forked from OSchip/llvm-project
277 lines
10 KiB
C++
277 lines
10 KiB
C++
//===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Dead Loop Deletion Pass. This pass is responsible
|
|
// for eliminating loops with non-infinite computable trip counts that have no
|
|
// side effects or volatile instructions, and do not contribute to the
|
|
// computation of the function's return value.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopDeletion.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-delete"
|
|
|
|
STATISTIC(NumDeleted, "Number of loops deleted");
|
|
|
|
/// Determines if a loop is dead.
|
|
///
|
|
/// This assumes that we've already checked for unique exit and exiting blocks,
|
|
/// and that the code is in LCSSA form.
|
|
static bool isLoopDead(Loop *L, ScalarEvolution &SE,
|
|
SmallVectorImpl<BasicBlock *> &ExitingBlocks,
|
|
BasicBlock *ExitBlock, bool &Changed,
|
|
BasicBlock *Preheader) {
|
|
// Make sure that all PHI entries coming from the loop are loop invariant.
|
|
// Because the code is in LCSSA form, any values used outside of the loop
|
|
// must pass through a PHI in the exit block, meaning that this check is
|
|
// sufficient to guarantee that no loop-variant values are used outside
|
|
// of the loop.
|
|
BasicBlock::iterator BI = ExitBlock->begin();
|
|
bool AllEntriesInvariant = true;
|
|
bool AllOutgoingValuesSame = true;
|
|
while (PHINode *P = dyn_cast<PHINode>(BI)) {
|
|
Value *incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
|
|
|
|
// Make sure all exiting blocks produce the same incoming value for the exit
|
|
// block. If there are different incoming values for different exiting
|
|
// blocks, then it is impossible to statically determine which value should
|
|
// be used.
|
|
AllOutgoingValuesSame =
|
|
all_of(makeArrayRef(ExitingBlocks).slice(1), [&](BasicBlock *BB) {
|
|
return incoming == P->getIncomingValueForBlock(BB);
|
|
});
|
|
|
|
if (!AllOutgoingValuesSame)
|
|
break;
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(incoming))
|
|
if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator())) {
|
|
AllEntriesInvariant = false;
|
|
break;
|
|
}
|
|
|
|
++BI;
|
|
}
|
|
|
|
if (Changed)
|
|
SE.forgetLoopDispositions(L);
|
|
|
|
if (!AllEntriesInvariant || !AllOutgoingValuesSame)
|
|
return false;
|
|
|
|
// Make sure that no instructions in the block have potential side-effects.
|
|
// This includes instructions that could write to memory, and loads that are
|
|
// marked volatile. This could be made more aggressive by using aliasing
|
|
// information to identify readonly and readnone calls.
|
|
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
|
LI != LE; ++LI) {
|
|
for (Instruction &I : **LI) {
|
|
if (I.mayHaveSideEffects())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Remove a loop if it is dead.
|
|
///
|
|
/// A loop is considered dead if it does not impact the observable behavior of
|
|
/// the program other than finite running time. This never removes a loop that
|
|
/// might be infinite, as doing so could change the halting/non-halting nature
|
|
/// of a program.
|
|
///
|
|
/// This entire process relies pretty heavily on LoopSimplify form and LCSSA in
|
|
/// order to make various safety checks work.
|
|
///
|
|
/// \returns true if the loop is deleted.
|
|
///
|
|
/// This also sets the \p Changed output parameter to `true` if any changes
|
|
/// were made. This may mutate the loop even if it is unable to delete it due
|
|
/// to hoisting trivially loop invariant instructions out of the loop.
|
|
///
|
|
/// This also updates the relevant analysis information in \p DT, \p SE, and \p
|
|
/// LI.
|
|
static bool deleteLoopIfDead(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, bool &Changed) {
|
|
assert(L->isLCSSAForm(DT) && "Expected LCSSA!");
|
|
|
|
// We can only remove the loop if there is a preheader that we can
|
|
// branch from after removing it.
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
// If LoopSimplify form is not available, stay out of trouble.
|
|
if (!L->hasDedicatedExits())
|
|
return false;
|
|
|
|
// We can't remove loops that contain subloops. If the subloops were dead,
|
|
// they would already have been removed in earlier executions of this pass.
|
|
if (L->begin() != L->end())
|
|
return false;
|
|
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
|
|
// We require that the loop only have a single exit block. Otherwise, we'd
|
|
// be in the situation of needing to be able to solve statically which exit
|
|
// block will be branched to, or trying to preserve the branching logic in
|
|
// a loop invariant manner.
|
|
BasicBlock *ExitBlock = L->getUniqueExitBlock();
|
|
if (!ExitBlock)
|
|
return false;
|
|
|
|
// Finally, we have to check that the loop really is dead.
