llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp

1523 lines
51 KiB
C++

//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the Hexagon target.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonISelLowering.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonTargetMachine.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-isel"
static
cl::opt<unsigned>
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
cl::Hidden, cl::init(2),
cl::desc("Maximum number of uses of a global address such that we still us a"
"constant extended instruction"));
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
//===--------------------------------------------------------------------===//
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
/// instructions for SelectionDAG operations.
///
namespace {
class HexagonDAGToDAGISel : public SelectionDAGISel {
const HexagonTargetMachine &HTM;
const HexagonSubtarget *HST;
const HexagonInstrInfo *HII;
const HexagonRegisterInfo *HRI;
public:
explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), HTM(tm), HST(nullptr), HII(nullptr),
HRI(nullptr) {}
bool runOnMachineFunction(MachineFunction &MF) override {
// Reset the subtarget each time through.
HST = &MF.getSubtarget<HexagonSubtarget>();
HII = HST->getInstrInfo();
HRI = HST->getRegisterInfo();
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
virtual void PreprocessISelDAG() override;
virtual void EmitFunctionEntryCode() override;
void Select(SDNode *N) override;
// Complex Pattern Selectors.
inline bool SelectAddrGA(SDValue &N, SDValue &R);
inline bool SelectAddrGP(SDValue &N, SDValue &R);
bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
bool SelectAddrFI(SDValue &N, SDValue &R);
const char *getPassName() const override {
return "Hexagon DAG->DAG Pattern Instruction Selection";
}
// Generate a machine instruction node corresponding to the circ/brev
// load intrinsic.
MachineSDNode *LoadInstrForLoadIntrinsic(SDNode *IntN);
// Given the circ/brev load intrinsic and the already generated machine
// instruction, generate the appropriate store (that is a part of the
// intrinsic's functionality).
SDNode *StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, SDNode *IntN);
void SelectFrameIndex(SDNode *N);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
bool tryLoadOfLoadIntrinsic(LoadSDNode *N);
void SelectLoad(SDNode *N);
void SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
void SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl);
void SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl);
void SelectStore(SDNode *N);
void SelectSHL(SDNode *N);
void SelectMul(SDNode *N);
void SelectZeroExtend(SDNode *N);
void SelectIntrinsicWChain(SDNode *N);
void SelectIntrinsicWOChain(SDNode *N);
void SelectConstant(SDNode *N);
void SelectConstantFP(SDNode *N);
void SelectAdd(SDNode *N);
void SelectBitcast(SDNode *N);
void SelectBitOp(SDNode *N);
// XformMskToBitPosU5Imm - Returns the bit position which
// the single bit 32 bit mask represents.
// Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU5Imm(uint32_t Imm, const SDLoc &DL) {
int32_t bitPos;
bitPos = Log2_32(Imm);
assert(bitPos >= 0 && bitPos < 32 &&
"Constant out of range for 32 BitPos Memops");
return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
}
// XformMskToBitPosU4Imm - Returns the bit position which the single-bit
// 16 bit mask represents. Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU4Imm(uint16_t Imm, const SDLoc &DL) {
return XformMskToBitPosU5Imm(Imm, DL);
}
// XformMskToBitPosU3Imm - Returns the bit position which the single-bit
// 8 bit mask represents. Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU3Imm(uint8_t Imm, const SDLoc &DL) {
return XformMskToBitPosU5Imm(Imm, DL);
}
// Return true if there is exactly one bit set in V, i.e., if V is one of the
// following integers: 2^0, 2^1, ..., 2^31.
bool ImmIsSingleBit(uint32_t v) const {
return isPowerOf2_32(v);
}
// XformM5ToU5Imm - Return a target constant with the specified value, of
// type i32 where the negative literal is transformed into a positive literal
// for use in -= memops.
inline SDValue XformM5ToU5Imm(signed Imm, const SDLoc &DL) {
assert((Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
}
// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
// [1..128], used in cmpb.gtu instructions.
inline SDValue XformU7ToU7M1Imm(signed Imm, const SDLoc &DL) {
assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
}
// XformS8ToS8M1Imm - Return a target constant decremented by 1.
inline SDValue XformSToSM1Imm(signed Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
}
// XformU8ToU8M1Imm - Return a target constant decremented by 1.
inline SDValue XformUToUM1Imm(unsigned Imm, const SDLoc &DL) {
assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
}
// XformSToSM2Imm - Return a target constant decremented by 2.
inline SDValue XformSToSM2Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
}
// XformSToSM3Imm - Return a target constant decremented by 3.
inline SDValue XformSToSM3Imm(unsigned Imm, const SDLoc &DL) {
return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
}
// Include the pieces autogenerated from the target description.
