llvm-project/polly
Tobias Grosser 3fb4992221 ScopDetection: Add new SCEV Validator
The SCEV Validator is used to check if the bound of a loop can be translated
into a polyhedral constraint. The new validator is more general as the check
used previously and e.g. allows bounds like 'smax 1, %a'. At the moment, we
only allow signed comparisons. Also, the new validator is only used to verify
loop bounds. Memory accesses are still handled by the old validator.

llvm-svn: 143576
2011-11-02 21:40:08 +00:00
..
autoconf configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00
cmake Add initial version of Polly 2011-04-29 06:27:02 +00:00
docs Add initial version of Polly 2011-04-29 06:27:02 +00:00
include TempScop: Remove SCEVAffFunc from LoopBoundInfo 2011-11-02 21:37:51 +00:00
lib ScopDetection: Add new SCEV Validator 2011-11-02 21:40:08 +00:00
test TempScopInfo: Print the original SCEV instead of using SCEVAffFunc 2011-11-02 21:37:06 +00:00
tools Add initial version of Polly 2011-04-29 06:27:02 +00:00
utils Remove pollycc 2011-10-23 20:59:47 +00:00
www www: Change in cloog installation procedure 2011-10-26 12:25:49 +00:00
CMakeLists.txt Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
CREDITS.txt (Test commit for polly) 2011-07-16 13:30:03 +00:00
LICENSE.txt Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.common.in Add initial version of Polly 2011-04-29 06:27:02 +00:00
Makefile.config.in Buildsystem: Add -no-rtti 2011-06-30 19:50:04 +00:00
README Remove some empty lines 2011-10-04 06:56:36 +00:00
configure configure: Add gmp_inc when checking for CLooG 2011-10-04 06:55:03 +00:00

README

Polly - Polyhedral optimizations for LLVM

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.