llvm-project/llvm/lib/Transforms/Scalar/LoopDeletion.cpp

277 lines
10 KiB
C++

//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Deletion Pass. This pass is responsible
// for eliminating loops with non-infinite computable trip counts that have no
// side effects or volatile instructions, and do not contribute to the
// computation of the function's return value.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/Dominators.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;
#define DEBUG_TYPE "loop-delete"
STATISTIC(NumDeleted, "Number of loops deleted");
/// Determines if a loop is dead.
///
/// This assumes that we've already checked for unique exit and exiting blocks,
/// and that the code is in LCSSA form.
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
SmallVectorImpl<BasicBlock *> &ExitingBlocks,
BasicBlock *ExitBlock, bool &Changed,
BasicBlock *Preheader) {
// Make sure that all PHI entries coming from the loop are loop invariant.
// Because the code is in LCSSA form, any values used outside of the loop
// must pass through a PHI in the exit block, meaning that this check is
// sufficient to guarantee that no loop-variant values are used outside
// of the loop.
BasicBlock::iterator BI = ExitBlock->begin();
bool AllEntriesInvariant = true;
bool AllOutgoingValuesSame = true;
while (PHINode *P = dyn_cast<PHINode>(BI)) {
Value *incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
// Make sure all exiting blocks produce the same incoming value for the exit
// block. If there are different incoming values for different exiting
// blocks, then it is impossible to statically determine which value should
// be used.
AllOutgoingValuesSame =
all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
return incoming == P->getIncomingValueForBlock(BB);
});
if (!AllOutgoingValuesSame)
break;
if (Instruction *I = dyn_cast<Instruction>(incoming))
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
AllEntriesInvariant = false;
break;
}
++BI;
}
if (Changed)
SE.forgetLoopDispositions(L);
if (!AllEntriesInvariant || !AllOutgoingValuesSame)
return false;
// Make sure that no instructions in the block have potential side-effects.
// This includes instructions that could write to memory, and loads that are
// marked volatile. This could be made more aggressive by using aliasing
// information to identify readonly and readnone calls.
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
for (Instruction &I : **LI) {
if (I.mayHaveSideEffects())
return false;
}
}
return true;
}
/// Remove a loop if it is dead.
///
/// A loop is considered dead if it does not impact the observable behavior of
/// the program other than finite running time. This never removes a loop that
/// might be infinite, as doing so could change the halting/non-halting nature
/// of a program.
///
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
/// order to make various safety checks work.
///
/// \returns true if the loop is deleted.
///
/// This also sets the \p Changed output parameter to `true` if any changes
/// were made. This may mutate the loop even if it is unable to delete it due
/// to hoisting trivially loop invariant instructions out of the loop.
///
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
/// LI.
static bool deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, bool &Changed) {
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
// We can only remove the loop if there is a preheader that we can
// branch from after removing it.
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
// If LoopSimplify form is not available, stay out of trouble.
if (!L->hasDedicatedExits())
return false;
// We can't remove loops that contain subloops. If the subloops were dead,
// they would already have been removed in earlier executions of this pass.
if (L->begin() != L->end())
return false;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
// We require that the loop only have a single exit block. Otherwise, we'd
// be in the situation of needing to be able to solve statically which exit
// block will be branched to, or trying to preserve the branching logic in
// a loop invariant manner.
BasicBlock *ExitBlock = L->getUniqueExitBlock();
if (!ExitBlock)
return false;
// Finally, we have to check that the loop really is dead.
if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader))
return false;
// Don't remove loops for which we can't solve the trip count.
// They could be infinite, in which case we'd be changing program behavior.
const SCEV *S = SE.getMaxBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(S))
return false;
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
//
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues.
// Tell ScalarEvolution that the loop is deleted. Do this before
// deleting the loop so that ScalarEvolution can look at the loop
// to determine what it needs to clean up.
SE.forgetLoop(L);
// Connect the preheader directly to the exit block.
TerminatorInst *TI = Preheader->getTerminator();
TI->replaceUsesOfWith(L->getHeader(), ExitBlock);
// Rewrite phis in the exit block to get their inputs from
// the preheader instead of the exiting block.
BasicBlock *ExitingBlock = ExitingBlocks[0];
BasicBlock::iterator BI = ExitBlock->begin();
while (PHINode *P = dyn_cast<PHINode>(BI)) {
int j = P->getBasicBlockIndex(ExitingBlock);
assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
P->setIncomingBlock(j, Preheader);
for (unsigned i = 1; i < ExitingBlocks.size(); ++i)
P->removeIncomingValue(ExitingBlocks[i]);
++BI;
}
// Update the dominator tree and remove the instructions and blocks that will
// be deleted from the reference counting scheme.
SmallVector<DomTreeNode*, 8> ChildNodes;
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
// Move all of the block's children to be children of the Preheader, which
// allows us to remove the domtree entry for the block.
ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
for (DomTreeNode *ChildNode : ChildNodes) {
DT.changeImmediateDominator(ChildNode, DT[Preheader]);
}
ChildNodes.clear();
DT.eraseNode(*LI);
// Remove the block from the reference counting scheme, so that we can
// delete it freely later.
(*LI)->dropAllReferences();
}
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove its
// entry from the loop's block list. We do that in the next section.
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI)
(*LI)->eraseFromParent();
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
SmallPtrSet<BasicBlock *, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (BasicBlock *BB : blocks)
LI.removeBlock(BB);
// The last step is to update LoopInfo now that we've eliminated this loop.
LI.markAsRemoved(L);
Changed = true;
++NumDeleted;
return true;
}
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
bool Changed = false;
if (deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, Changed)) {
assert(Changed && "Cannot delete a loop without changing something!");
// Need to update the LPM about this loop going away.
Updater.markLoopAsDeleted(L);
} else if (!Changed) {
return PreservedAnalyses::all();
}
return getLoopPassPreservedAnalyses();
}
namespace {
class LoopDeletionLegacyPass : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopDeletionLegacyPass() : LoopPass(ID) {
initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
}
// Possibly eliminate loop L if it is dead.
bool runOnLoop(Loop *L, LPPassManager &) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
getLoopAnalysisUsage(AU);
}
};
}
char LoopDeletionLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
"Delete dead loops", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
"Delete dead loops", false, false)
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
if (skipLoop(L))
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
bool Changed = false;
return deleteLoopIfDead(L, DT, SE, LI, Changed) || Changed;
}