#include "HexagonGenDAGISel.inc"
private:
bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
bool isAlignedMemNode(const MemSDNode *N) const;
}; // end HexagonDAGToDAGISel
} // end anonymous namespace
/// createHexagonISelDag - This pass converts a legalized DAG into a
/// Hexagon-specific DAG, ready for instruction scheduling.
///
namespace llvm {
FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new HexagonDAGToDAGISel(TM, OptLevel);
}
}
// Intrinsics that return a a predicate.
static bool doesIntrinsicReturnPredicate(unsigned ID) {
switch (ID) {
default:
return false;
case Intrinsic::hexagon_C2_cmpeq:
case Intrinsic::hexagon_C2_cmpgt:
case Intrinsic::hexagon_C2_cmpgtu:
case Intrinsic::hexagon_C2_cmpgtup:
case Intrinsic::hexagon_C2_cmpgtp:
case Intrinsic::hexagon_C2_cmpeqp:
case Intrinsic::hexagon_C2_bitsset:
case Intrinsic::hexagon_C2_bitsclr:
case Intrinsic::hexagon_C2_cmpeqi:
case Intrinsic::hexagon_C2_cmpgti:
case Intrinsic::hexagon_C2_cmpgtui:
case Intrinsic::hexagon_C2_cmpgei:
case Intrinsic::hexagon_C2_cmpgeui:
case Intrinsic::hexagon_C2_cmplt:
case Intrinsic::hexagon_C2_cmpltu:
case Intrinsic::hexagon_C2_bitsclri:
case Intrinsic::hexagon_C2_and:
case Intrinsic::hexagon_C2_or:
case Intrinsic::hexagon_C2_xor:
case Intrinsic::hexagon_C2_andn:
case Intrinsic::hexagon_C2_not:
case Intrinsic::hexagon_C2_orn:
case Intrinsic::hexagon_C2_pxfer_map:
case Intrinsic::hexagon_C2_any8:
case Intrinsic::hexagon_C2_all8:
case Intrinsic::hexagon_A2_vcmpbeq:
case Intrinsic::hexagon_A2_vcmpbgtu:
case Intrinsic::hexagon_A2_vcmpheq:
case Intrinsic::hexagon_A2_vcmphgt:
case Intrinsic::hexagon_A2_vcmphgtu:
case Intrinsic::hexagon_A2_vcmpweq:
case Intrinsic::hexagon_A2_vcmpwgt:
case Intrinsic::hexagon_A2_vcmpwgtu:
case Intrinsic::hexagon_C2_tfrrp:
case Intrinsic::hexagon_S2_tstbit_i:
case Intrinsic::hexagon_S2_tstbit_r:
return true;
}
}
void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
EVT LoadedVT = LD->getMemoryVT();
unsigned Opcode = 0;
// Check for zero extended loads. Treat any-extend loads as zero extended
// loads.
ISD::LoadExtType ExtType = LD->getExtensionType();
bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
assert(LoadedVT.isSimple());
switch (LoadedVT.getSimpleVT().SimpleTy) {
case MVT::i8:
if (IsZeroExt)
Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
else
Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
break;
case MVT::i16:
if (IsZeroExt)
Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
else
Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
break;
case MVT::i32:
Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
break;
case MVT::i64:
Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
break;
// 64B
case MVT::v64i8:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v8i64:
if (isAlignedMemNode(LD))
Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
else
Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
break;
// 128B
case MVT::v128i8:
case MVT::v64i16:
case MVT::v32i32:
case MVT::v16i64:
if (isAlignedMemNode(LD))
Opcode = IsValidInc ? Hexagon::V6_vL32b_pi_128B
: Hexagon::V6_vL32b_ai_128B;
else
Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi_128B
: Hexagon::V6_vL32Ub_ai_128B;
break;
default:
llvm_unreachable("Unexpected memory type in indexed load");
}
SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
-> MachineSDNode* {
if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
Zero, SDValue(N, 0));
}
if (ExtType == ISD::SEXTLOAD)
return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
SDValue(N, 0));
return N;
};
// Loaded value Next address Chain
SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
SDValue To[3];
EVT ValueVT = LD->getValueType(0);
if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
// A load extending to i64 will actually produce i32, which will then
// need to be extended to i64.
assert(LoadedVT.getSizeInBits() <= 32);
ValueVT = MVT::i32;
}
if (IsValidInc) {
MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
MVT::i32, MVT::Other, Base,
IncV, Chain);
L->setMemRefs(MemOp, MemOp+1);
To[1] = SDValue(L, 1); // Next address.
