}
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
if (mangleSubstitution(ND))
return;
// FIXME: <template-param>
manglePrefix(ND->getDeclContext());
mangleUnqualifiedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # +
case OO_Plus: Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # -
case OO_Minus: Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # &
case OO_Amp: Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # *
case OO_Star: Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// UNSUPPORTED: ::= qu # ?
case OO_None:
case OO_Conditional:
case NUM_OVERLOADED_OPERATORS:
assert(false && "Not an overloaded operator");
break;
}
}
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals.hasRestrict())
Out << 'r';
if (Quals.hasVolatile())
Out << 'V';
if (Quals.hasConst())
Out << 'K';
// FIXME: For now, just drop all extension qualifiers on the floor.
}
void CXXNameMangler::mangleType(QualType T) {
// Only operate on the canonical type!
T = Context.getCanonicalType(T);
bool IsSubstitutable = !isa<BuiltinType>(T);
if (IsSubstitutable && mangleSubstitution(T))
return;
if (Qualifiers Quals = T.getQualifiers()) {
mangleQualifiers(Quals);
// Recurse: even if the qualified type isn't yet substitutable,
// the unqualified type might be.
mangleType(T.getUnqualifiedType());
} else {
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm::llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(static_cast<const CLASS##Type*>(T.getTypePtr())); \
break;
#include "clang/AST/TypeNodes.def"
}
}
// Add the substitution.
if (IsSubstitutable)
addSubstitution(T);
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <type> ::= <builtin-type>
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// UNSUPPORTED: ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// UNSUPPORTED: ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= u <source-name> # vendor extended type
// From our point of view, std::nullptr_t is a builtin, but as far as mangling
// is concerned, it's a type called std::nullptr_t.
switch (T->getKind()) {
case BuiltinType::Void: Out << 'v'; break;
case BuiltinType::Bool: Out << 'b'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
case BuiltinType::UChar: Out << 'h'; break;
case BuiltinType::UShort: Out << 't'; break;
case BuiltinType::UInt: Out << 'j'; break;
case BuiltinType::ULong: Out << 'm'; break;
case BuiltinType::ULongLong: Out << 'y'; break;
case BuiltinType::UInt128: Out << 'o'; break;
case BuiltinType::SChar: Out << 'a'; break;
case BuiltinType::WChar: Out << 'w'; break;
case BuiltinType::Char16: Out << "Ds"; break;
case BuiltinType::Char32: Out << "Di"; break;
case BuiltinType::Short: Out << 's'; break;
case BuiltinType::Int: Out << 'i'; break;
case BuiltinType::Long: Out << 'l'; break;
case BuiltinType::LongLong: Out << 'x'; break;
case BuiltinType::Int128: Out << 'n'; break;
case BuiltinType::Float: Out << 'f'; break;
case BuiltinType::Double: Out << 'd'; break;
case BuiltinType::LongDouble: Out << 'e'; break;
case BuiltinType::NullPtr: Out << "St9nullptr_t"; break;
case BuiltinType::Overload:
case BuiltinType::Dependent:
assert(false &&
"Overloaded and dependent types shouldn't get to name mangling");
break;
case BuiltinType::UndeducedAuto:
assert(0 && "Should not see undeduced auto here");
break;
case BuiltinType::ObjCId: Out << "11objc_object"; break;
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
}
}
// <type> ::= <function-type>
// <function-type> ::= F [Y] <bare-function-type> E
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the 'Y'
// encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
Out << 'E';
}
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
llvm::llvm_unreachable("Can't mangle K&R function prototypes");
}
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType) {
// We should never be mangling something without a prototype.
