llvm-project/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp

681 lines
25 KiB
C++

//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the PPC branch instructions
// that decrement and test the count register (CTR) (bdnz and friends).
// This pass is based on the HexagonHardwareLoops pass.
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
// The pattern detected by this phase is due to running Strength Reduction.
//
// Criteria for CTR loops:
// - Countable loops (w/ ind. var for a trip count)
// - Assumes loops are normalized by IndVarSimplify
// - Try inner-most loops first
// - No nested CTR loops.
// - No function calls in loops.
//
// Note: As with unconverted loops, PPCBranchSelector must be run after this
// pass in order to convert long-displacement jumps into jump pairs.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ctrloops"
#include "PPC.h"
#include "PPCTargetMachine.h"
#include "llvm/Constants.h"
#include "llvm/PassSupport.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
namespace {
class CountValue;
struct PPCCTRLoops : public MachineFunctionPass {
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
public:
static char ID; // Pass identification, replacement for typeid
PPCCTRLoops() : MachineFunctionPass(ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "PPC CTR Loops"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable.
/// Should be defined in MachineLoop. Based upon version in class Loop.
MachineInstr *getCanonicalInductionVariable(MachineLoop *L,
MachineInstr *&IOp) const;
/// getTripCount - Return a loop-invariant LLVM register indicating the
/// number of times the loop will be executed. If the trip-count cannot
/// be determined, this return null.
CountValue *getTripCount(MachineLoop *L, bool &WordCmp,
SmallVector<MachineInstr *, 2> &OldInsts) const;
/// isInductionOperation - Return true if the instruction matches the
/// pattern for an opertion that defines an induction variable.
bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
/// isInvalidOperation - Return true if the instruction is not valid within
/// a CTR loop.
bool isInvalidLoopOperation(const MachineInstr *MI) const;
/// containsInavlidInstruction - Return true if the loop contains an
/// instruction that inhibits using the CTR loop.
bool containsInvalidInstruction(MachineLoop *L) const;
/// converToCTRLoop - Given a loop, check if we can convert it to a
/// CTR loop. If so, then perform the conversion and return true.
bool convertToCTRLoop(MachineLoop *L);
/// isDead - Return true if the instruction is now dead.
bool isDead(const MachineInstr *MI,
SmallVector<MachineInstr *, 1> &DeadPhis) const;
/// removeIfDead - Remove the instruction if it is now dead.
void removeIfDead(MachineInstr *MI);
};
char PPCCTRLoops::ID = 0;
// CountValue class - Abstraction for a trip count of a loop. A
// smaller vesrsion of the MachineOperand class without the concerns
// of changing the operand representation.
class CountValue {
public:
enum CountValueType {
CV_Register,
CV_Immediate
};
private:
CountValueType Kind;
union Values {
unsigned RegNum;
int64_t ImmVal;
Values(unsigned r) : RegNum(r) {}
Values(int64_t i) : ImmVal(i) {}
} Contents;
bool isNegative;
public:
CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
isNegative(neg) {}
explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
isNegative(i < 0) {}
CountValueType getType() const { return Kind; }
bool isReg() const { return Kind == CV_Register; }
bool isImm() const { return Kind == CV_Immediate; }
bool isNeg() const { return isNegative; }
unsigned getReg() const {
assert(isReg() && "Wrong CountValue accessor");
return Contents.RegNum;
}
void setReg(unsigned Val) {
Contents.RegNum = Val;
}
int64_t getImm() const {
assert(isImm() && "Wrong CountValue accessor");
if (isNegative) {
return -Contents.ImmVal;
}
return Contents.ImmVal;
}
void setImm(int64_t Val) {
Contents.ImmVal = Val;
}
void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
if (isReg()) { OS << PrintReg(getReg()); }
if (isImm()) { OS << getImm(); }
}
};
} // end anonymous namespace
/// isCompareEquals - Returns true if the instruction is a compare equals
/// instruction with an immediate operand.
static bool isCompareEqualsImm(const MachineInstr *MI, bool &WordCmp) {
if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPLWI) {
WordCmp = true;
return true;
} else if (MI->getOpcode() == PPC::CMPDI || MI->getOpcode() == PPC::CMPLDI) {
WordCmp = false;
return true;
}
return false;
}
/// createPPCCTRLoops - Factory for creating
/// the CTR loop phase.
FunctionPass *llvm::createPPCCTRLoops() {
return new PPCCTRLoops();
}
bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
bool Changed = false;
// get the loop information
MLI = &getAnalysis<MachineLoopInfo>();
// get the register information
MRI = &MF.getRegInfo();
// the target specific instructio info.