To[2] = SDValue(L, 2); // Chain.
// Handle special case for extension to i64.
if (LD->getValueType(0) == MVT::i64)
L = getExt64(L, dl);
To[0] = SDValue(L, 0); // Loaded (extended) value.
} else {
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
Base, Zero, Chain);
L->setMemRefs(MemOp, MemOp+1);
To[2] = SDValue(L, 1); // Chain.
MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, IncV);
To[1] = SDValue(A, 0); // Next address.
// Handle special case for extension to i64.
if (LD->getValueType(0) == MVT::i64)
L = getExt64(L, dl);
To[0] = SDValue(L, 0); // Loaded (extended) value.
}
ReplaceUses(From, To, 3);
CurDAG->RemoveDeadNode(LD);
}
MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return nullptr;
SDLoc dl(IntN);
unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
static std::map<unsigned,unsigned> LoadPciMap = {
{ Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
{ Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
{ Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
{ Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
{ Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
{ Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
};
auto FLC = LoadPciMap.find(IntNo);
if (FLC != LoadPciMap.end()) {
SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
IntN->getOperand(4));
EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
// Operands: { Base, Increment, Modifier, Chain }
auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
{ IntN->getOperand(2), I, SDValue(Mod,0), IntN->getOperand(0) });
return Res;
}
static std::map<unsigned,unsigned> LoadPbrMap = {
{ Intrinsic::hexagon_brev_ldb, Hexagon::L2_loadrb_pbr },
{ Intrinsic::hexagon_brev_ldub, Hexagon::L2_loadrub_pbr },
{ Intrinsic::hexagon_brev_ldh, Hexagon::L2_loadrh_pbr },
{ Intrinsic::hexagon_brev_lduh, Hexagon::L2_loadruh_pbr },
{ Intrinsic::hexagon_brev_ldw, Hexagon::L2_loadri_pbr },
{ Intrinsic::hexagon_brev_ldd, Hexagon::L2_loadrd_pbr },
};
auto FLB = LoadPbrMap.find(IntNo);
if (FLB != LoadPbrMap.end()) {
SDNode *Mod = CurDAG->getMachineNode(Hexagon::A2_tfrrcr, dl, MVT::i32,
IntN->getOperand(4));
EVT ValTy = (IntNo == Intrinsic::hexagon_brev_ldd) ? MVT::i64 : MVT::i32;
EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
// Operands: { Base, Modifier, Chain }
MachineSDNode *Res = CurDAG->getMachineNode(FLB->second, dl, RTys,
{ IntN->getOperand(2), SDValue(Mod,0), IntN->getOperand(0) });
return Res;
}
return nullptr;
}
SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
SDNode *IntN) {
// The "LoadN" is just a machine load instruction. The intrinsic also
// involves storing it. Generate an appropriate store to the location
// given in the intrinsic's operand(3).
uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
HexagonII::MemAccesSizeMask;
unsigned Size = 1U << (SizeBits-1);
SDLoc dl(IntN);
MachinePointerInfo PI;
SDValue TS;
SDValue Loc = IntN->getOperand(3);
if (Size >= 4)
TS = CurDAG->getStore(SDValue(LoadN,2), dl, SDValue(LoadN, 0), Loc, PI,
false, false, Size);
else
TS = CurDAG->getTruncStore(SDValue(LoadN,2), dl, SDValue(LoadN,0), Loc, PI,
MVT::getIntegerVT(Size*8), false, false, Size);
SDNode *StoreN;
{
HandleSDNode Handle(TS);
SelectStore(TS.getNode());
StoreN = Handle.getValue().getNode();
}
// Load's results are { Loaded value, Updated pointer, Chain }
ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
return StoreN;
}
bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
// The intrinsics for load circ/brev perform two operations:
// 1. Load a value V from the specified location, using the addressing
// mode corresponding to the intrinsic.
// 2. Store V into a specified location. This location is typically a
// local, temporary object.
// In many cases, the program using these intrinsics will immediately
// load V again from the local object. In those cases, when certain
// conditions are met, the last load can be removed.
// This function identifies and optimizes this pattern. If the pattern
// cannot be optimized, it returns nullptr, which will cause the load
// to be selected separately from the intrinsic (which will be handled
// in SelectIntrinsicWChain).
SDValue Ch = N->getOperand(0);
SDValue Loc = N->getOperand(1);
// Assume that the load and the intrinsic are connected directly with a
// chain:
// t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
// t2: i32,ch = load t1:1, Loc, ...
SDNode *C = Ch.getNode();
if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
// The second load can only be eliminated if its extension type matches
// that of the load instruction corresponding to the intrinsic. The user
// can provide an address of an unsigned variable to store the result of
// a sign-extending intrinsic into (or the other way around).
