forked from OSchip/llvm-project
697 lines
24 KiB
C++
697 lines
24 KiB
C++
//===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the checking of insns inside a bundle according to the
|
|
// packet constraint rules of the Hexagon ISA.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/HexagonMCChecker.h"
|
|
#include "Hexagon.h"
|
|
#include "MCTargetDesc/HexagonBaseInfo.h"
|
|
#include "MCTargetDesc/HexagonMCInstrInfo.h"
|
|
#include "MCTargetDesc/HexagonMCShuffler.h"
|
|
#include "MCTargetDesc/HexagonMCTargetDesc.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include <cassert>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore,
|
|
cl::Hidden, cl::desc("Relax checks of new-value validity"));
|
|
|
|
const HexagonMCChecker::PredSense
|
|
HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
|
|
|
|
void HexagonMCChecker::init() {
|
|
// Initialize read-only registers set.
|
|
ReadOnly.insert(Hexagon::PC);
|
|
ReadOnly.insert(Hexagon::C9_8);
|
|
|
|
// Figure out the loop-registers definitions.
|
|
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
|
|
Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
|
|
Defs[Hexagon::LC0].insert(Unconditional);
|
|
}
|
|
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
|
|
Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
|
|
Defs[Hexagon::LC1].insert(Unconditional);
|
|
}
|
|
|
|
if (HexagonMCInstrInfo::isBundle(MCB))
|
|
// Unfurl a bundle.
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
MCInst const &Inst = *I.getInst();
|
|
if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
|
|
init(*Inst.getOperand(0).getInst());
|
|
init(*Inst.getOperand(1).getInst());
|
|
} else
|
|
init(Inst);
|
|
}
|
|
else
|
|
init(MCB);
|
|
}
|
|
|
|
void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg,
|
|
bool &isTrue) {
|
|
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
|
|
// Note an used predicate register.
|
|
PredReg = R;
|
|
isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
|
|
|
|
// Note use of new predicate register.
|
|
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
|
|
NewPreds.insert(PredReg);
|
|
} else
|
|
// Note register use. Super-registers are not tracked directly,
|
|
// but their components.
|
|
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
|
|
SRI.isValid(); ++SRI)
|
|
if (!MCSubRegIterator(*SRI, &RI).isValid())
|
|
// Skip super-registers used indirectly.
|
|
Uses.insert(*SRI);
|
|
}
|
|
|
|
void HexagonMCChecker::init(MCInst const &MCI) {
|
|
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
|
|
unsigned PredReg = Hexagon::NoRegister;
|
|
bool isTrue = false;
|
|
|
|
// Get used registers.
|
|
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
|
|
if (MCI.getOperand(i).isReg())
|
|
initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue);
|
|
for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i)
|
|
initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue);
|
|
|
|
// Get implicit register definitions.
|
|
if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
|
|
for (; *ImpDef; ++ImpDef) {
|
|
unsigned R = *ImpDef;
|
|
|
|
if (Hexagon::R31 != R && MCID.isCall())
|
|
// Any register other than the LR and the PC are actually volatile ones
|
|
// as defined by the ABI, not modified implicitly by the call insn.
|
|
continue;
|
|
if (Hexagon::PC == R)
|
|
// Branches are the only insns that can change the PC,
|
|
// otherwise a read-only register.
|
|
continue;
|
|
|
|
if (Hexagon::USR_OVF == R)
|
|
// Many insns change the USR implicitly, but only one or another flag.
|
|
// The instruction table models the USR.OVF flag, which can be
|
|
// implicitly modified more than once, but cannot be modified in the
|
|
// same packet with an instruction that modifies is explicitly. Deal
|
|
// with such situations individually.
|
|
SoftDefs.insert(R);
|
|
else if (isPredicateRegister(R) &&
|
|
HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
|
|
// Include implicit late predicates.
|
|
LatePreds.insert(R);
|
|
else
|
|
Defs[R].insert(PredSense(PredReg, isTrue));
|
|
}
|
|
|
|
// Figure out explicit register definitions.
|
|
for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
|
|
unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister;
|
|
// USR has subregisters (while C8 does not for technical reasons), so
|
|
// reset R to USR, since we know how to handle multiple defs of USR,
|
|
// taking into account its subregisters.
|
|
if (R == Hexagon::C8)
|
|
R = Hexagon::USR;
|
|
|
|
// Note register definitions, direct ones as well as indirect side-effects.
|
|
// Super-registers are not tracked directly, but their components.
|
|
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
|
|
SRI.isValid(); ++SRI) {
|
|
if (MCSubRegIterator(*SRI, &RI).isValid())
|
|
// Skip super-registers defined indirectly.
|
|
continue;
|
|
|
|
if (R == *SRI) {
|
|
if (S == R)
|
|
// Avoid scoring the defined register multiple times.
|
|
continue;
|
|
else
|
|
// Note that the defined register has already been scored.
|
|
S = R;
|
|
}
|
|
|
|
if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
|
|
// P3:0 is a special case, since multiple predicate register definitions
|
|
// in a packet is allowed as the equivalent of their logical "and".