TII = MF.getTarget().getInstrInfo();
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I) {
MachineLoop *L = *I;
if (!L->getParentLoop()) {
Changed |= convertToCTRLoop(L);
}
}
return Changed;
}
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable. We check for a simple recurrence pattern - an
/// integer recurrence that decrements by one each time through the loop and
/// ends at zero. If so, return the phi node that corresponds to it.
///
/// Based upon the similar code in LoopInfo except this code is specific to
/// the machine.
/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
///
MachineInstr
*PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
MachineInstr *&IOp) const {
MachineBasicBlock *TopMBB = L->getTopBlock();
MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
assert(PI != TopMBB->pred_end() &&
"Loop must have more than one incoming edge!");
MachineBasicBlock *Backedge = *PI++;
if (PI == TopMBB->pred_end()) return 0; // dead loop
MachineBasicBlock *Incoming = *PI++;
if (PI != TopMBB->pred_end()) return 0; // multiple backedges?
// make sure there is one incoming and one backedge and determine which
// is which.
if (L->contains(Incoming)) {
if (L->contains(Backedge))
return 0;
std::swap(Incoming, Backedge);
} else if (!L->contains(Backedge))
return 0;
// Loop over all of the PHI nodes, looking for a canonical induction variable:
// - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
// - The recurrence comes from the backedge.
// - the definition is an induction operatio.n
for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
I != E && I->isPHI(); ++I) {
MachineInstr *MPhi = &*I;
unsigned DefReg = MPhi->getOperand(0).getReg();
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
// Check each operand for the value from the backedge.
MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
if (L->contains(MBB)) { // operands comes from the backedge
// Check if the definition is an induction operation.
MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
if (isInductionOperation(DI, DefReg)) {
IOp = DI;
return MPhi;
}
}
}
}
return 0;
}
/// getTripCount - Return a loop-invariant LLVM value indicating the
/// number of times the loop will be executed. The trip count can
/// be either a register or a constant value. If the trip-count
/// cannot be determined, this returns null.
///
/// We find the trip count from the phi instruction that defines the
/// induction variable. We follow the links to the CMP instruction
/// to get the trip count.
///
/// Based upon getTripCount in LoopInfo.
///
CountValue *PPCCTRLoops::getTripCount(MachineLoop *L, bool &WordCmp,
SmallVector<MachineInstr *, 2> &OldInsts) const {
// Check that the loop has a induction variable.
MachineInstr *IOp;
MachineInstr *IV_Inst = getCanonicalInductionVariable(L, IOp);
if (IV_Inst == 0) return 0;
// Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
// if Imm is 0, get the count from the PHI opnd
// if Imm is -M, than M is the count
// Otherwise, Imm is the count
MachineOperand *IV_Opnd;
const MachineOperand *InitialValue;
if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
InitialValue = &IV_Inst->getOperand(1);
IV_Opnd = &IV_Inst->getOperand(3);
} else {
InitialValue = &IV_Inst->getOperand(3);
IV_Opnd = &IV_Inst->getOperand(1);
}
// Look for the cmp instruction to determine if we
// can get a useful trip count. The trip count can
// be either a register or an immediate. The location
// of the value depends upon the type (reg or imm).
while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) {
MachineInstr *MI = IV_Opnd->getParent();
if (L->contains(MI) && isCompareEqualsImm(MI, WordCmp)) {
OldInsts.push_back(MI);
OldInsts.push_back(IOp);
const MachineOperand &MO = MI->getOperand(2);
assert(MO.isImm() && "IV Cmp Operand should be an immediate");
int64_t ImmVal = MO.getImm();
const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
assert(L->contains(IV_DefInstr->getParent()) &&
"IV definition should occurs in loop");
int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
if (ImmVal == 0) {
// Make sure the induction variable changes by one on each iteration.
if (iv_value != 1 && iv_value != -1) {
return 0;
}
return new CountValue(InitialValue->getReg(), iv_value > 0);
} else {
assert(InitialValue->isReg() && "Expecting register for init value");
const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
// Here we need to look for an immediate load (an li or lis/ori pair).