ISD::LoadExtType IntExt;
switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
case Intrinsic::hexagon_brev_ldub:
case Intrinsic::hexagon_brev_lduh:
case Intrinsic::hexagon_circ_ldub:
case Intrinsic::hexagon_circ_lduh:
IntExt = ISD::ZEXTLOAD;
break;
case Intrinsic::hexagon_brev_ldw:
case Intrinsic::hexagon_brev_ldd:
case Intrinsic::hexagon_circ_ldw:
case Intrinsic::hexagon_circ_ldd:
IntExt = ISD::NON_EXTLOAD;
break;
default:
IntExt = ISD::SEXTLOAD;
break;
}
if (N->getExtensionType() != IntExt)
return false;
// Make sure the target location for the loaded value in the load intrinsic
// is the location from which LD (or N) is loading.
if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
return false;
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
SDNode *S = StoreInstrForLoadIntrinsic(L, C);
SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
ReplaceUses(F, T, array_lengthof(T));
// This transformation will leave the intrinsic dead. If it remains in
// the DAG, the selection code will see it again, but without the load,
// and it will generate a store that is normally required for it.
CurDAG->RemoveDeadNode(C);
return true;
}
return false;
}
void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
// Handle indexed loads.
if (AM != ISD::UNINDEXED) {
SelectIndexedLoad(LD, dl);
return;
}
// Handle patterns using circ/brev load intrinsics.
if (tryLoadOfLoadIntrinsic(LD))
return;
SelectCode(LD);
}
void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
SDValue Chain = ST->getChain();
SDValue Base = ST->getBasePtr();
SDValue Offset = ST->getOffset();
SDValue Value = ST->getValue();
// Get the constant value.
int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
EVT StoredVT = ST->getMemoryVT();
EVT ValueVT = Value.getValueType();
bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
unsigned Opcode = 0;
assert(StoredVT.isSimple());
switch (StoredVT.getSimpleVT().SimpleTy) {
case MVT::i8:
Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
break;
case MVT::i16:
Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
break;
case MVT::i32:
Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
break;
case MVT::i64:
Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
break;
// 64B
case MVT::v64i8:
case MVT::v32i16:
case MVT::v16i32:
case MVT::v8i64:
if (isAlignedMemNode(ST))
Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
else
Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
break;
// 128B
case MVT::v128i8:
case MVT::v64i16:
case MVT::v32i32:
case MVT::v16i64:
if (isAlignedMemNode(ST))
Opcode = IsValidInc ? Hexagon::V6_vS32b_pi_128B
: Hexagon::V6_vS32b_ai_128B;
else
Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi_128B
: Hexagon::V6_vS32Ub_ai_128B;
break;
default:
llvm_unreachable("Unexpected memory type in indexed store");
}
if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
dl, MVT::i32, Value);
}
SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = ST->getMemOperand();
// Next address Chain
SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
SDValue To[2];
if (IsValidInc) {
// Build post increment store.
SDValue Ops[] = { Base, IncV, Value, Chain };
MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
Ops);
S->setMemRefs(MemOp, MemOp + 1);
To[0] = SDValue(S, 0);
To[1] = SDValue(S, 1);
} else {
SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDValue Ops[] = { Base, Zero, Value, Chain };
MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
S->setMemRefs(MemOp, MemOp + 1);
To[1] = SDValue(S, 0);
MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
Base, IncV);
To[0] = SDValue(A, 0);
}
ReplaceUses(From, To, 2);
CurDAG->RemoveDeadNode(ST);
}
void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
SDLoc dl(N);
StoreSDNode *ST = cast<StoreSDNode>(N);
ISD::MemIndexedMode AM = ST->getAddressingMode();
// Handle indexed stores.
if (AM != ISD::UNINDEXED) {
SelectIndexedStore(ST, dl);
return;
}
SelectCode(ST);
}
void HexagonDAGToDAGISel::SelectMul(SDNode *N) {
SDLoc dl(N);
//
// %conv.i = sext i32 %tmp1 to i64
// %conv2.i = sext i32 %add to i64
// %mul.i = mul nsw i64 %conv2.i, %conv.i
//
// --- match with the following ---
//
// %mul.i = mpy (%tmp1, %add)
//
if (N->getValueType(0) == MVT::i64) {
// Shifting a i64 signed multiply.
SDValue MulOp0 = N->getOperand(0);
SDValue MulOp1 = N->getOperand(1);
SDValue OP0;
SDValue OP1;
// Handle sign_extend and sextload.