|
|
// Only an explicit definition of P3:0 is noted as such; if a
|
|
// side-effect, then note as a soft definition.
|
|
SoftDefs.insert(*SRI);
|
|
else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) &&
|
|
isPredicateRegister(*SRI))
|
|
// Some insns produce predicates too late to be used in the same packet.
|
|
LatePreds.insert(*SRI);
|
|
else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) ==
|
|
HexagonII::TypeCVI_VM_TMP_LD)
|
|
// Temporary loads should be used in the same packet, but don't commit
|
|
// results, so it should be disregarded if another insn changes the same
|
|
// register.
|
|
// TODO: relies on the impossibility of a current and a temporary loads
|
|
// in the same packet.
|
|
TmpDefs.insert(*SRI);
|
|
else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI))
|
|
// vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
|
|
// destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
|
|
Uses.insert(*SRI);
|
|
else
|
|
Defs[*SRI].insert(PredSense(PredReg, isTrue));
|
|
}
|
|
}
|
|
|
|
// Figure out register definitions that produce new values.
|
|
if (HexagonMCInstrInfo::hasNewValue(MCII, MCI)) {
|
|
unsigned R = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
|
|
|
|
if (HexagonMCInstrInfo::isCompound(MCII, MCI))
|
|
compoundRegisterMap(R); // Compound insns have a limited register range.
|
|
|
|
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
|
|
SRI.isValid(); ++SRI)
|
|
if (!MCSubRegIterator(*SRI, &RI).isValid())
|
|
// No super-registers defined indirectly.
|
|
NewDefs[*SRI].push_back(NewSense::Def(
|
|
PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
|
|
HexagonMCInstrInfo::isFloat(MCII, MCI)));
|
|
|
|
// For fairly unique 2-dot-new producers, example:
|
|
// vdeal(V1, V9, R0) V1.new and V9.new can be used by consumers.
|
|
if (HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) {
|
|
unsigned R2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, MCI).getReg();
|
|
|
|
bool HasSubRegs = MCSubRegIterator(R2, &RI).isValid();
|
|
for (MCRegAliasIterator SRI(R2, &RI, !HasSubRegs); SRI.isValid(); ++SRI)
|
|
if (!MCSubRegIterator(*SRI, &RI).isValid())
|
|
NewDefs[*SRI].push_back(NewSense::Def(
|
|
PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
|
|
HexagonMCInstrInfo::isFloat(MCII, MCI)));
|
|
}
|
|
}
|
|
|
|
// Figure out definitions of new predicate registers.
|
|
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
|
|
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
|
|
if (MCI.getOperand(i).isReg()) {
|
|
unsigned P = MCI.getOperand(i).getReg();
|
|
|
|
if (isPredicateRegister(P))
|
|
NewPreds.insert(P);
|
|
}
|
|
|
|
// Figure out uses of new values.
|
|
if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) {
|
|
unsigned N = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
|
|
|
|
if (!MCSubRegIterator(N, &RI).isValid()) {
|
|
// Super-registers cannot use new values.
|
|
if (MCID.isBranch())
|
|
NewUses[N] = NewSense::Jmp(
|
|
HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNCJ);
|
|
else
|
|
NewUses[N] = NewSense::Use(
|
|
PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI));
|
|
}
|
|
}
|
|
}
|
|
|
|
HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII,
|
|
MCSubtargetInfo const &STI, MCInst &mcb,
|
|
MCRegisterInfo const &ri, bool ReportErrors)
|
|
: Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI),
|
|
ReportErrors(ReportErrors) {
|
|
init();
|
|
}
|
|
|
|
bool HexagonMCChecker::check(bool FullCheck) {
|
|
bool chkB = checkBranches();
|
|
bool chkP = checkPredicates();
|
|
bool chkNV = checkNewValues();
|
|
bool chkR = checkRegisters();
|
|
bool chkRRO = checkRegistersReadOnly();
|
|
bool chkELB = checkEndloopBranches();
|
|
checkRegisterCurDefs();
|
|
bool chkS = checkSolo();
|
|
bool chkSh = true;
|
|
if (FullCheck)
|
|
chkSh = checkShuffle();
|
|
bool chkSl = true;
|
|
if (FullCheck)
|
|
chkSl = checkSlots();
|
|
bool chkAXOK = checkAXOK();
|
|
bool chk = chkB && chkP && chkNV && chkR && chkRRO && chkELB && chkS &&
|
|
chkSh && chkSl && chkAXOK;
|
|
|
|
return chk;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkEndloopBranches() {
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
|
|
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
|
|
if (Desc.isBranch() || Desc.isCall()) {
|
|
auto Inner = HexagonMCInstrInfo::isInnerLoop(MCB);
|
|
if (Inner || HexagonMCInstrInfo::isOuterLoop(MCB)) {
|
|
reportError(I.getLoc(),
|
|
Twine("packet marked with `:endloop") +
|
|
(Inner ? "0" : "1") + "' " +
|
|
"cannot contain instructions that modify register " + "`" +
|
|
Twine(RI.getName(Hexagon::PC)) + "'");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isDuplexAGroup(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case Hexagon::SA1_addi:
