llvm-project/mlir/lib/IR/AsmPrinter.cpp

1738 lines
52 KiB
C++

//===- AsmPrinter.cpp - MLIR Assembly Printer Implementation --------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the MLIR AsmPrinter class, which is used to implement
// the various print() methods on the core IR objects.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Regex.h"
using namespace mlir;
void Identifier::print(raw_ostream &os) const { os << str(); }
void Identifier::dump() const { print(llvm::errs()); }
void OperationName::print(raw_ostream &os) const { os << getStringRef(); }
void OperationName::dump() const { print(llvm::errs()); }
OpAsmPrinter::~OpAsmPrinter() {}
//===----------------------------------------------------------------------===//
// ModuleState
//===----------------------------------------------------------------------===//
// TODO(riverriddle) Rethink this flag when we have a pass that can remove debug
// info or when we have a system for printer flags.
static llvm::cl::opt<bool>
shouldPrintDebugInfoOpt("mlir-print-debuginfo",
llvm::cl::desc("Print debug info in MLIR output"),
llvm::cl::init(false));
static llvm::cl::opt<bool> printPrettyDebugInfo(
"mlir-pretty-debuginfo",
llvm::cl::desc("Print pretty debug info in MLIR output"),
llvm::cl::init(false));
// Use the generic op output form in the function printer even if the custom
// form is defined.
static llvm::cl::opt<bool>
printGenericOpForm("mlir-print-op-generic",
llvm::cl::desc("Print the generic op form"),
llvm::cl::init(false), llvm::cl::Hidden);
namespace {
class ModuleState {
/// A special index constant used for non-kind attribute aliases.
static constexpr int kNonAttrKindAlias = -1;
public:
/// This is the current context if it is knowable, otherwise this is null.
MLIRContext *const context;
explicit ModuleState(MLIRContext *context) : context(context) {}
// Initializes module state, populating affine map state.
void initialize(Module *module);
Twine getAttributeAlias(Attribute attr) const {
auto alias = attrToAlias.find(attr);
if (alias == attrToAlias.end())
return Twine();
// Return the alias for this attribute, along with the index if this was
// generated by a kind alias.
int kindIndex = alias->second.second;
return alias->second.first +
(kindIndex == kNonAttrKindAlias ? Twine() : Twine(kindIndex));
}
void printAttributeAliases(raw_ostream &os) const {
auto printAlias = [&](StringRef alias, Attribute attr, int index) {
os << '#' << alias;
if (index != kNonAttrKindAlias)
os << index;
os << " = " << attr << '\n';
};
// Print all of the attribute kind aliases.
for (auto &kindAlias : attrKindToAlias) {
for (unsigned i = 0, e = kindAlias.second.second.size(); i != e; ++i)
printAlias(kindAlias.second.first, kindAlias.second.second[i], i);
os << "\n";
}
// In a second pass print all of the remaining attribute aliases that aren't
// kind aliases.
for (Attribute attr : usedAttributes) {
auto alias = attrToAlias.find(attr);
if (alias != attrToAlias.end() &&
alias->second.second == kNonAttrKindAlias)
printAlias(alias->second.first, attr, alias->second.second);
}
}
StringRef getTypeAlias(Type ty) const { return typeToAlias.lookup(ty); }
void printTypeAliases(raw_ostream &os) const {
for (Type type : usedTypes) {
auto alias = typeToAlias.find(type);
if (alias != typeToAlias.end())
os << '!' << alias->second << " = type " << type << '\n';
}
}
private:
void recordAttributeReference(Attribute attr) {
// Don't recheck attributes that have already been seen or those that
// already have an alias.
if (!usedAttributes.insert(attr) || attrToAlias.count(attr))
return;
// If this attribute kind has an alias, then record one for this attribute.
auto alias = attrKindToAlias.find(static_cast<unsigned>(attr.getKind()));
if (alias == attrKindToAlias.end())
return;
std::pair<StringRef, int> attrAlias(alias->second.first,
alias->second.second.size());
attrToAlias.insert({attr, attrAlias});
alias->second.second.push_back(attr);
}
void recordTypeReference(Type ty) { usedTypes.insert(ty); }
// Visit functions.
void visitOperation(Operation *op);
void visitType(Type type);
void visitAttribute(Attribute attr);
// Initialize symbol aliases.
void initializeSymbolAliases();
/// Set of attributes known to be used within the module.
llvm::SetVector<Attribute> usedAttributes;
/// Mapping between attribute and a pair comprised of a base alias name and a
/// count suffix. If the suffix is set to -1, it is not displayed.
llvm::MapVector<Attribute, std::pair<StringRef, int>> attrToAlias;
/// Mapping between attribute kind and a pair comprised of a base alias name
/// and a unique list of attributes belonging to this kind sorted by location
/// seen in the module.
llvm::MapVector<unsigned, std::pair<StringRef, std::vector<Attribute>>>
attrKindToAlias;
/// Set of types known to be used within the module.
llvm::SetVector<Type> usedTypes;
/// A mapping between a type and a given alias.
DenseMap<Type, StringRef> typeToAlias;
};
} // end anonymous namespace
// TODO Support visiting other types/operations when implemented.
void ModuleState::visitType(Type type) {
recordTypeReference(type);
if (auto funcType = type.dyn_cast<FunctionType>()) {
// Visit input and result types for functions.
for (auto input : funcType.getInputs())
visitType(input);
for (auto result : funcType.getResults())
visitType(result);
} else if (auto memref = type.dyn_cast<MemRefType>()) {
// Visit affine maps in memref type.
for (auto map : memref.getAffineMaps())
recordAttributeReference(AffineMapAttr::get(map));
} else if (auto vecOrTensor = type.dyn_cast<VectorOrTensorType>()) {
visitType(vecOrTensor.getElementType());
}
}
void ModuleState::visitAttribute(Attribute attr) {
recordAttributeReference(attr);
if (auto arrayAttr = attr.dyn_cast<ArrayAttr>())
for (auto elt : arrayAttr.getValue())
visitAttribute(elt);
}
void ModuleState::visitOperation(Operation *op) {
// Visit all the types used in the operation.
for (auto *operand : op->getOperands())
visitType(operand->getType());
for (auto *result : op->getResults())
visitType(result->getType());
// Visit each of the attributes.
for (auto elt : op->getAttrs())
visitAttribute(elt.second);
}
// Utility to generate a function to register a symbol alias.
static bool canRegisterAlias(StringRef name, llvm::StringSet<> &usedAliases) {
assert(!name.empty() && "expected alias name to be non-empty");
// TODO(riverriddle) Assert that the provided alias name can be lexed as
// an identifier.