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext0 = MulOp0.getOperand(0);
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
OP0 = Sext0;
} else if (MulOp0.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
SelectCode(N);
return;
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
} else {
SelectCode(N);
return;
}
// Same goes for the second operand.
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext1 = MulOp1.getOperand(0);
if (Sext1.getNode()->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
OP1 = Sext1;
} else if (MulOp1.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
SelectCode(N);
return;
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
} else {
SelectCode(N);
return;
}
// Generate a mpy instruction.
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
OP0, OP1);
ReplaceNode(N, Result);
return;
}
SelectCode(N);
}
void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) == MVT::i32) {
SDValue Shl_0 = N->getOperand(0);
SDValue Shl_1 = N->getOperand(1);
// RHS is const.
if (Shl_1.getOpcode() == ISD::Constant) {
if (Shl_0.getOpcode() == ISD::MUL) {
SDValue Mul_0 = Shl_0.getOperand(0); // Val
SDValue Mul_1 = Shl_0.getOperand(1); // Const
// RHS of mul is const.
if (Mul_1.getOpcode() == ISD::Constant) {
int32_t ShlConst =
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
int32_t MulConst =
cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
int32_t ValConst = MulConst << ShlConst;
SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
MVT::i32);
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
MVT::i32, Mul_0, Val);
ReplaceNode(N, Result);
return;
}
}
} else if (Shl_0.getOpcode() == ISD::SUB) {
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
SDValue Sub_1 = Shl_0.getOperand(1); // Val
if (Sub_0.getOpcode() == ISD::Constant) {
int32_t SubConst =
cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
if (SubConst == 0) {
if (Sub_1.getOpcode() == ISD::SHL) {
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
if (Shl2_1.getOpcode() == ISD::Constant) {
int32_t ShlConst =
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
int32_t Shl2Const =
cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
int32_t ValConst = 1 << (ShlConst+Shl2Const);
SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
MVT::i32);
if (ConstantSDNode *CN =
dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
Shl2_0, Val);
ReplaceNode(N, Result);
return;
}
}
}
}
}
}
}
}
SelectCode(N);
}
//
// If there is an zero_extend followed an intrinsic in DAG (this means - the
// result of the intrinsic is predicate); convert the zero_extend to
// transfer instruction.
//
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
// converted into a MUX as predicate registers defined as 1 bit in the
// compiler. Architecture defines them as 8-bit registers.
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
//
void HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
SDLoc dl(N);
SDValue Op0 = N->getOperand(0);
EVT OpVT = Op0.getValueType();
unsigned OpBW = OpVT.getSizeInBits();
// Special handling for zero-extending a vector of booleans.
if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
unsigned NE = OpVT.getVectorNumElements();
EVT ExVT = N->getValueType(0);
unsigned ES = ExVT.getVectorElementType().getSizeInBits();
uint64_t MV = 0, Bit = 1;
for (unsigned i = 0; i < NE; ++i) {
MV |= Bit;
Bit <<= ES;
}
SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
MVT::i64, Ones);
if (ExVT.getSizeInBits() == 32) {
SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
SDValue(Mask,0), SDValue(OnesReg,0));
SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
MVT::i32);
ReplaceNode(N, CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
SDValue(And, 0), SubR));
return;
}
ReplaceNode(N,
CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
SDValue(Mask, 0), SDValue(OnesReg, 0)));
return;
}
SDNode *IsIntrinsic = N->getOperand(0).getNode();
if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
unsigned ID =
cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
if (doesIntrinsicReturnPredicate(ID)) {
// Now we need to differentiate target data types.
if (N->getValueType(0) == MVT::i64) {
// Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
MVT::i32,
TargetConst0);
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2, 0),
SDValue(Result_1, 0));
ReplaceNode(N, Result_3);
return;
}
if (N->getValueType(0) == MVT::i32) {
// Convert the zero_extend to Rs = Pd
SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
ReplaceNode(N, RsPd);
return;
}
llvm_unreachable("Unexpected value type");
}
}
SelectCode(N);
}
//
// Handling intrinsics for circular load and bitreverse load.
//
void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
StoreInstrForLoadIntrinsic(L, N);
CurDAG->RemoveDeadNode(N);
return;
}
SelectCode(N);
}
void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Bits;
switch (IID) {
case Intrinsic::hexagon_S2_vsplatrb:
Bits = 8;
break;
case Intrinsic::hexagon_S2_vsplatrh:
Bits = 16;
break;
default:
SelectCode(N);
return;
}
SDValue V = N->getOperand(1);
SDValue U;
if (isValueExtension(V, Bits, U)) {
SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
N->getOperand(0), U);
ReplaceNode(N, R.getNode());
SelectCode(R.getNode());
return;
}
SelectCode(N);
}
//
// Map floating point constant values.
