llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp

2900 lines
102 KiB
C++

//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#endif
#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;
SITargetLowering::SITargetLowering(TargetMachine &TM,
const AMDGPUSubtarget &STI)
: AMDGPUTargetLowering(TM, STI) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties(STI.getRegisterInfo());
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
setOperationAction(ISD::ADD, MVT::i32, Legal);
setOperationAction(ISD::ADDC, MVT::i32, Legal);
setOperationAction(ISD::ADDE, MVT::i32, Legal);
setOperationAction(ISD::SUBC, MVT::i32, Legal);
setOperationAction(ISD::SUBE, MVT::i32, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Promote);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
for (MVT VT : MVT::integer_valuetypes()) {
if (VT == MVT::i64)
continue;
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
}
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
}
for (MVT VT : MVT::fp_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v2i64, Promote);
AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
// These should use UDIVREM, so set them to expand
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch(Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
case ISD::SCALAR_TO_VECTOR:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
// Most operations are naturally 32-bit vector operations. We only support
// load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
}
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FDIV, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f64, Custom);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SMIN);
setTargetDAGCombine(ISD::SMAX);
setTargetDAGCombine(ISD::UMIN);
setTargetDAGCombine(ISD::UMAX);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::UINT_TO_FP);
// All memory operations. Some folding on the pointer operand is done to help
// matching the constant offsets in the addressing modes.
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ATOMIC_LOAD);
setTargetDAGCombine(ISD::ATOMIC_STORE);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
setTargetDAGCombine(ISD::ATOMIC_SWAP);
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
setSchedulingPreference(Sched::RegPressure);
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
EVT) const {
// SI has some legal vector types, but no legal vector operations. Say no
// shuffles are legal in order to prefer scalarizing some vector operations.
return false;
}
bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
// Flat instructions do not have offsets, and only have the register
// address.
return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
}
bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
// MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
// additionally can do r + r + i with addr64. 32-bit has more addressing
// mode options. Depending on the resource constant, it can also do
// (i64 r0) + (i32 r1) * (i14 i).
//
// Private arrays end up using a scratch buffer most of the time, so also
// assume those use MUBUF instructions. Scratch loads / stores are currently
// implemented as mubuf instructions with offen bit set, so slightly
// different than the normal addr64.
if (!isUInt<12>(AM.BaseOffs))
return false;
// FIXME: Since we can split immediate into soffset and immediate offset,
// would it make sense to allow any immediate?
switch (AM.Scale) {
case 0: // r + i or just i, depending on HasBaseReg.
return true;
case 1:
return true; // We have r + r or r + i.
case 2:
if (AM.HasBaseReg) {
// Reject 2 * r + r.
return false;
}
// Allow 2 * r as r + r
// Or 2 * r + i is allowed as r + r + i.
return true;
default: // Don't allow n * r
return false;
}
}
bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
// Assume the we will use FLAT for all global memory accesses
// on VI.
// FIXME: This assumption is currently wrong. On VI we still use
// MUBUF instructions for the r + i addressing mode. As currently
// implemented, the MUBUF instructions only work on buffer < 4GB.
// It may be possible to support > 4GB buffers with MUBUF instructions,
// by setting the stride value in the resource descriptor which would
// increase the size limit to (stride * 4GB). However, this is risky,
// because it has never been validated.
return isLegalFlatAddressingMode(AM);
}
return isLegalMUBUFAddressingMode(AM);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// If the offset isn't a multiple of 4, it probably isn't going to be
// correctly aligned.
if (AM.BaseOffs % 4 != 0)
return isLegalMUBUFAddressingMode(AM);
// There are no SMRD extloads, so if we have to do a small type access we
// will use a MUBUF load.
// FIXME?: We also need to do this if unaligned, but we don't know the
// alignment here.
if (DL.getTypeStoreSize(Ty) < 4)
return isLegalMUBUFAddressingMode(AM);
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// SMRD instructions have an 8-bit, dword offset on SI.
if (!isUInt<8>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
// On CI+, this can also be a 32-bit literal constant offset. If it fits
// in 8-bits, it can use a smaller encoding.
if (!isUInt<32>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
// On VI, these use the SMEM format and the offset is 20-bit in bytes.
if (!isUInt<20>(AM.BaseOffs))
return false;
} else
llvm_unreachable("unhandled generation");
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
case AMDGPUAS::PRIVATE_ADDRESS:
case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
return isLegalMUBUFAddressingMode(AM);
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// Basic, single offset DS instructions allow a 16-bit unsigned immediate
// field.
// XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
// an 8-bit dword offset but we don't know the alignment here.
if (!isUInt<16>(AM.BaseOffs))
return false;
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
case AMDGPUAS::FLAT_ADDRESS:
return isLegalFlatAddressingMode(AM);
default:
llvm_unreachable("unhandled address space");
}
}
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
unsigned Align,
bool *IsFast) const {
if (IsFast)
*IsFast = false;
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
if (!VT.isSimple() || VT == MVT::Other)
return false;
// TODO - CI+ supports unaligned memory accesses, but this requires driver
// support.
// XXX - The only mention I see of this in the ISA manual is for LDS direct
// reads the "byte address and must be dword aligned". Is it also true for the
// normal loads and stores?
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
// with adjacent offsets.
bool AlignedBy4 = (Align % 4 == 0);
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4;
}
// Smaller than dword value must be aligned.
// FIXME: This should be allowed on CI+
if (VT.bitsLT(MVT::i32))
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = true;
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign, bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
// FIXME: Should account for address space here.
// The default fallback uses the private pointer size as a guess for a type to
// use. Make sure we switch these to 64-bit accesses.
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
return MVT::v4i32;
if (Size >= 8 && DstAlign >= 4)
return MVT::v2i32;
// Use the default.
return MVT::Other;
}
static bool isFlatGlobalAddrSpace(unsigned AS) {
return AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS;
}
bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
}
bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
const Value *Ptr = MemNode->getMemOperand()->getValue();
// UndefValue means this is a load of a kernel input. These are uniform.
// Sometimes LDS instructions have constant pointers
if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
isa<GlobalValue>(Ptr))
return true;
const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
return I && I->getMetadata("amdgpu.uniform");
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
return TII->isInlineConstant(Imm);
}
bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
// SimplifySetCC uses this function to determine whether or not it should
// create setcc with i1 operands. We don't have instructions for i1 setcc.
if (VT == MVT::i1 && Op == ISD::SETCC)
return false;
return TargetLowering::isTypeDesirableForOp(Op, VT);
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
SDLoc SL, SDValue Chain,
unsigned Offset, bool Signed) const {
const DataLayout &DL = DAG.getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(Offset, SL, PtrVT));
SDValue PtrOffset = DAG.getUNDEF(PtrVT);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
unsigned Align = DL.getABITypeAlignment(Ty);
ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
if (MemVT.isFloatingPoint())
ExtTy = ISD::EXTLOAD;
return DAG.getLoad(ISD::UNINDEXED, ExtTy,
VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
false, // isVolatile
true, // isNonTemporal
true, // isInvariant
Align); // Alignment
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
if (Subtarget->isAmdHsaOS() && Info->getShaderType() != ShaderType::COMPUTE) {
const Function *Fn = MF.getFunction();
DiagnosticInfoUnsupported NoGraphicsHSA(
*Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
DAG.getContext()->diagnose(NoGraphicsHSA);
return SDValue();
}
// FIXME: We currently assume all calling conventions are kernels.
SmallVector<ISD::InputArg, 16> Splits;
BitVector Skipped(Ins.size());
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
!Arg.Flags.isByVal() && PSInputNum <= 15) {
if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
// We can safely skip PS inputs
Skipped.set(i);
++PSInputNum;
continue;
}
Info->markPSInputAllocated(PSInputNum);
if (Arg.Used)
Info->PSInputEna |= 1 << PSInputNum;
++PSInputNum;
}
// Second split vertices into their elements
if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eight.
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else if (Info->getShaderType() != ShaderType::COMPUTE) {
Splits.push_back(Arg);
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
//
// Check PSInputAddr instead of PSInputEna. The idea is that if the user set
// PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (Info->getShaderType() == ShaderType::PIXEL &&
((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 &&
Info->isPSInputAllocated(11)))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->PSInputEna |= 1;
}
if (Info->getShaderType() == ShaderType::COMPUTE) {
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
Splits);
}
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info->hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info->hasDispatchPtr()) {
unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info->hasKernargSegmentPtr()) {
unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(InputPtrReg);
}
AnalyzeFormalArguments(CCInfo, Splits);
SmallVector<SDValue, 16> Chains;
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Skipped[i]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
MVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
VA.getLocMemOffset();
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
Offset, Ins[i].Flags.isSExt());
Chains.push_back(Arg.getValue(1));
auto *ParamTy =
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
// On SI local pointers are just offsets into LDS, so they are always
// less than 16-bits. On CI and newer they could potentially be
// real pointers, so we can't guarantee their size.
