llvm-project/llvm/lib/Target/X86/X86VZeroUpper.cpp

354 lines
12 KiB
C++

//===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the pass which inserts x86 AVX vzeroupper instructions
// before calls to SSE encoded functions. This avoids transition latency
// penalty when transferring control between AVX encoded instructions and old
// SSE encoding mode.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "x86-vzeroupper"
STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
namespace {
class VZeroUpperInserter : public MachineFunctionPass {
public:
VZeroUpperInserter() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
private:
void processBasicBlock(MachineBasicBlock &MBB);
void insertVZeroUpper(MachineBasicBlock::iterator I,
MachineBasicBlock &MBB);
void addDirtySuccessor(MachineBasicBlock &MBB);
using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
static const char* getBlockExitStateName(BlockExitState ST);
// Core algorithm state:
// BlockState - Each block is either:
// - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
// vzeroupper instructions in this block.
// - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
// block that will ensure that YMM/ZMM is clean on exit.
// - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
// subsequent vzeroupper in the block clears it.
//
// AddedToDirtySuccessors - This flag is raised when a block is added to the
// DirtySuccessors list to ensure that it's not
// added multiple times.
//
// FirstUnguardedCall - Records the location of the first unguarded call in
// each basic block that may need to be guarded by a
// vzeroupper. We won't know whether it actually needs
// to be guarded until we discover a predecessor that
// is DIRTY_OUT.
struct BlockState {
BlockExitState ExitState = PASS_THROUGH;
bool AddedToDirtySuccessors = false;
MachineBasicBlock::iterator FirstUnguardedCall;
BlockState() = default;
};
using BlockStateMap = SmallVector<BlockState, 8>;
using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
BlockStateMap BlockStates;
DirtySuccessorsWorkList DirtySuccessors;
bool EverMadeChange;
bool IsX86INTR;
const TargetInstrInfo *TII;
static char ID;
};
} // end anonymous namespace
char VZeroUpperInserter::ID = 0;
FunctionPass *llvm::createX86IssueVZeroUpperPass() {
return new VZeroUpperInserter();
}
#ifndef NDEBUG
const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
switch (ST) {
case PASS_THROUGH: return "Pass-through";
case EXITS_DIRTY: return "Exits-dirty";
case EXITS_CLEAN: return "Exits-clean";
}
llvm_unreachable("Invalid block exit state.");
}
#endif
/// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
/// Thus, there is no need to check for Y/ZMM16 and above.
static bool isYmmOrZmmReg(unsigned Reg) {
return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
(Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
}
static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
for (std::pair<unsigned, unsigned> LI : MRI.liveins())
if (isYmmOrZmmReg(LI.first))
return true;
return false;
}
static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
if (!MO.clobbersPhysReg(reg))
return false;
}
for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
if (!MO.clobbersPhysReg(reg))
return false;
}
return true;
}
static bool hasYmmOrZmmReg(MachineInstr &MI) {
for (const MachineOperand &MO : MI.operands()) {
if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
return true;
if (!MO.isReg())
continue;
if (MO.isDebug())
continue;
if (isYmmOrZmmReg(MO.getReg()))
return true;
}
return false;
}
/// Check if given call instruction has a RegMask operand.
static bool callHasRegMask(MachineInstr &MI) {
assert(MI.isCall() && "Can only be called on call instructions.");
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask())
return true;
}
return false;
}
/// Insert a vzeroupper instruction before I.
void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
MachineBasicBlock &MBB) {
DebugLoc dl = I->getDebugLoc();
BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
++NumVZU;
EverMadeChange = true;
}
/// Add MBB to the DirtySuccessors list if it hasn't already been added.
void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
DirtySuccessors.push_back(&MBB);
BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
}
}
/// Loop over all of the instructions in the basic block, inserting vzeroupper
/// instructions before function calls.
void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
// Start by assuming that the block is PASS_THROUGH which implies no unguarded
// calls.
BlockExitState CurState = PASS_THROUGH;
BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
for (MachineInstr &MI : MBB) {
bool IsCall = MI.isCall();
bool IsReturn = MI.isReturn();
bool IsControlFlow = IsCall || IsReturn;
// No need for vzeroupper before iret in interrupt handler function,
// epilogue will restore YMM/ZMM registers if needed.
if (IsX86INTR && IsReturn)
continue;
// An existing VZERO* instruction resets the state.
if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
CurState = EXITS_CLEAN;
continue;
}
// Shortcut: don't need to check regular instructions in dirty state.
if (!IsControlFlow && CurState == EXITS_DIRTY)
continue;
if (hasYmmOrZmmReg(MI)) {
// We found a ymm/zmm-using instruction; this could be an AVX/AVX512
// instruction, or it could be control flow.