// Check that the alias doesn't contain a '.' character and the name is not
// already in use.
return !name.contains('.') && usedAliases.insert(name).second;
}
void ModuleState::initializeSymbolAliases() {
// Track the identifiers in use for each symbol so that the same identifier
// isn't used twice.
llvm::StringSet<> usedAliases;
// Get the currently registered dialects.
auto dialects = context->getRegisteredDialects();
// Collect the set of aliases from each dialect.
SmallVector<std::pair<unsigned, StringRef>, 8> attributeKindAliases;
SmallVector<std::pair<Attribute, StringRef>, 8> attributeAliases;
SmallVector<std::pair<Type, StringRef>, 16> typeAliases;
// AffineMap/Integer set have specific kind aliases.
attributeKindAliases.emplace_back(
static_cast<unsigned>(Attribute::Kind::AffineMap), "map");
attributeKindAliases.emplace_back(
static_cast<unsigned>(Attribute::Kind::IntegerSet), "set");
for (auto *dialect : dialects) {
dialect->getAttributeKindAliases(attributeKindAliases);
dialect->getAttributeAliases(attributeAliases);
dialect->getTypeAliases(typeAliases);
}
// Setup the attribute kind aliases.
StringRef alias;
unsigned attrKind;
for (auto &attrAliasPair : attributeKindAliases) {
std::tie(attrKind, alias) = attrAliasPair;
assert(!alias.empty() && "expected non-empty alias string");
if (!usedAliases.count(alias) && !alias.contains('.'))
attrKindToAlias.insert({attrKind, {alias, {}}});
}
// Clear the set of used identifiers so that the attribute kind aliases are
// just a prefix and not the full alias, i.e. there may be some overlap.
usedAliases.clear();
// Register the attribute aliases.
// Create a regex for the attribute kind alias names, these have a prefix with
// a counter appended to the end. We prevent normal aliases from having these
// names to avoid collisions.
llvm::Regex reservedAttrNames("[0-9]+$");
// Attribute value aliases.
Attribute attr;
for (auto &attrAliasPair : attributeAliases) {
std::tie(attr, alias) = attrAliasPair;
if (!reservedAttrNames.match(alias) && canRegisterAlias(alias, usedAliases))
attrToAlias.insert({attr, {alias, kNonAttrKindAlias}});
}
// Clear the set of used identifiers as types can have the same identifiers as
// affine structures.
usedAliases.clear();
// Type aliases.
for (auto &typeAliasPair : typeAliases)
if (canRegisterAlias(typeAliasPair.second, usedAliases))
typeToAlias.insert(typeAliasPair);
}
// Initializes module state, populating affine map and integer set state.
void ModuleState::initialize(Module *module) {
// Initialize the symbol aliases.
initializeSymbolAliases();
// Walk the module and visit each operation.
for (auto &fn : *module) {
visitType(fn.getType());
for (auto attr : fn.getAttrs())
ModuleState::visitAttribute(attr.second);
for (auto attrList : fn.getAllArgAttrs())
for (auto attr : attrList.getAttrs())
ModuleState::visitAttribute(attr.second);
fn.walk([&](Operation *op) { ModuleState::visitOperation(op); });
}
}
//===----------------------------------------------------------------------===//
// ModulePrinter
//===----------------------------------------------------------------------===//
namespace {
class ModulePrinter {
public:
ModulePrinter(raw_ostream &os, ModuleState &state) : os(os), state(state) {}
explicit ModulePrinter(ModulePrinter &printer)
: os(printer.os), state(printer.state) {}
template <typename Container, typename UnaryFunctor>
inline void interleaveComma(const Container &c, UnaryFunctor each_fn) const {
interleave(c.begin(), c.end(), each_fn, [&]() { os << ", "; });
}
void print(Module *module);
void printFunctionReference(Function *func);
void printAttributeAndType(Attribute attr) {
printAttributeOptionalType(attr, /*includeType=*/true);
}
void printAttribute(Attribute attr) {
printAttributeOptionalType(attr, /*includeType=*/false);
}
void printType(Type type);
void print(Function *fn);
void printLocation(Location loc);
void printAffineMap(AffineMap map);
void printAffineExpr(AffineExpr expr);
void printAffineConstraint(AffineExpr expr, bool isEq);
void printIntegerSet(IntegerSet set);
protected:
raw_ostream &os;
ModuleState &state;
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {});
void printAttributeOptionalType(Attribute attr, bool includeType);
void printTrailingLocation(Location loc);
void printLocationInternal(Location loc, bool pretty = false);
void printDenseElementsAttr(DenseElementsAttr attr);
/// This enum is used to represent the binding stength of the enclosing
/// context that an AffineExprStorage is being printed in, so we can
/// intelligently produce parens.
enum class BindingStrength {
Weak, // + and -
Strong, // All other binary operators.