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
DAG.getValueType(MVT::i16));
}
InVals.push_back(Arg);
Info->ABIArgOffset = Offset + MemVT.getStoreSize();
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
InVals.push_back(Copy);
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
Regs.push_back(Copy);
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
Regs.append(NumElements, DAG.getUNDEF(VT));
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
continue;
}
InVals.push_back(Val);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
// Start adding system SGPRs.
if (Info->hasWorkGroupIDX()) {
unsigned Reg = Info->addWorkGroupIDX();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
} else
llvm_unreachable("work group id x is always enabled");
if (Info->hasWorkGroupIDY()) {
unsigned Reg = Info->addWorkGroupIDY();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupIDZ()) {
unsigned Reg = Info->addWorkGroupIDZ();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupInfo()) {
unsigned Reg = Info->addWorkGroupInfo();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasPrivateSegmentWaveByteOffset()) {
// Scratch wave offset passed in system SGPR.
unsigned PrivateSegmentWaveByteOffsetReg
= Info->addPrivateSegmentWaveByteOffset();
MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
}
// Now that we've figured out where the scratch register inputs are, see if
// should reserve the arguments and use them directly.
bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
if (ST.isAmdHsaOS()) {
// TODO: Assume we will spill without optimizations.
if (HasStackObjects) {
// If we have stack objects, we unquestionably need the private buffer
// resource. For the HSA ABI, this will be the first 4 user SGPR
// inputs. We can reserve those and use them directly.
unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
Info->setScratchRSrcReg(PrivateSegmentBufferReg);
unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
} else {
unsigned ReservedBufferReg
= TRI->reservedPrivateSegmentBufferReg(MF);
unsigned ReservedOffsetReg
= TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
// We tentatively reserve the last registers (skipping the last two
// which may contain VCC). After register allocation, we'll replace
// these with the ones immediately after those which were really
// allocated. In the prologue copies will be inserted from the argument
// to these reserved registers.
Info->setScratchRSrcReg(ReservedBufferReg);
Info->setScratchWaveOffsetReg(ReservedOffsetReg);
}
} else {
unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
// Without HSA, relocations are used for the scratch pointer and the
// buffer resource setup is always inserted in the prologue. Scratch wave
// offset is still in an input SGPR.
Info->setScratchRSrcReg(ReservedBufferReg);
if (HasStackObjects) {
unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
} else {
unsigned ReservedOffsetReg
= TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
Info->setScratchWaveOffsetReg(ReservedOffsetReg);
}
}
if (Info->hasWorkItemIDX()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
} else
llvm_unreachable("workitem id x should always be enabled");
if (Info->hasWorkItemIDY()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkItemIDZ()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Chains.empty())
return Chain;
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
SDValue SITargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (Info->getShaderType() == ShaderType::COMPUTE)
return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
OutVals, DL, DAG);
Info->setIfReturnsVoid(Outs.size() == 0);
SmallVector<ISD::OutputArg, 48> Splits;
SmallVector<SDValue, 48> SplitVals;
// Split vectors into their elements.
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
const ISD::OutputArg &Out = Outs[i];
if (Out.VT.isVector()) {
MVT VT = Out.VT.getVectorElementType();
ISD::OutputArg NewOut = Out;
NewOut.Flags.setSplit();
NewOut.VT = VT;
// We want the original number of vector elements here, e.g.
// three or five, not four or eight.
unsigned NumElements = Out.ArgVT.getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
DAG.getConstant(j, DL, MVT::i32));
SplitVals.push_back(Elem);
Splits.push_back(NewOut);
NewOut.PartOffset += NewOut.VT.getStoreSize();
}
} else {
SplitVals.push_back(OutVals[i]);
Splits.push_back(Out);
}
}
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 48> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
AnalyzeReturn(CCInfo, Splits);
SDValue Flag;
SmallVector<SDValue, 48> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = SplitVals[realRVLocIdx];
// Copied from other backends.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, RetOps);
}
unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("m0", AMDGPU::M0)
.Case("exec", AMDGPU::EXEC)
.Case("exec_lo", AMDGPU::EXEC_LO)
.Case("exec_hi", AMDGPU::EXEC_HI)
.Case("flat_scratch", AMDGPU::FLAT_SCR)
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
.Default(AMDGPU::NoRegister);
if (Reg == AMDGPU::NoRegister) {
report_fatal_error(Twine("invalid register name \""
+ StringRef(RegName) + "\"."));
}
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
report_fatal_error(Twine("invalid register \""
+ StringRef(RegName) + "\" for subtarget."));
}
switch (Reg) {
case AMDGPU::M0:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
if (VT.getSizeInBits() == 32)
return Reg;
break;
case AMDGPU::EXEC:
case AMDGPU::FLAT_SCR:
if (VT.getSizeInBits() == 64)
return Reg;
break;
default:
llvm_unreachable("missing register type checking");
}
report_fatal_error(Twine("invalid type for register \""
+ StringRef(RegName) + "\"."));
}
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
switch (MI->getOpcode()) {
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::BRANCH:
return BB;
}
return BB;
}
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
// This currently forces unfolding various combinations of fsub into fma with
// free fneg'd operands. As long as we have fast FMA (controlled by
// isFMAFasterThanFMulAndFAdd), we should perform these.