CurState = EXITS_DIRTY;
continue;
}
// Check for control-flow out of the current function (which might
// indirectly execute SSE instructions).
if (!IsControlFlow)
continue;
// If the call has no RegMask, skip it as well. It usually happens on
// helper function calls (such as '_chkstk', '_ftol2') where standard
// calling convention is not used (RegMask is not used to mark register
// clobbered and register usage (def/imp-def/use) is well-defined and
// explicitly specified.
if (IsCall && !callHasRegMask(MI))
continue;
// The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
// registers. In addition, the processor changes back to Clean state, after
// which execution of SSE instructions or AVX instructions has no transition
// penalty. Add the VZEROUPPER instruction before any function call/return
// that might execute SSE code.
// FIXME: In some cases, we may want to move the VZEROUPPER into a
// predecessor block.
if (CurState == EXITS_DIRTY) {
// After the inserted VZEROUPPER the state becomes clean again, but
// other YMM/ZMM may appear before other subsequent calls or even before
// the end of the BB.
insertVZeroUpper(MI, MBB);
CurState = EXITS_CLEAN;
} else if (CurState == PASS_THROUGH) {
// If this block is currently in pass-through state and we encounter a
// call then whether we need a vzeroupper or not depends on whether this
// block has successors that exit dirty. Record the location of the call,
// and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
// It will be inserted later if necessary.
BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
CurState = EXITS_CLEAN;
}
}
DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
<< getBlockExitStateName(CurState) << '\n');
if (CurState == EXITS_DIRTY)
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
SE = MBB.succ_end();
SI != SE; ++SI)
addDirtySuccessor(**SI);
BlockStates[MBB.getNumber()].ExitState = CurState;
}
/// Loop over all of the basic blocks, inserting vzeroupper instructions before
/// function calls.
bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
if (!ST.hasAVX() || ST.hasFastPartialYMMorZMMWrite())
return false;
TII = ST.getInstrInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
EverMadeChange = false;
IsX86INTR = MF.getFunction()->getCallingConv() == CallingConv::X86_INTR;
bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
// Fast check: if the function doesn't use any ymm/zmm registers, we don't
// need to insert any VZEROUPPER instructions. This is constant-time, so it
// is cheap in the common case of no ymm/zmm use.
bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
const TargetRegisterClass *RCs[2] = {&X86::VR256RegClass, &X86::VR512RegClass};
for (auto *RC : RCs) {
if (!YmmOrZmmUsed) {
for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
i++) {
if (!MRI.reg_nodbg_empty(*i)) {
YmmOrZmmUsed = true;
break;
}
}
}
}
if (!YmmOrZmmUsed) {
return false;
}
assert(BlockStates.empty() && DirtySuccessors.empty() &&
"X86VZeroUpper state should be clear");
BlockStates.resize(MF.getNumBlockIDs());
// Process all blocks. This will compute block exit states, record the first
// unguarded call in each block, and add successors of dirty blocks to the
// DirtySuccessors list.
for (MachineBasicBlock &MBB : MF)
processBasicBlock(MBB);
// If any YMM/ZMM regs are live-in to this function, add the entry block to
// the DirtySuccessors list
if (FnHasLiveInYmmOrZmm)
addDirtySuccessor(MF.front());
// Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
// vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
// through PASS_THROUGH blocks.
while (!DirtySuccessors.empty()) {
MachineBasicBlock &MBB = *DirtySuccessors.back();
DirtySuccessors.pop_back();
BlockState &BBState = BlockStates[MBB.getNumber()];
// MBB is a successor of a dirty block, so its first call needs to be
// guarded.
if (BBState.FirstUnguardedCall != MBB.end())
insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
// If this successor was a pass-through block, then it is now dirty. Its
// successors need to be added to the worklist (if they haven't been
// already).
if (BBState.ExitState == PASS_THROUGH) {
DEBUG(dbgs() << "MBB #" << MBB.getNumber()
<< " was Pass-through, is now Dirty-out.\n");
for (MachineBasicBlock *Succ : MBB.successors())
addDirtySuccessor(*Succ);
}
}
BlockStates.clear();
return EverMadeChange;
}