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
// <bare-function-type> ::= <signature type>+
if (MangleReturnType)
mangleType(Proto->getResultType());
if (Proto->getNumArgs() == 0) {
Out << 'v';
return;
}
for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
ArgEnd = Proto->arg_type_end();
Arg != ArgEnd; ++Arg)
mangleType(*Arg);
// <builtin-type> ::= z # ellipsis
if (Proto->isVariadic())
Out << 'z';
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const EnumType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const RecordType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const TagType *T) {
if (!T->getDecl()->getIdentifier())
mangleName(T->getDecl()->getTypedefForAnonDecl());
else
mangleName(T->getDecl());
}
// <type> ::= <array-type>
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
Out << 'A' << T->getSize() << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const VariableArrayType *T) {
Out << 'A';
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
Out << 'A';
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
Out << 'A' << '_';
mangleType(T->getElementType());
}
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= M <class type> <member type>
void CXXNameMangler::mangleType(const MemberPointerType *T) {
Out << 'M';
mangleType(QualType(T->getClass(), 0));
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
mangleType(FPT);
} else
mangleType(PointeeType);
}
// <type> ::= <template-param>
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
mangleTemplateParameter(T->getIndex());
}
// FIXME: <type> ::= <template-template-param> <template-args>
// <type> ::= P <type> # pointer-to
void CXXNameMangler::mangleType(const PointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
// <type> ::= R <type> # reference-to
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
Out << 'R';
mangleType(T->getPointeeType());
}
// <type> ::= O <type> # rvalue reference-to (C++0x)
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
Out << 'O';
mangleType(T->getPointeeType());
}
// <type> ::= C <type> # complex pair (C 2000)
void CXXNameMangler::mangleType(const ComplexType *T) {
Out << 'C';
mangleType(T->getElementType());
}
// GNU extension: vector types
void CXXNameMangler::mangleType(const VectorType *T) {
Out << "U8__vector";
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const ExtVectorType *T) {
mangleType(static_cast<const VectorType*>(T));
}
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
Out << "U8__vector";
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
mangleSourceName(T->getDecl()->getIdentifier());
}
void CXXNameMangler::mangleType(const BlockPointerType *T) {
assert(false && "can't mangle block pointer types yet");
}
void CXXNameMangler::mangleType(const FixedWidthIntType *T) {
assert(false && "can't mangle arbitary-precision integer type yet");
}
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
assert(TD && "FIXME: Support dependent template names!");
mangleName(TD, T->getArgs(), T->getNumArgs());
}
void CXXNameMangler::mangleType(const TypenameType *T) {
// Typename types are always nested
Out << 'N';
const Type *QTy = T->getQualifier()->getAsType();
if (const TemplateSpecializationType *TST =
dyn_cast<TemplateSpecializationType>(QTy)) {
if (!mangleSubstitution(QualType(TST, 0))) {
TemplateDecl *TD = TST->getTemplateName().getAsTemplateDecl();
mangleTemplatePrefix(TD);
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
addSubstitution(QualType(TST, 0));
}
} else if (const TemplateTypeParmType *TTPT =
dyn_cast<TemplateTypeParmType>(QTy)) {
// We use the QualType mangle type variant here because it handles
// substitutions.