};
void printAffineExprInternal(AffineExpr expr,
BindingStrength enclosingTightness);
};
} // end anonymous namespace
void ModulePrinter::printTrailingLocation(Location loc) {
// Check to see if we are printing debug information.
if (!shouldPrintDebugInfoOpt)
return;
os << " ";
printLocation(loc);
}
void ModulePrinter::printLocationInternal(Location loc, bool pretty) {
switch (loc.getKind()) {
case Location::Kind::Unknown:
if (pretty)
os << "[unknown]";
else
os << "unknown";
break;
case Location::Kind::FileLineCol: {
auto fileLoc = loc.cast<FileLineColLoc>();
auto mayQuote = pretty ? "" : "\"";
os << mayQuote << fileLoc.getFilename() << mayQuote << ':'
<< fileLoc.getLine() << ':' << fileLoc.getColumn();
break;
}
case Location::Kind::Name: {
os << '\"' << loc.cast<NameLoc>().getName() << '\"';
break;
}
case Location::Kind::CallSite: {
auto callLocation = loc.cast<CallSiteLoc>();
auto caller = callLocation.getCaller();
auto callee = callLocation.getCallee();
if (!pretty)
os << "callsite(";
printLocationInternal(callee, pretty);
if (pretty) {
if (callee.isa<NameLoc>()) {
if (caller.isa<FileLineColLoc>()) {
os << " at ";
} else {
os << "\n at ";
}
} else {
os << "\n at ";
}
} else {
os << " at ";
}
printLocationInternal(caller, pretty);
if (!pretty)
os << ")";
break;
}
case Location::Kind::FusedLocation: {
auto fusedLoc = loc.cast<FusedLoc>();
if (!pretty)
os << "fused";
if (auto metadata = fusedLoc.getMetadata())
os << '<' << metadata << '>';
os << '[';
interleave(
fusedLoc.getLocations(),
[&](Location loc) { printLocationInternal(loc, pretty); },
[&]() { os << ", "; });
os << ']';
break;
}
}
}
void ModulePrinter::print(Module *module) {
// Output the aliases at the top level.
state.printAttributeAliases(os);
state.printTypeAliases(os);
// Print the module.
for (auto &fn : *module)
print(&fn);
}
/// Print a floating point value in a way that the parser will be able to
/// round-trip losslessly.
static void printFloatValue(const APFloat &apValue, raw_ostream &os) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
bool isInf = apValue.isInfinity();
bool isNaN = apValue.isNaN();
if (!isInf && !isNaN) {
SmallString<128> strValue;
apValue.toString(strValue, 6, 0, false);
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
// that the string matches the "[-+]?[0-9]" regex.
assert(((strValue[0] >= '0' && strValue[0] <= '9') ||
((strValue[0] == '-' || strValue[0] == '+') &&
(strValue[1] >= '0' && strValue[1] <= '9'))) &&
"[-+]?[0-9] regex does not match!");
// Reparse stringized version!
if (APFloat(apValue.getSemantics(), strValue).bitwiseIsEqual(apValue)) {
os << strValue;
return;
}
}
SmallVector<char, 16> str;
apValue.toString(str);
os << str;
}
void ModulePrinter::printFunctionReference(Function *func) {
os << '@' << func->getName();
}
void ModulePrinter::printLocation(Location loc) {
if (printPrettyDebugInfo) {
printLocationInternal(loc, /*pretty=*/true);
} else {
os << "loc(";
printLocationInternal(loc);
os << ')';
}
}
void ModulePrinter::printAttributeOptionalType(Attribute attr,
bool includeType) {
if (!attr) {
os << "<<NULL ATTRIBUTE>>";
return;
}
// Check for an alias for this attribute.
Twine alias = state.getAttributeAlias(attr);
if (!alias.isTriviallyEmpty()) {
os << '#' << alias;
return;
}
switch (attr.getKind()) {
case Attribute::Kind::Unit:
os << "unit";
break;
case Attribute::Kind::Bool:
os << (attr.cast<BoolAttr>().getValue() ? "true" : "false");
break;
case Attribute::Kind::Integer: {
auto intAttr = attr.cast<IntegerAttr>();
// Print all integer attributes as signed unless i1.
bool isSigned = intAttr.getType().isIndex() ||
intAttr.getType().getIntOrFloatBitWidth() != 1;
intAttr.getValue().print(os, isSigned);
// Print type unless i64 (parser defaults i64 in absence of type).
if (includeType && !intAttr.getType().isInteger(64)) {
os << " : ";
printType(intAttr.getType());
}
break;
}
case Attribute::Kind::Float: {
auto floatAttr = attr.cast<FloatAttr>();
printFloatValue(floatAttr.getValue(), os);
// Print type unless f64 (parser defaults to f64 in absence of type).
if (includeType && !floatAttr.getType().isF64()) {
os << " : ";
printType(floatAttr.getType());
}
break;
}
case Attribute::Kind::String:
os << '"';
printEscapedString(attr.cast<StringAttr>().getValue(), os);
os << '"';
break;
case Attribute::Kind::Array:
os << '[';
interleaveComma(attr.cast<ArrayAttr>().getValue(),
[&](Attribute attr) { printAttribute(attr); });
os << ']';
break;
case Attribute::Kind::AffineMap:
attr.cast<AffineMapAttr>().getValue().print(os);
break;
case Attribute::Kind::IntegerSet:
attr.cast<IntegerSetAttr>().getValue().print(os);
break;
case Attribute::Kind::Type:
printType(attr.cast<TypeAttr>().getValue());
break;
case Attribute::Kind::Function: {
auto *function = attr.cast<FunctionAttr>().getValue();
if (!function) {
os << "<<FUNCTION ATTR FOR DELETED FUNCTION>>";
} else {
printFunctionReference(function);
os << " : ";
printType(function->getType());
}
break;
}
case Attribute::Kind::OpaqueElements: {
auto eltsAttr = attr.cast<OpaqueElementsAttr>();
os << "opaque<";
os << '"' << eltsAttr.getDialect()->getNamespace() << "\", ";
printType(eltsAttr.getType());
os << ", " << '"' << "0x" << llvm::toHex(eltsAttr.getValue()) << '"' << '>';
break;
}
case Attribute::Kind::DenseIntElements:
case Attribute::Kind::DenseFPElements: {
auto eltsAttr = attr.cast<DenseElementsAttr>();
os << "dense<";
printType(eltsAttr.getType());
os << ", ";
printDenseElementsAttr(eltsAttr);
os << '>';
break;
}
case Attribute::Kind::SplatElements: {
auto elementsAttr = attr.cast<SplatElementsAttr>();
os << "splat<";
printType(elementsAttr.getType());
os << ", ";
printAttribute(elementsAttr.getValue());
os << '>';
break;
}
case Attribute::Kind::SparseElements: {
auto elementsAttr = attr.cast<SparseElementsAttr>();
os << "sparse<";
printType(elementsAttr.getType());
os << ", ";
printDenseElementsAttr(elementsAttr.getIndices());
os << ", ";
printDenseElementsAttr(elementsAttr.getValues());
os << '>';
break;
}
}
}
void ModulePrinter::printDenseElementsAttr(DenseElementsAttr attr) {
auto type = attr.getType();
auto shape = type.getShape();
auto rank = type.getRank();
SmallVector<Attribute, 16> elements;
attr.getValues(elements);
// Special case for 0-d tensors;
if (rank == 0) {
printAttribute(elements[0]);
return;
}
// Special case for degenerate tensors.
if (elements.empty()) {
for (int i = 0; i < rank; ++i)
os << '[';
for (int i = 0; i < rank; ++i)
os << ']';
return;
}
// We use a mixed-radix counter to iterate through the shape. When we bump a
// non-least-significant digit, we emit a close bracket. When we next emit an
// element we re-open all closed brackets.