// When fma is quarter rate, for f64 where add / sub are at best half rate,
// most of these combines appear to be cycle neutral but save on instruction
// count / code size.
return true;
}
EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
return MVT::i32;
}
// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
// This is as fast on some subtargets. However, we always have full rate f32
// mad available which returns the same result as the separate operations
// which we should prefer over fma. We can't use this if we want to support
// denormals, so only report this in these cases.
return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
case MVT::f64:
return true;
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return LowerGlobalAddress(MFI, Op, DAG);
}
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FINode->getIndex();
// A FrameIndex node represents a 32-bit offset into scratch memory. If
// the high bit of a frame index offset were to be set, this would mean
// that it represented an offset of ~2GB * 64 = ~128GB from the start of the
// scratch buffer, with 64 being the number of threads per wave.
//
// If we know the machine uses less than 128GB of scratch, then we can
// amrk the high bit of the FrameIndex node as known zero,
// which is important, because it means in most situations we can
// prove that values derived from FrameIndex nodes are non-negative.
// This enables us to take advantage of more addressing modes when
// accessing scratch buffers, since for scratch reads/writes, the register
// offset must always be positive.
SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
if (Subtarget->enableHugeScratchBuffer())
return TFI;
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31)));
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SDNode *SetCC = Intr;
assert(SetCC->getConstantOperandVal(1) == 1);
assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE);
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
// Build the result and
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
Ops.append(Intr->op_begin() + 1, Intr->op_end());
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res), Ops).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
BR = NewBR.getNode();
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
SDLoc DL(GSD);
const GlobalValue *GV = GSD->getGlobal();
MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA);
}
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
SDValue V) const {
// We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
// so we will end up with redundant moves to m0.
//
// We can't use S_MOV_B32, because there is no way to specify m0 as the
// destination register.
//
// We have to use them both. Machine cse will combine all the S_MOV_B32
// instructions and the register coalescer eliminate the extra copies.
SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V);
return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32),
SDValue(M0, 0), SDValue()); // Glue
// A Null SDValue creates
// a glue result.
}
SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
SDValue Op,
MVT VT,
unsigned Offset) const {
SDLoc SL(Op);
SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
DAG.getEntryNode(), Offset, false);
// The local size values will have the hi 16-bits as zero.
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
DAG.getValueType(VT));
}
static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, EVT VT) {
DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
"non-hsa intrinsic with hsa target");
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto MFI = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI =
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// TODO: Should this propagate fast-math-flags?
switch (IntrinsicID) {
case Intrinsic::amdgcn_dispatch_ptr:
if (!Subtarget->isAmdHsaOS()) {
DiagnosticInfoUnsupported BadIntrin(
*MF.getFunction(), "unsupported hsa intrinsic without hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT);
case Intrinsic::amdgcn_rcp:
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq:
case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_clamped:
case AMDGPUIntrinsic::AMDGPU_rsq_clamped: { // Legacy name
if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
Type *Type = VT.getTypeForEVT(*DAG.getContext());
APFloat Max = APFloat::getLargest(Type->getFltSemantics());
APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
DAG.getConstantFP(Max, DL, VT));
return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
DAG.getConstantFP(Min, DL, VT));
}
case Intrinsic::r600_read_ngroups_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_X, false);
case Intrinsic::r600_read_ngroups_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Y, false);
case Intrinsic::r600_read_ngroups_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Z, false);
case Intrinsic::r600_read_global_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
case Intrinsic::r600_read_global_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
case Intrinsic::r600_read_global_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
case Intrinsic::r600_read_local_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_X);
case Intrinsic::r600_read_local_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Y);
case Intrinsic::r600_read_local_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Z);
case Intrinsic::amdgcn_read_workdim:
case AMDGPUIntrinsic::AMDGPU_read_workdim: // Legacy name.