if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
DefInstr->getOpcode() == PPC::ORI)) {
int64_t start = DefInstr->getOperand(2).getImm();
const MachineInstr *DefInstr2 =
MRI->getVRegDef(DefInstr->getOperand(0).getReg());
if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
DefInstr2->getOpcode() == PPC::LIS)) {
start |= DefInstr2->getOperand(1).getImm() << 16;
int64_t count = ImmVal - start;
if ((count % iv_value) != 0) {
return 0;
}
return new CountValue(count/iv_value);
}
} else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
DefInstr->getOpcode() == PPC::LI)) {
int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
if ((count % iv_value) != 0) {
return 0;
}
return new CountValue(count/iv_value);
}
}
}
}
return 0;
}
/// isInductionOperation - return true if the operation is matches the
/// pattern that defines an induction variable:
/// addi iv, c
///
bool
PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
unsigned IVReg) const {
return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
MI->getOperand(1).isReg() && // could be a frame index instead
MI->getOperand(1).getReg() == IVReg);
}
/// isInvalidOperation - Return true if the operation is invalid within
/// CTR loop.
bool
PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
// call is not allowed because the callee may use a CTR loop
if (MI->getDesc().isCall()) {
return true;
}
// check if the instruction defines a CTR loop register
// (this will also catch nested CTR loops)
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef() &&
(MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
return true;
}
}
return false;
}
/// containsInvalidInstruction - Return true if the loop contains
/// an instruction that inhibits the use of the CTR loop function.
///
bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
for (MachineBasicBlock::iterator
MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
const MachineInstr *MI = &*MII;
if (isInvalidLoopOperation(MI)) {
return true;
}
}
}
return false;
}
/// isDead returns true if the instruction is dead
/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
/// with special cases for inline asm, physical registers and instructions with
/// side effects removed)
bool PPCCTRLoops::isDead(const MachineInstr *MI,
SmallVector<MachineInstr *, 1> &DeadPhis) const {
// Examine each operand.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (!MRI->use_nodbg_empty(Reg)) {
// This instruction has users, but if the only user is the phi node for the
// parent block, and the only use of that phi node is this instruction, then
// this instruction is dead: both it (and the phi node) can be removed.
MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
if (llvm::next(I) == MRI->use_end() &&
I.getOperand().getParent()->isPHI()) {
MachineInstr *OnePhi = I.getOperand().getParent();
for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
const MachineOperand &OPO = OnePhi->getOperand(j);
if (OPO.isReg() && OPO.isDef()) {
unsigned OPReg = OPO.getReg();
MachineRegisterInfo::use_iterator nextJ;
for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
E = MRI->use_end(); J!=E; J=nextJ) {
nextJ = llvm::next(J);
MachineOperand& Use = J.getOperand();
MachineInstr *UseMI = Use.getParent();
if (MI != UseMI) {
// The phi node has a user that is not MI, bail...
return false;
}
}
}
}
DeadPhis.push_back(OnePhi);
} else {
// This def has a non-debug use. Don't delete the instruction!
return false;
}
}
}
}
// If there are no defs with uses, the instruction is dead.
return true;
}
void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
// This procedure was essentially copied from DeadMachineInstructionElim
SmallVector<MachineInstr *, 1> DeadPhis;
if (isDead(MI, DeadPhis)) {
DEBUG(dbgs() << "CTR looping will remove: " << *MI);
// It is possible that some DBG_VALUE instructions refer to this
// instruction. Examine each def operand for such references;
// if found, mark the DBG_VALUE as undef (but don't delete it).
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
MachineRegisterInfo::use_iterator nextI;
for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
E = MRI->use_end(); I!=E; I=nextI) {
nextI = llvm::next(I); // I is invalidated by the setReg
MachineOperand& Use = I.getOperand();
MachineInstr *UseMI = Use.getParent();
if (UseMI==MI)
continue;
if (Use.isDebug()) // this might also be a instr -> phi -> instr case
// which can also be removed.
UseMI->getOperand(0).setReg(0U);
}
}
MI->eraseFromParent();
for (unsigned i = 0; i < DeadPhis.size(); ++i) {
DeadPhis[i]->eraseFromParent();
}
}
}
/// converToCTRLoop - check if the loop is a candidate for
/// converting to a CTR loop. If so, then perform the
/// transformation.
///
/// This function works on innermost loops first. A loop can
/// be converted if it is a counting loop; either a register
/// value or an immediate.
///
/// The code makes several assumptions about the representation
/// of the loop in llvm.
bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
bool Changed = false;
// Process nested loops first.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
Changed |= convertToCTRLoop(*I);
}
// If a nested loop has been converted, then we can't convert this loop.
if (Changed) {
return Changed;
}
bool WordCmp;
SmallVector<MachineInstr *, 2> OldInsts;
// Are we able to determine the trip count for the loop?