|
|
if (!isLoopDead(L, SE, ExitingBlocks, ExitBlock, Changed, Preheader))
|
|
return false;
|
|
|
|
// Don't remove loops for which we can't solve the trip count.
|
|
// They could be infinite, in which case we'd be changing program behavior.
|
|
const SCEV *S = SE.getMaxBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(S))
|
|
return false;
|
|
|
|
// Now that we know the removal is safe, remove the loop by changing the
|
|
// branch from the preheader to go to the single exit block.
|
|
//
|
|
// Because we're deleting a large chunk of code at once, the sequence in which
|
|
// we remove things is very important to avoid invalidation issues.
|
|
|
|
// Tell ScalarEvolution that the loop is deleted. Do this before
|
|
// deleting the loop so that ScalarEvolution can look at the loop
|
|
// to determine what it needs to clean up.
|
|
SE.forgetLoop(L);
|
|
|
|
// Connect the preheader directly to the exit block.
|
|
TerminatorInst *TI = Preheader->getTerminator();
|
|
TI->replaceUsesOfWith(L->getHeader(), ExitBlock);
|
|
|
|
// Rewrite phis in the exit block to get their inputs from
|
|
// the preheader instead of the exiting block.
|
|
BasicBlock *ExitingBlock = ExitingBlocks[0];
|
|
BasicBlock::iterator BI = ExitBlock->begin();
|
|
while (PHINode *P = dyn_cast<PHINode>(BI)) {
|
|
int j = P->getBasicBlockIndex(ExitingBlock);
|
|
assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
|
|
P->setIncomingBlock(j, Preheader);
|
|
for (unsigned i = 1; i < ExitingBlocks.size(); ++i)
|
|
P->removeIncomingValue(ExitingBlocks[i]);
|
|
++BI;
|
|
}
|
|
|
|
// Update the dominator tree and remove the instructions and blocks that will
|
|
// be deleted from the reference counting scheme.
|
|
SmallVector<DomTreeNode*, 8> ChildNodes;
|
|
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
|
LI != LE; ++LI) {
|
|
// Move all of the block's children to be children of the Preheader, which
|
|
// allows us to remove the domtree entry for the block.
|
|
ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
|
|
for (DomTreeNode *ChildNode : ChildNodes) {
|
|
DT.changeImmediateDominator(ChildNode, DT[Preheader]);
|
|
}
|
|
|
|
ChildNodes.clear();
|
|
DT.eraseNode(*LI);
|
|
|
|
// Remove the block from the reference counting scheme, so that we can
|
|
// delete it freely later.
|
|
(*LI)->dropAllReferences();
|
|
}
|
|
|
|
// Erase the instructions and the blocks without having to worry
|
|
// about ordering because we already dropped the references.
|
|
// NOTE: This iteration is safe because erasing the block does not remove its
|
|
// entry from the loop's block list. We do that in the next section.
|
|
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
|
|
LI != LE; ++LI)
|
|
(*LI)->eraseFromParent();
|
|
|
|
// Finally, the blocks from loopinfo. This has to happen late because
|
|
// otherwise our loop iterators won't work.
|
|
|
|
SmallPtrSet<BasicBlock *, 8> blocks;
|
|
blocks.insert(L->block_begin(), L->block_end());
|
|
for (BasicBlock *BB : blocks)
|
|
LI.removeBlock(BB);
|
|
|
|
// The last step is to update LoopInfo now that we've eliminated this loop.
|
|
LI.markAsRemoved(L);
|
|
Changed = true;
|
|
|
|
++NumDeleted;
|
|
|
|
return true;
|
|
}
|
|
|
|
PreservedAnalyses LoopDeletionPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &Updater) {
|
|
bool Changed = false;
|
|
|
|
if (deleteLoopIfDead(&L, AR.DT, AR.SE, AR.LI, Changed)) {
|
|
assert(Changed && "Cannot delete a loop without changing something!");
|
|
// Need to update the LPM about this loop going away.
|
|
Updater.markLoopAsDeleted(L);
|
|
} else if (!Changed) {
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
namespace {
|
|
class LoopDeletionLegacyPass : public LoopPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopDeletionLegacyPass() : LoopPass(ID) {
|
|
initializeLoopDeletionLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// Possibly eliminate loop L if it is dead.
|
|
bool runOnLoop(Loop *L, LPPassManager &) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char LoopDeletionLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopDeletionLegacyPass, "loop-deletion",
|
|
"Delete dead loops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_END(LoopDeletionLegacyPass, "loop-deletion",
|
|
"Delete dead loops", false, false)
|
|
|
|
Pass *llvm::createLoopDeletionPass() { return new LoopDeletionLegacyPass(); }
|
|
|
|
bool LoopDeletionLegacyPass::runOnLoop(Loop *L, LPPassManager &) {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
|
|
bool Changed = false;
|
|
return deleteLoopIfDead(L, DT, SE, LI, Changed) || Changed;
|
|
}
|