// Really only 2 bits.
return lowerImplicitZextParam(DAG, Op, MVT::i8,
getImplicitParameterOffset(MFI, GRID_DIM));
case Intrinsic::amdgcn_workgroup_id_x:
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
case Intrinsic::amdgcn_workgroup_id_y:
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
case Intrinsic::amdgcn_workgroup_id_z:
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
case AMDGPUIntrinsic::SI_load_const: {
SDValue Ops[] = {
Op.getOperand(1),
Op.getOperand(2)
};
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
Op->getVTList(), Ops, VT, MMO);
}
case AMDGPUIntrinsic::SI_vs_load_input:
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::SI_fs_constant: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
DAG.getConstant(2, DL, MVT::i32), // P0
Op.getOperand(1), Op.getOperand(2), Glue);
}
case AMDGPUIntrinsic::SI_packf16:
if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
return DAG.getUNDEF(MVT::i32);
return Op;
case AMDGPUIntrinsic::SI_fs_interp: {
SDValue IJ = Op.getOperand(4);
SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
DAG.getConstant(0, DL, MVT::i32));
SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
DAG.getConstant(1, DL, MVT::i32));
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
SDValue Glue = M0.getValue(1);
SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
DAG.getVTList(MVT::f32, MVT::Glue),
I, Op.getOperand(1), Op.getOperand(2), Glue);
Glue = SDValue(P1.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
Op.getOperand(1), Op.getOperand(2), Glue);
}
case Intrinsic::amdgcn_interp_p1: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Glue);
}
case Intrinsic::amdgcn_interp_p2: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
SDValue Glue = SDValue(M0.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
Glue);
}
case Intrinsic::amdgcn_ldexp:
return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_class:
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_fmas:
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_div_fixup:
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_trig_preop:
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_scale: {
// 3rd parameter required to be a constant.
const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
if (!Param)
return DAG.getUNDEF(VT);
// Translate to the operands expected by the machine instruction. The
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
// Note this order is opposite of the machine instruction's operations,
// which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
// intrinsic has the numerator as the first operand to match a normal
// division operation.
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
Denominator, Numerator);
}
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
default:
return AMDGPUTargetLowering::LowerOperation(Op, DAG);
}
}
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::SI_sendmsg: {
Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
SDValue Glue = Chain.getValue(1);
return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
Op.getOperand(2), Glue);
}
case AMDGPUIntrinsic::SI_tbuffer_store: {
SDValue Ops[] = {
Chain,
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10),
Op.getOperand(11),
Op.getOperand(12),
Op.getOperand(13),
Op.getOperand(14)
};
EVT VT = Op.getOperand(3).getValueType();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOStore,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
Op->getVTList(), Ops, VT, MMO);
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT MemVT = Load->getMemoryVT();
if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
assert(MemVT == MVT::i1 && "Only i1 non-extloads expected");
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, MVT::i8, MMO);
SDValue Ops[] = {
DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (!MemVT.isVector())
return SDValue();
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
unsigned NumElements = MemVT.getVectorNumElements();
assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
switch (Load->getAddressSpace()) {
case AMDGPUAS::CONSTANT_ADDRESS:
if (isMemOpUniform(Load))
return SDValue();
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requires ments as global and private
// loads.
//
// Fall-through
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::PRIVATE_ADDRESS:
if (NumElements >= 8)
return SplitVectorLoad(Op, DAG);
// v4 loads are supported for private and global memory.
return SDValue();
case AMDGPUAS::LOCAL_ADDRESS:
// If properly aligned, if we split we might be able to use ds_read_b64.
return SplitVectorLoad(Op, DAG);
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
// 1.0 / sqrt(x) -> rsq(x)
//
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
if (RHS.getOpcode() == ISD::FSQRT)
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
}
if (Unsafe) {
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDNodeFlags Flags;
Flags.setUnsafeAlgebra(true);
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
}
return SDValue();
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = LowerFastFDIV(Op, DAG))
return FastLowered;
// This uses v_rcp_f32 which does not handle denormals. Let this hit a
// selection error for now rather than do something incorrect.
if (Subtarget->hasFP32Denormals())
return SDValue();
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
const APFloat K0Val(BitsToFloat(0x6f800000));
const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
// TODO: Should this propagate fast-math-flags?
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
if (DAG.getTarget().Options.UnsafeFPMath)
return LowerFastFDIV(Op, DAG);
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
NegDivScale0, Mul, DivScale1);
SDValue Scale;
if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
// Figure out if the scale to use for div_fmas.