// The mixed-radix counter, with radices in 'shape'.
SmallVector<unsigned, 4> counter(rank, 0);
// The number of brackets that have been opened and not closed.
unsigned openBrackets = 0;
auto bumpCounter = [&]() {
// Bump the least significant digit.
++counter[rank - 1];
// Iterate backwards bubbling back the increment.
for (unsigned i = rank - 1; i > 0; --i)
if (counter[i] >= shape[i]) {
// Index 'i' is rolled over. Bump (i-1) and close a bracket.
counter[i] = 0;
++counter[i - 1];
--openBrackets;
os << ']';
}
};
for (unsigned idx = 0, e = elements.size(); idx != e; ++idx) {
if (idx != 0)
os << ", ";
while (openBrackets++ < rank)
os << '[';
openBrackets = rank;
printAttribute(elements[idx]);
bumpCounter();
}
while (openBrackets-- > 0)
os << ']';
}
static bool isDialectTypeSimpleEnoughForPrettyForm(StringRef typeName) {
// The type name must start with an identifier.
if (typeName.empty() || !isalpha(typeName.front()))
return false;
// Ignore all the characters that are valid in an identifier in the type
// name.
typeName =
typeName.drop_while([](char c) { return llvm::isAlnum(c) || c == '.'; });
if (typeName.empty())
return true;
// If we got to an unexpected character, then it must be a <>. Check those
// recursively.
if (typeName.front() != '<' || typeName.back() != '>')
return false;
SmallVector<char, 8> nestedPunctuation;
do {
// If we ran out of characters, then we had a punctuation mismatch.
if (typeName.empty())
return false;
auto c = typeName.front();
typeName = typeName.drop_front();
switch (c) {
// We never allow nul characters. This is an EOF indicator for the lexer
// which we could handle, but isn't important for any known dialect.
case '\0':
return false;
case '<':
case '[':
case '(':
case '{':
nestedPunctuation.push_back(c);
continue;
// Reject types with mismatched brackets.
case '>':
if (nestedPunctuation.pop_back_val() != '<')
return false;
break;
case ']':
if (nestedPunctuation.pop_back_val() != '[')
return false;
break;
case ')':
if (nestedPunctuation.pop_back_val() != '(')
return false;
break;
case '}':
if (nestedPunctuation.pop_back_val() != '{')
return false;
break;
default:
continue;
}
// We're done when the punctuation is fully matched.
} while (!nestedPunctuation.empty());
// If there were extra characters, then we failed.
return typeName.empty();
}
void ModulePrinter::printType(Type type) {
// Check for an alias for this type.
StringRef alias = state.getTypeAlias(type);
if (!alias.empty()) {
os << '!' << alias;
return;
}
auto printDialectType = [&](StringRef dialectName, StringRef typeString) {
os << '!' << dialectName;
// If this type name is simple enough, print it directly in pretty form,
// otherwise, we print it as an escaped string.
if (isDialectTypeSimpleEnoughForPrettyForm(typeString)) {
os << '.' << typeString;
return;
}
// TODO: escape the type name, it could contain " characters.
os << "<\"" << typeString << "\">";
};
switch (type.getKind()) {
default: {
auto &dialect = type.getDialect();
// Ask the dialect to serialize the type to a string.
std::string typeName;
{
llvm::raw_string_ostream typeNameStr(typeName);
dialect.printType(type, typeNameStr);
}
printDialectType(dialect.getNamespace(), typeName);
return;
}
case Type::Kind::Opaque: {
auto opaqueTy = type.cast<OpaqueType>();
printDialectType(opaqueTy.getDialectNamespace(), opaqueTy.getTypeData());
return;
}
case StandardTypes::Index:
os << "index";
return;
case StandardTypes::BF16:
os << "bf16";
return;
case StandardTypes::F16:
os << "f16";
return;
case StandardTypes::F32:
os << "f32";
return;
case StandardTypes::F64:
os << "f64";
return;
case StandardTypes::Integer: {
auto integer = type.cast<IntegerType>();
os << 'i' << integer.getWidth();
return;
}
case Type::Kind::Function: {
auto func = type.cast<FunctionType>();
os << '(';
interleaveComma(func.getInputs(), [&](Type type) { printType(type); });
os << ") -> ";
auto results = func.getResults();
if (results.size() == 1 && !results[0].isa<FunctionType>())
os << results[0];
else {
os << '(';
interleaveComma(results, [&](Type type) { printType(type); });
os << ')';
}
return;
}
case StandardTypes::Vector: {
auto v = type.cast<VectorType>();
os << "vector<";
for (auto dim : v.getShape())
os << dim << 'x';
os << v.getElementType() << '>';
return;
}
case StandardTypes::RankedTensor: {
auto v = type.cast<RankedTensorType>();
os << "tensor<";
for (auto dim : v.getShape()) {
if (dim < 0)
os << '?';
else
os << dim;
os << 'x';
}
os << v.getElementType() << '>';
return;
}
case StandardTypes::UnrankedTensor: {
auto v = type.cast<UnrankedTensorType>();
os << "tensor<*x";
printType(v.getElementType());
os << '>';
return;
}
case StandardTypes::MemRef: {
auto v = type.cast<MemRefType>();
os << "memref<";
for (auto dim : v.getShape()) {
if (dim < 0)
os << '?';
else
os << dim;
os << 'x';
}
printType(v.getElementType());
for (auto map : v.getAffineMaps()) {
os << ", ";
printAttribute(AffineMapAttr::get(map));
}
// Only print the memory space if it is the non-default one.