//
void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
SDLoc dl(N);
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
const APFloat &APF = CN->getValueAPF();
if (N->getValueType(0) == MVT::f32) {
ReplaceNode(
N, CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
CurDAG->getTargetConstantFP(
APF.convertToFloat(), dl, MVT::f32)));
return;
}
else if (N->getValueType(0) == MVT::f64) {
ReplaceNode(
N, CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
CurDAG->getTargetConstantFP(
APF.convertToDouble(), dl, MVT::f64)));
return;
}
SelectCode(N);
}
//
// Map predicate true (encoded as -1 in LLVM) to a XOR.
//
void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) == MVT::i1) {
SDNode* Result = 0;
int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (Val == -1) {
Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
} else if (Val == 0) {
Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
}
if (Result) {
ReplaceNode(N, Result);
return;
}
}
SelectCode(N);
}
//
// Map add followed by a asr -> asr +=.
//
void HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
// Identify nodes of the form: add(asr(...)).
SDNode* Src1 = N->getOperand(0).getNode();
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
|| Src1->getValueType(0) != MVT::i32) {
SelectCode(N);
return;
}
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
// Rd and Rd' are assigned to the same register
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
N->getOperand(1),
Src1->getOperand(0),
Src1->getOperand(1));
ReplaceNode(N, Result);
}
//
// Map the following, where possible.
// AND/FABS -> clrbit
// OR -> setbit
// XOR/FNEG ->toggle_bit.
//
void HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
SDLoc dl(N);
EVT ValueVT = N->getValueType(0);
// We handle only 32 and 64-bit bit ops.
if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
ValueVT == MVT::f32 || ValueVT == MVT::f64)) {
SelectCode(N);
return;
}
// We handly only fabs and fneg for V5.
unsigned Opc = N->getOpcode();
if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps()) {
SelectCode(N);
return;
}
int64_t Val = 0;
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
if (N->getOperand(1).getOpcode() == ISD::Constant)
Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
else {
SelectCode(N);
return;
}
}
if (Opc == ISD::AND) {
// Check if this is a bit-clearing AND, if not select code the usual way.
if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
(ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
Val = ~Val;
else {
SelectCode(N);
return;
}
}
// If OR or AND is being fed by shl, srl and, sra don't do this change,
// because Hexagon provide |= &= on shl, srl, and sra.
// Traverse the DAG to see if there is shl, srl and sra.
if (Opc == ISD::OR || Opc == ISD::AND) {
switch (N->getOperand(0)->getOpcode()) {
default:
break;
case ISD::SRA:
case ISD::SRL:
case ISD::SHL:
SelectCode(N);
return;
}
}
// Make sure it's power of 2.
unsigned BitPos = 0;
if (Opc != ISD::FABS && Opc != ISD::FNEG) {
if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
(ValueVT == MVT::i64 && !isPowerOf2_64(Val))) {
SelectCode(N);
return;
}
// Get the bit position.
BitPos = countTrailingZeros(uint64_t(Val));
} else {
// For fabs and fneg, it's always the 31st bit.
BitPos = 31;
}
unsigned BitOpc = 0;
// Set the right opcode for bitwise operations.
switch (Opc) {
default:
llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
case ISD::AND:
case ISD::FABS:
BitOpc = Hexagon::S2_clrbit_i;
break;
case ISD::OR:
BitOpc = Hexagon::S2_setbit_i;
break;
case ISD::XOR:
case ISD::FNEG:
BitOpc = Hexagon::S2_togglebit_i;
break;
}
SDNode *Result;
// Get the right SDVal for the opcode.
SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
N->getOperand(0), SDVal);
} else {
// 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
EVT SubValueVT;
if (ValueVT == MVT::i64)
SubValueVT = MVT::i32;
else
SubValueVT = MVT::f32;
SDNode *Reg = N->getOperand(0).getNode();
SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
dl, MVT::i64);
SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
MVT::i32);
SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
MVT::i32);
SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
MVT::i32, SDValue(Reg, 0));
SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
MVT::i32, SDValue(Reg, 0));
// Clear/set/toggle hi or lo registers depending on the bit position.
if (SubValueVT != MVT::f32 && BitPos < 32) {
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
SubregLO, SDVal);
const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
SDValue(Result0, 0), SubregLoIdx };
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
dl, ValueVT, Ops);
} else {
if (Opc != ISD::FABS && Opc != ISD::FNEG)
SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
SubregHI, SDVal);
const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
SubregLO, SubregLoIdx };
Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
dl, ValueVT, Ops);
}
}
ReplaceNode(N, Result);
}
void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
MachineFrameInfo *MFI = MF->getFrameInfo();
const HexagonFrameLowering *HFI = HST->getFrameLowering();
int FX = cast<FrameIndexSDNode>(N)->getIndex();
unsigned StkA = HFI->getStackAlignment();
unsigned MaxA = MFI->getMaxAlignment();
SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
SDLoc DL(N);
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
SDNode *R = 0;
// Use TFR_FI when:
// - the object is fixed, or
// - there are no objects with higher-than-default alignment, or
// - there are no dynamically allocated objects.