CountValue *TripCount = getTripCount(L, WordCmp, OldInsts);
if (TripCount == 0) {
DEBUG(dbgs() << "failed to get trip count!\n");
return false;
}
// Does the loop contain any invalid instructions?
if (containsInvalidInstruction(L)) {
return false;
}
MachineBasicBlock *Preheader = L->getLoopPreheader();
// No preheader means there's not place for the loop instr.
if (Preheader == 0) {
return false;
}
MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
DebugLoc dl;
if (InsertPos != Preheader->end())
dl = InsertPos->getDebugLoc();
MachineBasicBlock *LastMBB = L->getExitingBlock();
// Don't generate CTR loop if the loop has more than one exit.
if (LastMBB == 0) {
return false;
}
MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
// Determine the loop start.
MachineBasicBlock *LoopStart = L->getTopBlock();
if (L->getLoopLatch() != LastMBB) {
// When the exit and latch are not the same, use the latch block as the
// start.
// The loop start address is used only after the 1st iteration, and the loop
// latch may contains instrs. that need to be executed after the 1st iter.
LoopStart = L->getLoopLatch();
// Make sure the latch is a successor of the exit, otherwise it won't work.
if (!LastMBB->isSuccessor(LoopStart)) {
return false;
}
}
// Convert the loop to a CTR loop
DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
MachineFunction *MF = LastMBB->getParent();
const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
bool isPPC64 = Subtarget.isPPC64();
unsigned CountReg;
if (TripCount->isReg()) {
// Create a copy of the loop count register.
const TargetRegisterClass *RC =
MF->getRegInfo().getRegClass(TripCount->getReg());
CountReg = MF->getRegInfo().createVirtualRegister(RC);
BuildMI(*Preheader, InsertPos, dl,
TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
if (TripCount->isNeg()) {
unsigned CountReg1 = CountReg;
CountReg = MF->getRegInfo().createVirtualRegister(RC);
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
CountReg).addReg(CountReg1);
}
// On a 64-bit system, if the original comparison was only 32-bit, then
// mask out the higher-order part of the count.
if (isPPC64 && WordCmp) {
unsigned CountReg1 = CountReg;
CountReg = MF->getRegInfo().createVirtualRegister(RC);
BuildMI(*Preheader, InsertPos, dl,
TII->get(PPC::RLDICL), CountReg).addReg(CountReg1
).addImm(0).addImm(32);
}
} else {
assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
// Put the trip count in a register for transfer into the count register.
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
int64_t CountImm = TripCount->getImm();
if (TripCount->isNeg())
CountImm = -CountImm;
CountReg = MF->getRegInfo().createVirtualRegister(RC);
if (CountImm > 0xFFFF) {
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
CountReg).addImm(CountImm >> 16);
unsigned CountReg1 = CountReg;
CountReg = MF->getRegInfo().createVirtualRegister(RC);
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
} else {
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
CountReg).addImm(CountImm);
}
}
// Add the mtctr instruction to the beginning of the loop.
BuildMI(*Preheader, InsertPos, dl,
TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
TripCount->isImm() ? RegState::Kill : 0);
// Make sure the loop start always has a reference in the CFG. We need to
// create a BlockAddress operand to get this mechanism to work both the
// MachineBasicBlock and BasicBlock objects need the flag set.
LoopStart->setHasAddressTaken();
// This line is needed to set the hasAddressTaken flag on the BasicBlock
// object
BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
// Replace the loop branch with a bdnz instruction.
dl = LastI->getDebugLoc();
const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
if (MBB != Preheader)
MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
}
// The loop ends with either:
// - a conditional branch followed by an unconditional branch, or
// - a conditional branch to the loop start.
assert(LastI->getOpcode() == PPC::BCC &&
"loop end must start with a BCC instruction");
// Either the BCC branches to the beginning of the loop, or it
// branches out of the loop and there is an unconditional branch
// to the start of the loop.
MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
BuildMI(*LastMBB, LastI, dl,
TII->get((BranchTarget == LoopStart) ?
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
// Conditional branch; just delete it.
LastMBB->erase(LastI);
delete TripCount;
// The induction operation (add) and the comparison (cmpwi) may now be
// unneeded. If these are unneeded, then remove them.
for (unsigned i = 0; i < OldInsts.size(); ++i)
removeIfDead(OldInsts[i]);
++NumCTRLoops;
return true;
}