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
SDValue Scale0Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
SDValue Scale1Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
} else {
Scale = DivScale1.getValue(1);
}
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
Fma4, Fma3, Mul, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1) {
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
}
assert(Store->getValue().getValueType().getScalarType() == MVT::i32);
unsigned NElts = VT.getVectorNumElements();
unsigned AS = Store->getAddressSpace();
if (AS == AMDGPUAS::LOCAL_ADDRESS) {
// If properly aligned, if we split we might be able to use ds_write_b64.
return SplitVectorStore(Op, DAG);
}
if (AS == AMDGPUAS::PRIVATE_ADDRESS && NElts > 4)
return ScalarizeVectorStore(Op, DAG);
// These stores are legal. private, global and flat.
if (NElts >= 8)
return SplitVectorStore(Op, DAG);
return SDValue();
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
// TODO: Should this propagate fast-math-flags?
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
DAG.getNode(ISD::FMUL, DL, VT, Arg,
DAG.getConstantFP(0.5/M_PI, DL,
VT)));
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
default:
llvm_unreachable("Wrong trig opcode");
}
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
// We are primarily trying to catch operations on illegal vector types
// before they are expanded.
// For scalars, we can use the more flexible method of checking masked bits
// after legalization.
if (!DCI.isBeforeLegalize() ||
!SrcVT.isVector() ||
SrcVT.getVectorElementType() != MVT::i8) {
return SDValue();
}
assert(DCI.isBeforeLegalize() && "Unexpected legal type");
// Weird sized vectors are a pain to handle, but we know 3 is really the same
// size as 4.
unsigned NElts = SrcVT.getVectorNumElements();
if (!SrcVT.isSimple() && NElts != 3)
return SDValue();
// Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
// prevent a mess from expanding to v4i32 and repacking.
if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
LoadSDNode *Load = cast<LoadSDNode>(Src);
unsigned AS = Load->getAddressSpace();
unsigned Align = Load->getAlignment();
Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
// Don't try to replace the load if we have to expand it due to alignment
// problems. Otherwise we will end up scalarizing the load, and trying to
// repack into the vector for no real reason.
if (Align < ABIAlignment &&
!allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
return SDValue();
}
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
Load->getChain(),
Load->getBasePtr(),
LoadVT,
Load->getMemOperand());
// Make sure successors of the original load stay after it by updating
// them to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
SmallVector<SDValue, 4> Elts;
if (RegVT.isVector())
DAG.ExtractVectorElements(NewLoad, Elts);
else
Elts.push_back(NewLoad);
SmallVector<SDValue, 4> Ops;
unsigned EltIdx = 0;
for (SDValue Elt : Elts) {
unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
for (unsigned I = 0; I < ComponentsInElt; ++I) {
unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
DCI.AddToWorklist(Cvt.getNode());
Ops.push_back(Cvt);
}
++EltIdx;
}
assert(Ops.size() == NElts);
return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
}
return SDValue();
}
/// \brief Return true if the given offset Size in bytes can be folded into
/// the immediate offsets of a memory instruction for the given address space.
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
const AMDGPUSubtarget &STI) {
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
// MUBUF instructions a 12-bit offset in bytes.
return isUInt<12>(OffsetSize);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// SMRD instructions have an 8-bit offset in dwords on SI and
// a 20-bit offset in bytes on VI.
if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return isUInt<20>(OffsetSize);
else
return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
}
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// The single offset versions have a 16-bit offset in bytes.
return isUInt<16>(OffsetSize);
}
case AMDGPUAS::PRIVATE_ADDRESS:
// Indirect register addressing does not use any offsets.
default:
return 0;
}
}
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
unsigned AddrSpace,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getOpcode() != ISD::ADD)
return SDValue();
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
if (!CN1)
return SDValue();
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!CAdd)
return SDValue();
// If the resulting offset is too large, we can't fold it into the addressing
// mode offset.
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
}
SDValue SITargetLowering::performAndCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.isBeforeLegalize())
return SDValue();
if (SDValue Base = AMDGPUTargetLowering::performAndCombine(N, DCI))
return Base;
SelectionDAG &DAG = DCI.DAG;
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::SETCC &&
RHS.getOpcode() == ISD::SETCC) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
SDValue X = LHS.getOperand(0);
SDValue Y = RHS.getOperand(0);
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
return SDValue();
if (LCC == ISD::SETO) {
if (X != LHS.getOperand(1))
return SDValue();
if (RCC == ISD::SETUNE) {
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
if (!C1 || !C1->isInfinity() || C1->isNegative())
return SDValue();
const uint32_t Mask = SIInstrFlags::N_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::P_SUBNORMAL |
SIInstrFlags::P_NORMAL;
static_assert(((~(SIInstrFlags::S_NAN |
SIInstrFlags::Q_NAN |
SIInstrFlags::N_INFINITY |
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
"mask not equal");
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
X, DAG.getConstant(Mask, DL, MVT::i32));
}
}
}
return SDValue();
}
SDValue SITargetLowering::performOrCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
SDValue Src = LHS.getOperand(0);
if (Src != RHS.getOperand(0))
return SDValue();
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!CLHS || !CRHS)
return SDValue();
// Only 10 bits are used.