if (v.getMemorySpace())
os << ", " << v.getMemorySpace();
os << '>';
return;
}
case StandardTypes::Complex:
os << "complex<";
printType(type.cast<ComplexType>().getElementType());
os << '>';
return;
case StandardTypes::Tuple: {
auto tuple = type.cast<TupleType>();
os << "tuple<";
interleaveComma(tuple.getTypes(), [&](Type type) { printType(type); });
os << '>';
return;
}
case StandardTypes::None:
os << "none";
return;
}
}
//===----------------------------------------------------------------------===//
// Affine expressions and maps
//===----------------------------------------------------------------------===//
void ModulePrinter::printAffineExpr(AffineExpr expr) {
printAffineExprInternal(expr, BindingStrength::Weak);
}
void ModulePrinter::printAffineExprInternal(
AffineExpr expr, BindingStrength enclosingTightness) {
const char *binopSpelling = nullptr;
switch (expr.getKind()) {
case AffineExprKind::SymbolId:
os << 's' << expr.cast<AffineSymbolExpr>().getPosition();
return;
case AffineExprKind::DimId:
os << 'd' << expr.cast<AffineDimExpr>().getPosition();
return;
case AffineExprKind::Constant:
os << expr.cast<AffineConstantExpr>().getValue();
return;
case AffineExprKind::Add:
binopSpelling = " + ";
break;
case AffineExprKind::Mul:
binopSpelling = " * ";
break;
case AffineExprKind::FloorDiv:
binopSpelling = " floordiv ";
break;
case AffineExprKind::CeilDiv:
binopSpelling = " ceildiv ";
break;
case AffineExprKind::Mod:
binopSpelling = " mod ";
break;
}
auto binOp = expr.cast<AffineBinaryOpExpr>();
AffineExpr lhsExpr = binOp.getLHS();
AffineExpr rhsExpr = binOp.getRHS();
// Handle tightly binding binary operators.
if (binOp.getKind() != AffineExprKind::Add) {
if (enclosingTightness == BindingStrength::Strong)
os << '(';
// Pretty print multiplication with -1.
auto rhsConst = rhsExpr.dyn_cast<AffineConstantExpr>();
if (rhsConst && rhsConst.getValue() == -1) {
os << "-";
printAffineExprInternal(lhsExpr, BindingStrength::Strong);
return;
}
printAffineExprInternal(lhsExpr, BindingStrength::Strong);
os << binopSpelling;
printAffineExprInternal(rhsExpr, BindingStrength::Strong);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
// Print out special "pretty" forms for add.
if (enclosingTightness == BindingStrength::Strong)
os << '(';
// Pretty print addition to a product that has a negative operand as a
// subtraction.
if (auto rhs = rhsExpr.dyn_cast<AffineBinaryOpExpr>()) {
if (rhs.getKind() == AffineExprKind::Mul) {
AffineExpr rrhsExpr = rhs.getRHS();
if (auto rrhs = rrhsExpr.dyn_cast<AffineConstantExpr>()) {
if (rrhs.getValue() == -1) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " - ";
if (rhs.getLHS().getKind() == AffineExprKind::Add) {
printAffineExprInternal(rhs.getLHS(), BindingStrength::Strong);
} else {
printAffineExprInternal(rhs.getLHS(), BindingStrength::Weak);
}
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
if (rrhs.getValue() < -1) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " - ";
printAffineExprInternal(rhs.getLHS(), BindingStrength::Strong);
os << " * " << -rrhs.getValue();
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
}
}
}
// Pretty print addition to a negative number as a subtraction.
if (auto rhsConst = rhsExpr.dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() < 0) {
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " - " << -rhsConst.getValue();
if (enclosingTightness == BindingStrength::Strong)
os << ')';
return;
}
}
printAffineExprInternal(lhsExpr, BindingStrength::Weak);
os << " + ";
printAffineExprInternal(rhsExpr, BindingStrength::Weak);
if (enclosingTightness == BindingStrength::Strong)
os << ')';
}
void ModulePrinter::printAffineConstraint(AffineExpr expr, bool isEq) {
printAffineExprInternal(expr, BindingStrength::Weak);
isEq ? os << " == 0" : os << " >= 0";
}
void ModulePrinter::printAffineMap(AffineMap map) {
// Dimension identifiers.
os << '(';
for (int i = 0; i < (int)map.getNumDims() - 1; ++i)
os << 'd' << i << ", ";
if (map.getNumDims() >= 1)
os << 'd' << map.getNumDims() - 1;
os << ')';
// Symbolic identifiers.
if (map.getNumSymbols() != 0) {
os << '[';
for (unsigned i = 0; i < map.getNumSymbols() - 1; ++i)
os << 's' << i << ", ";
if (map.getNumSymbols() >= 1)
os << 's' << map.getNumSymbols() - 1;
os << ']';
}
// AffineMap should have at least one result.
assert(!map.getResults().empty());
// Result affine expressions.
os << " -> (";
interleaveComma(map.getResults(),
[&](AffineExpr expr) { printAffineExpr(expr); });
os << ')';
if (!map.isBounded()) {
return;
}
// Print range sizes for bounded affine maps.
os << " size (";
interleaveComma(map.getRangeSizes(),
[&](AffineExpr expr) { printAffineExpr(expr); });
os << ')';
}
void ModulePrinter::printIntegerSet(IntegerSet set) {
// Dimension identifiers.
os << '(';
for (unsigned i = 1; i < set.getNumDims(); ++i)
os << 'd' << i - 1 << ", ";
if (set.getNumDims() >= 1)
os << 'd' << set.getNumDims() - 1;
os << ')';
// Symbolic identifiers.
if (set.getNumSymbols() != 0) {
os << '[';
for (unsigned i = 0; i < set.getNumSymbols() - 1; ++i)
os << 's' << i << ", ";
if (set.getNumSymbols() >= 1)
os << 's' << set.getNumSymbols() - 1;
os << ']';
}
// Print constraints.
os << " : (";
int numConstraints = set.getNumConstraints();
for (int i = 1; i < numConstraints; ++i) {
printAffineConstraint(set.getConstraint(i - 1), set.isEq(i - 1));
os << ", ";
}
if (numConstraints >= 1)
printAffineConstraint(set.getConstraint(numConstraints - 1),
set.isEq(numConstraints - 1));
os << ')';
}
//===----------------------------------------------------------------------===//
// Function printing
//===----------------------------------------------------------------------===//
void ModulePrinter::printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs) {
// If there are no attributes, then there is nothing to be done.
if (attrs.empty())
return;
// Filter out any attributes that shouldn't be included.