// Otherwise, use TFR_FIA.
if (FX < 0 || MaxA <= StkA || !MFI->hasVarSizedObjects()) {
R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
} else {
auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
unsigned AR = HMFI.getStackAlignBaseVReg();
SDValue CH = CurDAG->getEntryNode();
SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
}
ReplaceNode(N, R);
}
void HexagonDAGToDAGISel::SelectBitcast(SDNode *N) {
EVT SVT = N->getOperand(0).getValueType();
EVT DVT = N->getValueType(0);
if (!SVT.isVector() || !DVT.isVector() ||
SVT.getVectorElementType() == MVT::i1 ||
DVT.getVectorElementType() == MVT::i1 ||
SVT.getSizeInBits() != DVT.getSizeInBits()) {
SelectCode(N);
return;
}
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N,0), N->getOperand(0));
CurDAG->RemoveDeadNode(N);
}
void HexagonDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return; // Already selected.
}
switch (N->getOpcode()) {
case ISD::Constant:
SelectConstant(N);
return;
case ISD::ConstantFP:
SelectConstantFP(N);
return;
case ISD::FrameIndex:
SelectFrameIndex(N);
return;
case ISD::ADD:
SelectAdd(N);
return;
case ISD::BITCAST:
SelectBitcast(N);
return;
case ISD::SHL:
SelectSHL(N);
return;
case ISD::LOAD:
SelectLoad(N);
return;
case ISD::STORE:
SelectStore(N);
return;
case ISD::MUL:
SelectMul(N);
return;
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::FABS:
case ISD::FNEG:
SelectBitOp(N);
return;
case ISD::ZERO_EXTEND:
SelectZeroExtend(N);
return;
case ISD::INTRINSIC_W_CHAIN:
SelectIntrinsicWChain(N);
return;
case ISD::INTRINSIC_WO_CHAIN:
SelectIntrinsicWOChain(N);
return;
}
SelectCode(N);
}
bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) {
SDValue Inp = Op, Res;
switch (ConstraintID) {
default:
return true;
case InlineAsm::Constraint_i:
case InlineAsm::Constraint_o: // Offsetable.
case InlineAsm::Constraint_v: // Not offsetable.
case InlineAsm::Constraint_m: // Memory.
if (SelectAddrFI(Inp, Res))
OutOps.push_back(Res);
else
OutOps.push_back(Inp);
break;
}
OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
return false;
}
void HexagonDAGToDAGISel::PreprocessISelDAG() {
SelectionDAG &DAG = *CurDAG;
std::vector<SDNode*> Nodes;
for (SDNode &Node : DAG.allnodes())
Nodes.push_back(&Node);
// Simplify: (or (select c x 0) z) -> (select c (or x z) z)
// (or (select c 0 y) z) -> (select c z (or y z))
// This may not be the right thing for all targets, so do it here.
for (auto I : Nodes) {
if (I->getOpcode() != ISD::OR)
continue;
auto IsZero = [] (const SDValue &V) -> bool {
if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
return SC->isNullValue();
return false;
};
auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
if (Op.getOpcode() != ISD::SELECT)
return false;
return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
};
SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
EVT VT = I->getValueType(0);
bool SelN0 = IsSelect0(N0);
SDValue SOp = SelN0 ? N0 : N1;
SDValue VOp = SelN0 ? N1 : N0;
if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
SDValue SC = SOp.getOperand(0);
SDValue SX = SOp.getOperand(1);
SDValue SY = SOp.getOperand(2);
SDLoc DLS = SOp;
if (IsZero(SY)) {
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
} else if (IsZero(SX)) {
SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
DAG.ReplaceAllUsesWith(I, NewSel.getNode());
}
}
}
// Transform: (store ch addr (add x (add (shl y c) e)))
// to: (store ch addr (add x (shl (add y d) c))),
// where e = (shl d c) for some integer d.