mangleType(QualType(TTPT, 0));
} else
assert(false && "Unhandled type!");
mangleSourceName(T->getIdentifier());
Out << 'E';
}
void CXXNameMangler::mangleExpression(const Expr *E) {
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <trinary operator-name> <expression> <expression> <expression>
// ::= cl <expression>* E # call
// ::= cv <type> expression # conversion with one argument
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
// ::= st <type> # sizeof (a type)
// ::= at <type> # alignof (a type)
// ::= <template-param>
// ::= <function-param>
// ::= sr <type> <unqualified-name> # dependent name
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
// ::= sZ <template-param> # size of a parameter pack
// ::= <expr-primary>
switch (E->getStmtClass()) {
default: assert(false && "Unhandled expression kind!");
case Expr::DeclRefExprClass: {
const Decl *D = cast<DeclRefExpr>(E)->getDecl();
switch (D->getKind()) {
default: assert(false && "Unhandled decl kind!");
case Decl::NonTypeTemplateParm: {
const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
mangleTemplateParameter(PD->getIndex());
break;
}
}
}
}
}
// FIXME: <type> ::= G <type> # imaginary (C 2000)
// FIXME: <type> ::= U <source-name> <type> # vendor extended type qualifier
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
//
switch (T) {
case Ctor_Complete:
Out << "C1";
break;
case Ctor_Base:
Out << "C2";
break;
case Ctor_CompleteAllocating:
Out << "C3";
break;
}
}
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
//
switch (T) {
case Dtor_Deleting:
Out << "D0";
break;
case Dtor_Complete:
Out << "D1";
break;
case Dtor_Base:
Out << "D2";
break;
}
}
void CXXNameMangler::mangleTemplateArgumentList(const TemplateArgumentList &L) {
// <template-args> ::= I <template-arg>+ E
Out << "I";
for (unsigned i = 0, e = L.size(); i != e; ++i) {
const TemplateArgument &A = L[i];
mangleTemplateArgument(A);
}
Out << "E";
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <template-args> ::= I <template-arg>+ E
Out << "I";
for (unsigned i = 0; i != NumTemplateArgs; ++i) {
mangleTemplateArgument(TemplateArgs[i]);
}
Out << "E";
}
void CXXNameMangler::mangleTemplateArgument(const TemplateArgument &A) {
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= I <template-arg>* E # argument pack
// ::= sp <expression> # pack expansion of (C++0x)
switch (A.getKind()) {
default:
assert(0 && "Unknown template argument kind!");
case TemplateArgument::Type:
mangleType(A.getAsType());
break;
case TemplateArgument::Expression:
Out << 'X';
mangleExpression(A.getAsExpr());
Out << 'E';
break;
case TemplateArgument::Integral:
// <expr-primary> ::= L <type> <value number> E # integer literal
Out << 'L';
mangleType(A.getIntegralType());
const llvm::APSInt *Integral = A.getAsIntegral();
if (A.getIntegralType()->isBooleanType()) {
// Boolean values are encoded as 0/1.
Out << (Integral->getBoolValue() ? '1' : '0');
} else {
if (Integral->isNegative())
Out << 'n';
Integral->abs().print(Out, false);
}
Out << 'E';
break;
}
}
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
if (Index == 0)
Out << "T_";
else
Out << 'T' << (Index - 1) << '_';
}
// <substitution> ::= S <seq-id> _
// ::= S_
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
// Try one of the standard substitutions first.
if (mangleStandardSubstitution(ND))
return true;
return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
}
bool CXXNameMangler::mangleSubstitution(QualType T) {
if (!T.getCVRQualifiers()) {
if (const RecordType *RT = T->getAs<RecordType>())
return mangleSubstitution(RT->getDecl());
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
return mangleSubstitution(TypePtr);
}
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
llvm::DenseMap<uintptr_t, unsigned>::iterator I =
Substitutions.find(Ptr);
if (I == Substitutions.end())
return false;
unsigned SeqID = I->second;
if (SeqID == 0)
Out << "S_";
else {
SeqID--;
// <seq-id> is encoded in base-36, using digits and upper case letters.
char Buffer[10];
char *BufferPtr = Buffer + 9;
*BufferPtr = 0;
if (SeqID == 0) *--BufferPtr = '0';
while (SeqID) {
assert(BufferPtr > Buffer && "Buffer overflow!");
unsigned char c = static_cast<unsigned char>(SeqID) % 36;
*--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
SeqID /= 36;
}
Out << 'S' << BufferPtr << '_';
}
return true;
}
static bool isCharType(QualType T) {
if (T.isNull())
return false;
return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
T->isSpecificBuiltinType(BuiltinType::Char_U);
}
/// isCharSpecialization - Returns whether a given type is a template
/// specialization of a given name with a single argument of type char.
