llvm-project/llvm/lib/Transforms/Utils/InjectTLIMappings.cpp

196 lines
7.8 KiB
C++

//===- InjectTLIMAppings.cpp - TLI to VFABI attribute injection ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Populates the VFABI attribute with the scalar-to-vector mappings
// from the TargetLibraryInfo.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
#define DEBUG_TYPE "inject-tli-mappings"
STATISTIC(NumCallInjected,
"Number of calls in which the mappings have been injected.");
STATISTIC(NumVFDeclAdded,
"Number of function declarations that have been added.");
STATISTIC(NumCompUsedAdded,
"Number of `@llvm.compiler.used` operands that have been added.");
/// Helper function to map the TLI name to a strings that holds
/// scalar-to-vector mapping.
///
/// _ZGV<isa><mask><vlen><vparams>_<scalarname>(<vectorname>)
///
/// where:
///
/// <isa> = "_LLVM_"
/// <mask> = "N". Note: TLI does not support masked interfaces.
/// <vlen> = Number of concurrent lanes, stored in the `VectorizationFactor`
/// field of the `VecDesc` struct.
/// <vparams> = "v", as many as are the number of parameters of CI.
/// <scalarname> = the name of the scalar function called by CI.
/// <vectorname> = the name of the vector function mapped by the TLI.
static std::string mangleTLIName(StringRef VectorName, const CallInst &CI,
unsigned VF) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF;
for (unsigned I = 0; I < CI.getNumArgOperands(); ++I)
Out << "v";
Out << "_" << CI.getCalledFunction()->getName() << "(" << VectorName << ")";
return std::string(Out.str());
}
/// A helper function for converting Scalar types to vector types.
/// If the incoming type is void, we return void. If the VF is 1, we return
/// the scalar type.
static Type *ToVectorTy(Type *Scalar, unsigned VF, bool isScalable = false) {
if (Scalar->isVoidTy() || VF == 1)
return Scalar;
return VectorType::get(Scalar, {VF, isScalable});
}
/// A helper function that adds the vector function declaration that
/// vectorizes the CallInst CI with a vectorization factor of VF
/// lanes. The TLI assumes that all parameters and the return type of
/// CI (other than void) need to be widened to a VectorType of VF
/// lanes.
static void addVariantDeclaration(CallInst &CI, const unsigned VF,
const StringRef VFName) {
Module *M = CI.getModule();
// Add function declaration.
Type *RetTy = ToVectorTy(CI.getType(), VF);
SmallVector<Type *, 4> Tys;
for (Value *ArgOperand : CI.arg_operands())
Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
assert(!CI.getFunctionType()->isVarArg() &&
"VarArg functions are not supported.");
FunctionType *FTy = FunctionType::get(RetTy, Tys, /*isVarArg=*/false);
Function *VectorF =
Function::Create(FTy, Function::ExternalLinkage, VFName, M);
VectorF->copyAttributesFrom(CI.getCalledFunction());
++NumVFDeclAdded;
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added to the module: `" << VFName
<< "` of type " << *(VectorF->getType()) << "\n");
// Make function declaration (without a body) "sticky" in the IR by
// listing it in the @llvm.compiler.used intrinsic.
assert(!VectorF->size() && "VFABI attribute requires `@llvm.compiler.used` "
"only on declarations.");
appendToCompilerUsed(*M, {VectorF});
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << VFName
<< "` to `@llvm.compiler.used`.\n");
++NumCompUsedAdded;
}
static void addMappingsFromTLI(const TargetLibraryInfo &TLI, CallInst &CI) {
// This is needed to make sure we don't query the TLI for calls to
// bitcast of function pointers, like `%call = call i32 (i32*, ...)
// bitcast (i32 (...)* @goo to i32 (i32*, ...)*)(i32* nonnull %i)`,
// as such calls make the `isFunctionVectorizable` raise an
// exception.
if (CI.isNoBuiltin() || !CI.getCalledFunction())
return;
const std::string ScalarName = std::string(CI.getCalledFunction()->getName());
// Nothing to be done if the TLI thinks the function is not
// vectorizable.
if (!TLI.isFunctionVectorizable(ScalarName))
return;
SmallVector<std::string, 8> Mappings;
VFABI::getVectorVariantNames(CI, Mappings);
Module *M = CI.getModule();
const SetVector<StringRef> OriginalSetOfMappings(Mappings.begin(),
Mappings.end());
// All VFs in the TLI are powers of 2.
for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); VF <= WidestVF;
VF *= 2) {
const std::string TLIName =
std::string(TLI.getVectorizedFunction(ScalarName, VF));
if (!TLIName.empty()) {
std::string MangledName = mangleTLIName(TLIName, CI, VF);
if (!OriginalSetOfMappings.count(MangledName)) {
Mappings.push_back(MangledName);
++NumCallInjected;
}
Function *VariantF = M->getFunction(TLIName);
if (!VariantF)
addVariantDeclaration(CI, VF, TLIName);
}
}
VFABI::setVectorVariantNames(&CI, Mappings);
}
static bool runImpl(const TargetLibraryInfo &TLI, Function &F) {
for (auto &I : instructions(F))
if (auto CI = dyn_cast<CallInst>(&I))
addMappingsFromTLI(TLI, *CI);
// Even if the pass adds IR attributes, the analyses are preserved.
return false;
}
////////////////////////////////////////////////////////////////////////////////
// New pass manager implementation.
////////////////////////////////////////////////////////////////////////////////
PreservedAnalyses InjectTLIMappings::run(Function &F,
FunctionAnalysisManager &AM) {
const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
runImpl(TLI, F);
// Even if the pass adds IR attributes, the analyses are preserved.
return PreservedAnalyses::all();
}
////////////////////////////////////////////////////////////////////////////////
// Legacy PM Implementation.
////////////////////////////////////////////////////////////////////////////////
bool InjectTLIMappingsLegacy::runOnFunction(Function &F) {
const TargetLibraryInfo &TLI =
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
return runImpl(TLI, F);
}
void InjectTLIMappingsLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addPreserved<TargetLibraryInfoWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<LoopAccessLegacyAnalysis>();
AU.addPreserved<DemandedBitsWrapperPass>();
AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
}
////////////////////////////////////////////////////////////////////////////////
// Legacy Pass manager initialization
////////////////////////////////////////////////////////////////////////////////
char InjectTLIMappingsLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(InjectTLIMappingsLegacy, DEBUG_TYPE,
"Inject TLI Mappings", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(InjectTLIMappingsLegacy, DEBUG_TYPE, "Inject TLI Mappings",
false, false)
FunctionPass *llvm::createInjectTLIMappingsLegacyPass() {
return new InjectTLIMappingsLegacy();
}