SmallVector<NamedAttribute, 8> filteredAttrs;
for (auto attr : attrs) {
// If the caller has requested that this attribute be ignored, then drop it.
if (llvm::any_of(elidedAttrs,
[&](StringRef elided) { return attr.first.is(elided); }))
continue;
// Otherwise add it to our filteredAttrs list.
filteredAttrs.push_back(attr);
}
// If there are no attributes left to print after filtering, then we're done.
if (filteredAttrs.empty())
return;
// Otherwise, print them all out in braces.
os << " {";
interleaveComma(filteredAttrs, [&](NamedAttribute attr) {
os << attr.first;
// Pretty printing elides the attribute value for unit attributes.
if (attr.second.isa<UnitAttr>())
return;
os << ": ";
printAttributeAndType(attr.second);
});
os << '}';
}
namespace {
// FunctionPrinter contains common functionality for printing
// CFG and ML functions.
class FunctionPrinter : public ModulePrinter, private OpAsmPrinter {
public:
FunctionPrinter(Function *function, ModulePrinter &other);
// Prints the function as a whole.
void print();
// Print the function signature.
void printFunctionSignature();
// Methods to print operations.
void print(Operation *op);
void print(Block *block, bool printBlockArgs = true,
bool printBlockTerminator = true);
void printOperation(Operation *op);
void printGenericOp(Operation *op);
// Implement OpAsmPrinter.
raw_ostream &getStream() const { return os; }
void printType(Type type) { ModulePrinter::printType(type); }
void printAttribute(Attribute attr) { ModulePrinter::printAttribute(attr); }
void printAttributeAndType(Attribute attr) {
ModulePrinter::printAttributeAndType(attr);
}
void printFunctionReference(Function *func) {
return ModulePrinter::printFunctionReference(func);
}
void printOperand(Value *value) { printValueID(value); }
void printOptionalAttrDict(ArrayRef<NamedAttribute> attrs,
ArrayRef<StringRef> elidedAttrs = {}) {
return ModulePrinter::printOptionalAttrDict(attrs, elidedAttrs);
};
enum { nameSentinel = ~0U };
void printBlockName(Block *block) {
auto id = getBlockID(block);
if (id != ~0U)
os << "^bb" << id;
else
os << "^INVALIDBLOCK";
}
unsigned getBlockID(Block *block) {
auto it = blockIDs.find(block);
return it != blockIDs.end() ? it->second : ~0U;
}
void printSuccessorAndUseList(Operation *term, unsigned index) override;
/// Print a region.
void printRegion(Region &blocks, bool printEntryBlockArgs,
bool printBlockTerminators) override {
os << " {\n";
if (!blocks.empty()) {
auto *entryBlock = &blocks.front();
print(entryBlock,
printEntryBlockArgs && entryBlock->getNumArguments() != 0,
printBlockTerminators);
for (auto &b : llvm::drop_begin(blocks.getBlocks(), 1))
print(&b);
}
os.indent(currentIndent) << "}";
}
// Number of spaces used for indenting nested operations.
const static unsigned indentWidth = 2;
protected:
void numberValueID(Value *value);
void numberValuesInBlock(Block &block);
void printValueID(Value *value, bool printResultNo = true) const;
private:
Function *function;
/// This is the value ID for each SSA value in the current function. If this
/// returns ~0, then the valueID has an entry in valueNames.
DenseMap<Value *, unsigned> valueIDs;
DenseMap<Value *, StringRef> valueNames;
/// This is the block ID for each block in the current function.
DenseMap<Block *, unsigned> blockIDs;
/// This keeps track of all of the non-numeric names that are in flight,
/// allowing us to check for duplicates.
llvm::StringSet<> usedNames;
// This is the current indentation level for nested structures.
unsigned currentIndent = 0;
/// This is the next value ID to assign in numbering.
unsigned nextValueID = 0;
/// This is the ID to assign to the next region entry block argument.
unsigned nextRegionArgumentID = 0;
/// This is the next ID to assign to a Function argument.
unsigned nextArgumentID = 0;
/// This is the next ID to assign when a name conflict is detected.
unsigned nextConflictID = 0;
/// This is the next block ID to assign in numbering.
unsigned nextBlockID = 0;
};
} // end anonymous namespace
FunctionPrinter::FunctionPrinter(Function *function, ModulePrinter &other)
: ModulePrinter(other), function(function) {
for (auto &block : *function)
numberValuesInBlock(block);
}
/// Number all of the SSA values in the specified block. Values get numbered
/// continuously throughout regions. In particular, we traverse the regions
/// held by operations and number values in depth-first pre-order.
void FunctionPrinter::numberValuesInBlock(Block &block) {
// Each block gets a unique ID, and all of the operations within it get
// numbered as well.
blockIDs[&block] = nextBlockID++;
for (auto *arg : block.getArguments())
numberValueID(arg);
for (auto &op : block) {
// We number operation that have results, and we only number the first
// result.
if (op.getNumResults() != 0)
numberValueID(op.getResult(0));
for (auto &region : op.getRegions())
for (auto &block : region)
numberValuesInBlock(block);
}
}
void FunctionPrinter::numberValueID(Value *value) {
assert(!valueIDs.count(value) && "Value numbered multiple times");
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
// Give constant integers special names.