static bool isCharSpecialization(QualType T, const char *Name) {
if (T.isNull())
return false;
const RecordType *RT = T->getAs<RecordType>();
if (!RT)
return false;
const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
if (!SD)
return false;
if (!isStdNamespace(SD->getDeclContext()))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 1)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (strcmp(SD->getIdentifier()->getName(), Name) != 0)
return false;
return true;
}
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
// <substitution> ::= St # ::std::
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->getParent()->isTranslationUnit() &&
NS->getOriginalNamespace()->getIdentifier()->isStr("std")) {
Out << "St";
return true;
}
}
if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
if (!isStdNamespace(TD->getDeclContext()))
return false;
// <substitution> ::= Sa # ::std::allocator
if (TD->getIdentifier()->isStr("allocator")) {
Out << "Sa";
return true;
}
// <<substitution> ::= Sb # ::std::basic_string
if (TD->getIdentifier()->isStr("basic_string")) {
Out << "Sb";
return true;
}
}
if (const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
// <substitution> ::= Ss # ::std::basic_string<char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
if (SD->getIdentifier()->isStr("basic_string")) {
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 3)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
return false;
Out << "Ss";
return true;
}
}
return false;
}
void CXXNameMangler::addSubstitution(QualType T) {
if (!T.getCVRQualifiers()) {
if (const RecordType *RT = T->getAs<RecordType>()) {
addSubstitution(RT->getDecl());
return;
}
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
addSubstitution(TypePtr);
}
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
unsigned SeqID = Substitutions.size();
assert(!Substitutions.count(Ptr) && "Substitution already exists!");
Substitutions[Ptr] = SeqID;
}
namespace clang {
/// \brief Mangles the name of the declaration D and emits that name to the
/// given output stream.
///
/// If the declaration D requires a mangled name, this routine will emit that
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
/// and this routine will return false. In this case, the caller should just
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
/// name.
bool mangleName(const NamedDecl *D, ASTContext &Context,
llvm::raw_ostream &os) {
assert(!isa<CXXConstructorDecl>(D) &&
"Use mangleCXXCtor for constructor decls!");
assert(!isa<CXXDestructorDecl>(D) &&
"Use mangleCXXDtor for destructor decls!");
PrettyStackTraceDecl CrashInfo(const_cast<NamedDecl *>(D), SourceLocation(),
Context.getSourceManager(),
"Mangling declaration");
CXXNameMangler Mangler(Context, os);
if (!Mangler.mangle(D))
return false;
os.flush();
return true;
}
/// \brief Mangles the a thunk with the offset n for the declaration D and
/// emits that name to the given output stream.
void mangleThunk(const FunctionDecl *FD, int64_t nv, int64_t v,
ASTContext &Context, llvm::raw_ostream &os) {
// FIXME: Hum, we might have to thunk these, fix.
assert(!isa<CXXDestructorDecl>(FD) &&
"Use mangleCXXDtor for destructor decls!");
CXXNameMangler Mangler(Context, os);
Mangler.mangleThunk(FD, nv, v);
os.flush();
}
/// \brief Mangles the a covariant thunk for the declaration D and emits that
/// name to the given output stream.
void mangleCovariantThunk(const FunctionDecl *FD, int64_t nv_t, int64_t v_t,
int64_t nv_r, int64_t v_r, ASTContext &Context,
llvm::raw_ostream &os) {
// FIXME: Hum, we might have to thunk these, fix.
assert(!isa<CXXDestructorDecl>(FD) &&
"Use mangleCXXDtor for destructor decls!");
CXXNameMangler Mangler(Context, os);
Mangler.mangleCovariantThunk(FD, nv_t, v_t, nv_r, v_r);
os.flush();
}
/// mangleGuardVariable - Returns the mangled name for a guard variable
/// for the passed in VarDecl.
void mangleGuardVariable(const VarDecl *D, ASTContext &Context,
llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleGuardVariable(D);
os.flush();
}
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
ASTContext &Context, llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleCXXCtor(D, Type);
os.flush();
}
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
ASTContext &Context, llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleCXXDtor(D, Type);
os.flush();
}
void mangleCXXVtable(QualType Type, ASTContext &Context,
llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleCXXVtable(Type);
os.flush();
}
void mangleCXXRtti(QualType Type, ASTContext &Context,
llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
Mangler.mangleCXXRtti(Type);
os.flush();
}
}