static const uint32_t MaxMask = 0x3ff;
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
Src, DAG.getConstant(NewMask, DL, MVT::i32));
}
return SDValue();
}
SDValue SITargetLowering::performClassCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Mask = N->getOperand(1);
// fp_class x, 0 -> false
if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
if (CMask->isNullValue())
return DAG.getConstant(0, SDLoc(N), MVT::i1);
}
return SDValue();
}
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
return AMDGPUISD::FMAX3;
case ISD::SMAX:
return AMDGPUISD::SMAX3;
case ISD::UMAX:
return AMDGPUISD::UMAX3;
case ISD::FMINNUM:
return AMDGPUISD::FMIN3;
case ISD::SMIN:
return AMDGPUISD::SMIN3;
case ISD::UMIN:
return AMDGPUISD::UMIN3;
default:
llvm_unreachable("Not a min/max opcode");
}
}
static SDValue performIntMed3ImmCombine(SelectionDAG &DAG,
SDLoc SL,
SDValue Op0,
SDValue Op1,
bool Signed) {
ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
if (!K1)
return SDValue();
ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
if (Signed) {
if (K0->getAPIntValue().sge(K1->getAPIntValue()))
return SDValue();
} else {
if (K0->getAPIntValue().uge(K1->getAPIntValue()))
return SDValue();
}
EVT VT = K0->getValueType(0);
return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
}
static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
return true;
return DAG.isKnownNeverNaN(Op);
}
static SDValue performFPMed3ImmCombine(SelectionDAG &DAG,
SDLoc SL,
SDValue Op0,
SDValue Op1) {
ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
if (!K1)
return SDValue();
ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
// Ordered >= (although NaN inputs should have folded away by now).
APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
if (Cmp == APFloat::cmpGreaterThan)
return SDValue();
// This isn't safe with signaling NaNs because in IEEE mode, min/max on a
// signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
// give the other result, which is different from med3 with a NaN input.
SDValue Var = Op0.getOperand(0);
if (!isKnownNeverSNan(DAG, Var))
return SDValue();
return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
Var, SDValue(K0, 0), SDValue(K1, 0));
}
SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Only do this if the inner op has one use since this will just increases
// register pressure for no benefit.
if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
// max(max(a, b), c) -> max3(a, b, c)
// min(min(a, b), c) -> min3(a, b, c)
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0.getOperand(0),
Op0.getOperand(1),
Op1);
}
// Try commuted.
// max(a, max(b, c)) -> max3(a, b, c)
// min(a, min(b, c)) -> min3(a, b, c)
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0,
Op1.getOperand(0),
Op1.getOperand(1));
}
}
// min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
return Med3;
}
if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
return Med3;
}
// fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
(Opc == AMDGPUISD::FMIN_LEGACY &&
Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
return Res;
}
return SDValue();
}
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = LHS.getValueType();
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Match isinf pattern
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if (!CRHS)
return SDValue();
const APFloat &APF = CRHS->getValueAPF();
if (APF.isInfinity() && !APF.isNegative()) {
unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(Mask, SL, MVT::i32));
}
}
return SDValue();
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch (N->getOpcode()) {
default:
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
case ISD::SETCC:
return performSetCCCombine(N, DCI);
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN:
case AMDGPUISD::FMIN_LEGACY:
case AMDGPUISD::FMAX_LEGACY: {
if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
N->getValueType(0) != MVT::f64 &&
getTargetMachine().getOptLevel() > CodeGenOpt::None)
return performMinMaxCombine(N, DCI);
break;
}
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3: {
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
}
case ISD::FADD: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
if (VT != MVT::f32)
break;
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (Subtarget->hasFP32Denormals())
break;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// These should really be instruction patterns, but writing patterns with
// source modiifiers is a pain.
// fadd (fadd (a, a), b) -> mad 2.0, a, b
if (LHS.getOpcode() == ISD::FADD) {
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
}
}
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
if (RHS.getOpcode() == ISD::FADD) {
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
}
}
return SDValue();
}
case ISD::FSUB: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
// Try to get the fneg to fold into the source modifier. This undoes generic
// DAG combines and folds them into the mad.