if (auto *op = value->getDefiningOp()) {
Attribute cst;
if (m_Constant(&cst).match(op)) {
Type type = op->getResult(0)->getType();
if (auto intCst = cst.dyn_cast<IntegerAttr>()) {
if (type.isIndex()) {
specialName << 'c' << intCst.getInt();
} else if (type.cast<IntegerType>().isInteger(1)) {
// i1 constants get special names.
specialName << (intCst.getInt() ? "true" : "false");
} else {
specialName << 'c' << intCst.getInt() << '_' << type;
}
} else if (cst.isa<FunctionAttr>()) {
specialName << 'f';
} else {
specialName << "cst";
}
}
}
if (specialNameBuffer.empty()) {
switch (value->getKind()) {
case Value::Kind::BlockArgument:
// If this is an argument to the function, give it an 'arg' name. If the
// argument is to an entry block of an operation region, give it an 'i'
// name.
if (auto *block = cast<BlockArgument>(value)->getOwner()) {
auto *parentRegion = block->getParent();
if (parentRegion && block == &parentRegion->front()) {
if (parentRegion->getContainingFunction())
specialName << "arg" << nextArgumentID++;
else
specialName << "i" << nextRegionArgumentID++;
break;
}
}
// Otherwise number it normally.
valueIDs[value] = nextValueID++;
return;
case Value::Kind::OpResult:
// This is an uninteresting result, give it a boring number and be
// done with it.
valueIDs[value] = nextValueID++;
return;
}
}
// Ok, this value had an interesting name. Remember it with a sentinel.
valueIDs[value] = nameSentinel;
// Remember that we've used this name, checking to see if we had a conflict.
auto insertRes = usedNames.insert(specialName.str());
if (insertRes.second) {
// If this is the first use of the name, then we're successful!
valueNames[value] = insertRes.first->first();
return;
}
// Otherwise, we had a conflict - probe until we find a unique name. This
// is guaranteed to terminate (and usually in a single iteration) because it
// generates new names by incrementing nextConflictID.
while (1) {
std::string probeName =
specialName.str().str() + "_" + llvm::utostr(nextConflictID++);
insertRes = usedNames.insert(probeName);
if (insertRes.second) {
// If this is the first use of the name, then we're successful!
valueNames[value] = insertRes.first->first();
return;
}
}
}
void FunctionPrinter::print() {
printFunctionSignature();
// Print out function attributes, if present.
auto attrs = function->getAttrs();
if (!attrs.empty()) {
os << "\n attributes ";
printOptionalAttrDict(attrs);
}
// Print the trailing location.
printTrailingLocation(function->getLoc());
if (!function->empty()) {
printRegion(function->getBody(), /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
os << "\n";
}
os << '\n';
}
void FunctionPrinter::printFunctionSignature() {
os << "func @" << function->getName() << '(';
auto fnType = function->getType();
bool isExternal = function->isExternal();
for (unsigned i = 0, e = function->getNumArguments(); i != e; ++i) {
if (i > 0)
os << ", ";
// If this is an external function, don't print argument labels.
if (!isExternal) {
printOperand(function->getArgument(i));
os << ": ";
}
printType(fnType.getInput(i));
// Print the attributes for this argument.
printOptionalAttrDict(function->getArgAttrs(i));
}
os << ')';
switch (fnType.getResults().size()) {
case 0:
break;
case 1: {
os << " -> ";
auto resultType = fnType.getResults()[0];
bool resultIsFunc = resultType.isa<FunctionType>();
if (resultIsFunc)
os << '(';
printType(resultType);
if (resultIsFunc)
os << ')';
break;
}
default:
os << " -> (";
interleaveComma(fnType.getResults(),
[&](Type eltType) { printType(eltType); });
os << ')';
break;
}
}
void FunctionPrinter::print(Block *block, bool printBlockArgs,
bool printBlockTerminator) {
// Print the block label and argument list if requested.
if (printBlockArgs) {
os.indent(currentIndent);
printBlockName(block);
// Print the argument list if non-empty.
if (!block->args_empty()) {
os << '(';
interleaveComma(block->getArguments(), [&](BlockArgument *arg) {
printValueID(arg);
os << ": ";
printType(arg->getType());
});
os << ')';
}
os << ':';
// Print out some context information about the predecessors of this block.
if (!block->getFunction()) {
os << "\t// block is not in a function!";
} else if (block->hasNoPredecessors()) {
os << "\t// no predecessors";
} else if (auto *pred = block->getSinglePredecessor()) {
os << "\t// pred: ";
printBlockName(pred);
} else {
// We want to print the predecessors in increasing numeric order, not in
// whatever order the use-list is in, so gather and sort them.
SmallVector<std::pair<unsigned, Block *>, 4> predIDs;
for (auto *pred : block->getPredecessors())
predIDs.push_back({getBlockID(pred), pred});
llvm::array_pod_sort(predIDs.begin(), predIDs.end());
os << "\t// " << predIDs.size() << " preds: ";
interleaveComma(predIDs, [&](std::pair<unsigned, Block *> pred) {
printBlockName(pred.second);
});
}
os << '\n';
}
currentIndent += indentWidth;
auto range = llvm::make_range(
block->getOperations().begin(),
std::prev(block->getOperations().end(), printBlockTerminator ? 0 : 1));
for (auto &op : range) {
print(&op);
os << '\n';
}
currentIndent -= indentWidth;
}
void FunctionPrinter::print(Operation *op) {
os.indent(currentIndent);
printOperation(op);
printTrailingLocation(op->getLoc());
}
void FunctionPrinter::printValueID(Value *value, bool printResultNo) const {
int resultNo = -1;
auto lookupValue = value;
// If this is a reference to the result of a multi-result operation or
// operation, print out the # identifier and make sure to map our lookup
// to the first result of the operation.