// The purpose of this is to enable generation of loads/stores with
// shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
// value c must be 0, 1 or 2.
for (auto I : Nodes) {
if (I->getOpcode() != ISD::STORE)
continue;
// I matched: (store ch addr Off)
SDValue Off = I->getOperand(2);
// Off needs to match: (add x (add (shl y c) (shl d c))))
if (Off.getOpcode() != ISD::ADD)
continue;
// Off matched: (add x T0)
SDValue T0 = Off.getOperand(1);
// T0 needs to match: (add T1 T2):
if (T0.getOpcode() != ISD::ADD)
continue;
// T0 matched: (add T1 T2)
SDValue T1 = T0.getOperand(0);
SDValue T2 = T0.getOperand(1);
// T1 needs to match: (shl y c)
if (T1.getOpcode() != ISD::SHL)
continue;
SDValue C = T1.getOperand(1);
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
if (CN == nullptr)
continue;
unsigned CV = CN->getZExtValue();
if (CV > 2)
continue;
// T2 needs to match e, where e = (shl d c) for some d.
ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
if (EN == nullptr)
continue;
unsigned EV = EN->getZExtValue();
if (EV % (1 << CV) != 0)
continue;
unsigned DV = EV / (1 << CV);
// Replace T0 with: (shl (add y d) c)
SDLoc DL = SDLoc(I);
EVT VT = T0.getValueType();
SDValue D = DAG.getConstant(DV, DL, VT);
// NewAdd = (add y d)
SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
// NewShl = (shl NewAdd c)
SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
ReplaceNode(T0.getNode(), NewShl.getNode());
}
}
void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
auto &HFI = *HST.getFrameLowering();
if (!HFI.needsAligna(*MF))
return;
MachineFrameInfo *MFI = MF->getFrameInfo();
MachineBasicBlock *EntryBB = &MF->front();
unsigned AR = FuncInfo->CreateReg(MVT::i32);
unsigned MaxA = MFI->getMaxAlignment();
BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
.addImm(MaxA);
MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
}
// Match a frame index that can be used in an addressing mode.
bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
if (N.getOpcode() != ISD::FrameIndex)
return false;
auto &HFI = *HST->getFrameLowering();
MachineFrameInfo *MFI = MF->getFrameInfo();
int FX = cast<FrameIndexSDNode>(N)->getIndex();
if (!MFI->isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
return false;
R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
return true;
}
inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
return SelectGlobalAddress(N, R, false);
}
inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
return SelectGlobalAddress(N, R, true);
}
bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
bool UseGP) {
switch (N.getOpcode()) {
case ISD::ADD: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
unsigned GAOpc = N0.getOpcode();
if (UseGP && GAOpc != HexagonISD::CONST32_GP)
return false;
if (!UseGP && GAOpc != HexagonISD::CONST32)
return false;
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
SDValue Addr = N0.getOperand(0);
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
if (GA->getOpcode() == ISD::TargetGlobalAddress) {
uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
N.getValueType(), NewOff);
return true;
}
}
}
break;
}
case HexagonISD::CONST32:
// The operand(0) of CONST32 is TargetGlobalAddress, which is what we
// want in the instruction.
if (!UseGP)
R = N.getOperand(0);
return !UseGP;
case HexagonISD::CONST32_GP:
if (UseGP)
R = N.getOperand(0);
return UseGP;
default:
return false;
}
return false;
}
bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
unsigned FromBits, SDValue &Src) {
unsigned Opc = Val.getOpcode();
switch (Opc) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: {
SDValue const &Op0 = Val.getOperand(0);
EVT T = Op0.getValueType();
if (T.isInteger() && T.getSizeInBits() == FromBits) {
Src = Op0;
return true;
}
break;
}
case ISD::SIGN_EXTEND_INREG:
case ISD::AssertSext:
case ISD::AssertZext:
if (Val.getOperand(0).getValueType().isInteger()) {
VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
if (T->getVT().getSizeInBits() == FromBits) {
Src = Val.getOperand(0);
return true;
}
}
break;
case ISD::AND: {
// Check if this is an AND with "FromBits" of lower bits set to 1.
uint64_t FromMask = (1 << FromBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if (C->getZExtValue() == FromMask) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if (C->getZExtValue() == FromMask) {
Src = Val.getOperand(0);
return true;
}
}
break;
}
case ISD::OR:
case ISD::XOR: {
// OR/XOR with the lower "FromBits" bits set to 0.
uint64_t FromMask = (1 << FromBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if ((C->getZExtValue() & FromMask) == 0) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if ((C->getZExtValue() & FromMask) == 0) {
Src = Val.getOperand(0);
return true;
}
}
}
default:
break;
}
return false;
}
bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
return N->getAlignment() >= N->getMemoryVT().getStoreSize();
}