//
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (VT == MVT::f32 &&
!Subtarget->hasFP32Denormals()) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::FADD) {
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
}
}
if (RHS.getOpcode() == ISD::FADD) {
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
}
}
return SDValue();
}
break;
}
case ISD::LOAD:
case ISD::STORE:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
if (DCI.isBeforeLegalize())
break;
MemSDNode *MemNode = cast<MemSDNode>(N);
SDValue Ptr = MemNode->getBasePtr();
// TODO: We could also do this for multiplies.
unsigned AS = MemNode->getAddressSpace();
if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
if (NewPtr) {
SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
}
}
break;
}
case ISD::AND:
return performAndCombine(N, DCI);
case ISD::OR:
return performOrCombine(N, DCI);
case AMDGPUISD::FP_CLASS:
return performClassCombine(N, DCI);
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (TII->isInlineConstant(Node->getAPIntValue()))
return 0;
uint64_t Val = Node->getZExtValue();
return isUInt<32>(Val) ? Val : -1;
}
if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
return 0;
if (Node->getValueType(0) == MVT::f32)
return FloatToBits(Node->getValueAPF().convertToFloat());
return -1;
}
return -1;
}
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Lane = 0;
unsigned OldDmask = Node->getConstantOperandVal(0);
unsigned NewDmask = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
assert(Dmask);
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
static bool isFrameIndexOp(SDValue Op) {
if (Op.getOpcode() == ISD::AssertZext)
Op = Op.getOperand(0);
return isa<FrameIndexSDNode>(Op);
}
/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
if (!isFrameIndexOp(Node->getOperand(i))) {
Ops.push_back(Node->getOperand(i));
continue;
}
SDLoc DL(Node);
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
Node->getOperand(i).getValueType(),
Node->getOperand(i)), 0));
}
DAG.UpdateNodeOperands(Node, Ops);
}
/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
if (TII->isMIMG(Node->getMachineOpcode()))
adjustWritemask(Node, DAG);
if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
legalizeTargetIndependentNode(Node, DAG);
return Node;
}
return Node;
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
if (TII->isVOP3(MI->getOpcode())) {
// Make sure constant bus requirements are respected.
TII->legalizeOperandsVOP3(MRI, MI);
return;
}
if (TII->isMIMG(*MI)) {
unsigned VReg = MI->getOperand(0).getReg();
unsigned Writemask = MI->getOperand(1).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VGPR_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
MI->setDesc(TII->get(NewOpcode));
MRI.setRegClass(VReg, RC);
return;
}
// Replace unused atomics with the no return version.
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
if (NoRetAtomicOp != -1) {
if (!Node->hasAnyUseOfValue(0)) {
MI->setDesc(TII->get(NoRetAtomicOp));
MI->RemoveOperand(0);
}
return;
}
}
static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
SDLoc DL,
SDValue Ptr) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
const SDValue Ops0[] = {
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
};
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::v2i32, Ops0), 0);
// Combine the constants and the pointer.
const SDValue Ops1[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
SubRegHi,
DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
}
/// \brief Return a resource descriptor with the 'Add TID' bit enabled
/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
/// of the resource descriptor) to create an offset, which is added to
/// the resource pointer.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
SDLoc DL,
SDValue Ptr,
uint32_t RsrcDword1,
uint64_t RsrcDword2And3) const {
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
if (RsrcDword1) {
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
DAG.getConstant(RsrcDword1, DL, MVT::i32)),
0);
}
SDValue DataLo = buildSMovImm32(DAG, DL,
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
PtrLo,
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
PtrHi,
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
DataLo,
DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
DataHi,
DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
cast<RegisterSDNode>(VReg)->getReg(), VT);
}
//===----------------------------------------------------------------------===//
// SI Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 's':
case 'r':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
case 64:
return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
case 128:
return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
case 256:
return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
}
case 'v':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
case 64:
return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
case 96:
return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
case 128:
return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
case 256:
return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
case 512:
return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
}
}
}
if (Constraint.size() > 1) {
const TargetRegisterClass *RC = nullptr;
if (Constraint[1] == 'v') {
RC = &AMDGPU::VGPR_32RegClass;
} else if (Constraint[1] == 's') {
RC = &AMDGPU::SGPR_32RegClass;
}
if (RC) {
uint32_t Idx;
bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
if (!Failed && Idx < RC->getNumRegs())
return std::make_pair(RC->getRegister(Idx), RC);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
SITargetLowering::ConstraintType
SITargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 's':
case 'v':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}