if (auto *result = dyn_cast<OpResult>(value)) {
if (result->getOwner()->getNumResults() != 1) {
resultNo = result->getResultNumber();
lookupValue = result->getOwner()->getResult(0);
}
}
auto it = valueIDs.find(lookupValue);
if (it == valueIDs.end()) {
os << "<<INVALID SSA VALUE>>";
return;
}
os << '%';
if (it->second != nameSentinel) {
os << it->second;
} else {
auto nameIt = valueNames.find(lookupValue);
assert(nameIt != valueNames.end() && "Didn't have a name entry?");
os << nameIt->second;
}
if (resultNo != -1 && printResultNo)
os << '#' << resultNo;
}
void FunctionPrinter::printOperation(Operation *op) {
if (size_t numResults = op->getNumResults()) {
printValueID(op->getResult(0), /*printResultNo=*/false);
if (numResults > 1)
os << ':' << numResults;
os << " = ";
}
if (printGenericOpForm)
return printGenericOp(op);
// Check to see if this is a known operation. If so, use the registered
// custom printer hook.
if (auto *opInfo = op->getAbstractOperation()) {
opInfo->printAssembly(op, this);
return;
}
// Otherwise print with the generic assembly form.
printGenericOp(op);
}
void FunctionPrinter::printGenericOp(Operation *op) {
os << '"';
printEscapedString(op->getName().getStringRef(), os);
os << "\"(";
// Get the list of operands that are not successor operands.
unsigned totalNumSuccessorOperands = 0;
unsigned numSuccessors = op->getNumSuccessors();
for (unsigned i = 0; i < numSuccessors; ++i)
totalNumSuccessorOperands += op->getNumSuccessorOperands(i);
unsigned numProperOperands = op->getNumOperands() - totalNumSuccessorOperands;
SmallVector<Value *, 8> properOperands(
op->operand_begin(), std::next(op->operand_begin(), numProperOperands));
interleaveComma(properOperands, [&](Value *value) { printValueID(value); });
os << ')';
// For terminators, print the list of successors and their operands.
if (numSuccessors != 0) {
os << '[';
for (unsigned i = 0; i < numSuccessors; ++i) {
if (i != 0)
os << ", ";
printSuccessorAndUseList(op, i);
}
os << ']';
}
// Print regions.
if (op->getNumRegions() != 0) {
os << " (";
interleaveComma(op->getRegions(), [&](Region &region) {
printRegion(region, /*printEntryBlockArgs=*/true,
/*printBlockTerminators=*/true);
});
os << ')';
}
auto attrs = op->getAttrs();
printOptionalAttrDict(attrs);
// Print the type signature of the operation.
os << " : (";
interleaveComma(properOperands,
[&](Value *value) { printType(value->getType()); });
os << ") -> ";
if (op->getNumResults() == 1 &&
!op->getResult(0)->getType().isa<FunctionType>()) {
printType(op->getResult(0)->getType());
} else {
os << '(';
interleaveComma(op->getResults(),
[&](Value *result) { printType(result->getType()); });
os << ')';
}
}
void FunctionPrinter::printSuccessorAndUseList(Operation *term,
unsigned index) {
printBlockName(term->getSuccessor(index));
auto succOperands = term->getSuccessorOperands(index);
if (succOperands.begin() == succOperands.end())
return;
os << '(';
interleaveComma(succOperands,
[this](Value *operand) { printValueID(operand); });
os << " : ";
interleaveComma(succOperands,
[this](Value *operand) { printType(operand->getType()); });
os << ')';
}
// Prints function with initialized module state.
void ModulePrinter::print(Function *fn) { FunctionPrinter(fn, *this).print(); }
//===----------------------------------------------------------------------===//
// print and dump methods
//===----------------------------------------------------------------------===//
void Attribute::print(raw_ostream &os) const {
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).printAttributeAndType(*this);
}
void Attribute::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void Type::print(raw_ostream &os) const {
ModuleState state(getContext());
ModulePrinter(os, state).printType(*this);
}
void Type::dump() const { print(llvm::errs()); }
void AffineMap::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void IntegerSet::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineExpr::print(raw_ostream &os) const {
if (expr == nullptr) {
os << "null affine expr";
return;
}
ModuleState state(getContext());
ModulePrinter(os, state).printAffineExpr(*this);
}
void AffineExpr::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
void AffineMap::print(raw_ostream &os) const {
if (map == nullptr) {
os << "null affine map";
return;
}
ModuleState state(getContext());
ModulePrinter(os, state).printAffineMap(*this);
}
void IntegerSet::print(raw_ostream &os) const {
ModuleState state(/*no context is known*/ nullptr);
ModulePrinter(os, state).printIntegerSet(*this);
}
void Value::print(raw_ostream &os) {
switch (getKind()) {
case Value::Kind::BlockArgument:
// TODO: Improve this.
os << "<block argument>\n";
return;
case Value::Kind::OpResult:
return getDefiningOp()->print(os);
}
}
void Value::dump() { print(llvm::errs()); }
void Operation::print(raw_ostream &os) {
auto *function = getFunction();
if (!function) {
os << "<<UNLINKED INSTRUCTION>>\n";
return;
}
ModuleState state(function->getContext());
ModulePrinter modulePrinter(os, state);
FunctionPrinter(function, modulePrinter).print(this);
}
void Operation::dump() {
print(llvm::errs());
llvm::errs() << "\n";
}
void Block::print(raw_ostream &os) {
auto *function = getFunction();
if (!function) {
os << "<<UNLINKED BLOCK>>\n";
return;
}
ModuleState state(function->getContext());
ModulePrinter modulePrinter(os, state);
FunctionPrinter(function, modulePrinter).print(this);
}
void Block::dump() { print(llvm::errs()); }
/// Print out the name of the block without printing its body.
void Block::printAsOperand(raw_ostream &os, bool printType) {
if (!getFunction()) {
os << "<<UNLINKED BLOCK>>\n";
return;
}
ModuleState state(getFunction()->getContext());
ModulePrinter modulePrinter(os, state);
FunctionPrinter(getFunction(), modulePrinter).printBlockName(this);
}
void Function::print(raw_ostream &os) {
ModuleState state(getContext());
ModulePrinter(os, state).print(this);
}
void Function::dump() { print(llvm::errs()); }
void Module::print(raw_ostream &os) {
ModuleState state(getContext());
state.initialize(this);
ModulePrinter(os, state).print(this);
}
void Module::dump() { print(llvm::errs()); }
void Location::print(raw_ostream &os) const {
ModuleState state(nullptr);
ModulePrinter(os, state).printLocation(*this);
}
void Location::dump() const { print(llvm::errs()); }