|
|
case Hexagon::SA1_addrx:
|
|
case Hexagon::SA1_addsp:
|
|
case Hexagon::SA1_and1:
|
|
case Hexagon::SA1_clrf:
|
|
case Hexagon::SA1_clrfnew:
|
|
case Hexagon::SA1_clrt:
|
|
case Hexagon::SA1_clrtnew:
|
|
case Hexagon::SA1_cmpeqi:
|
|
case Hexagon::SA1_combine0i:
|
|
case Hexagon::SA1_combine1i:
|
|
case Hexagon::SA1_combine2i:
|
|
case Hexagon::SA1_combine3i:
|
|
case Hexagon::SA1_combinerz:
|
|
case Hexagon::SA1_combinezr:
|
|
case Hexagon::SA1_dec:
|
|
case Hexagon::SA1_inc:
|
|
case Hexagon::SA1_seti:
|
|
case Hexagon::SA1_setin1:
|
|
case Hexagon::SA1_sxtb:
|
|
case Hexagon::SA1_sxth:
|
|
case Hexagon::SA1_tfr:
|
|
case Hexagon::SA1_zxtb:
|
|
case Hexagon::SA1_zxth:
|
|
return true;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) {
|
|
unsigned Result = 0;
|
|
unsigned Type = HexagonMCInstrInfo::getType(MCII, ID);
|
|
if (Type == HexagonII::TypeDUPLEX) {
|
|
unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode();
|
|
unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode();
|
|
Result += !isDuplexAGroup(subInst0Opcode);
|
|
Result += !isDuplexAGroup(subInst1Opcode);
|
|
} else
|
|
Result +=
|
|
Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op &&
|
|
Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op &&
|
|
Type != HexagonII::TypeS_3op &&
|
|
(Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID));
|
|
return Result != 0;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkAXOK() {
|
|
MCInst const *HasSoloAXInst = nullptr;
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
|
|
if (HexagonMCInstrInfo::isSoloAX(MCII, I)) {
|
|
HasSoloAXInst = &I;
|
|
}
|
|
}
|
|
if (!HasSoloAXInst)
|
|
return true;
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
|
|
if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) {
|
|
reportError(
|
|
HasSoloAXInst->getLoc(),
|
|
Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE "
|
|
"instructions"));
|
|
reportError(I.getLoc(),
|
|
Twine("Not an ALU or non-FPU XTYPE instruction"));
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkSlots() {
|
|
unsigned slotsUsed = 0;
|
|
for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
MCInst const &MCI = *HMI.getInst();
|
|
if (HexagonMCInstrInfo::isImmext(MCI))
|
|
continue;
|
|
if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
|
|
slotsUsed += 2;
|
|
else
|
|
++slotsUsed;
|
|
}
|
|
|
|
if (slotsUsed > HEXAGON_PACKET_SIZE) {
|
|
reportError("invalid instruction packet: out of slots");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check legal use of branches.
|
|
bool HexagonMCChecker::checkBranches() {
|
|
if (HexagonMCInstrInfo::isBundle(MCB)) {
|
|
bool hasConditional = false;
|
|
unsigned Branches = 0, Conditional = HEXAGON_PRESHUFFLE_PACKET_SIZE,
|
|
Unconditional = HEXAGON_PRESHUFFLE_PACKET_SIZE;
|
|
|
|
for (unsigned i = HexagonMCInstrInfo::bundleInstructionsOffset;
|
|
i < MCB.size(); ++i) {
|
|
MCInst const &MCI = *MCB.begin()[i].getInst();
|
|
|
|
if (HexagonMCInstrInfo::isImmext(MCI))
|
|
continue;
|
|
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch() ||
|
|
HexagonMCInstrInfo::getDesc(MCII, MCI).isCall()) {
|
|
++Branches;
|
|
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) ||
|
|
HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) {
|
|
hasConditional = true;
|
|
Conditional = i; // Record the position of the conditional branch.
|
|
} else {
|
|
Unconditional = i; // Record the position of the unconditional branch.
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Branches > 1)
|
|
if (!hasConditional || Conditional > Unconditional) {
|
|
// Error out if more than one unconditional branch or
|
|
// the conditional branch appears after the unconditional one.
|
|
reportError(
|
|
"unconditional branch cannot precede another branch in packet");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check legal use of predicate registers.
|
|
bool HexagonMCChecker::checkPredicates() {
|
|
// Check for proper use of new predicate registers.
|
|
for (const auto &I : NewPreds) {
|
|
unsigned P = I;
|
|
|
|
if (!Defs.count(P) || LatePreds.count(P)) {
|
|
// Error out if the new predicate register is not defined,
|
|
// or defined "late"
|
|
// (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
|
|
reportErrorNewValue(P);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check for proper use of auto-anded of predicate registers.
|
|
for (const auto &I : LatePreds) {
|
|
unsigned P = I;
|
|
|
|
if (LatePreds.count(P) > 1 || Defs.count(P)) {
|
|
// Error out if predicate register defined "late" multiple times or
|
|
// defined late and regularly defined
|
|
// (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
|
|
reportErrorRegisters(P);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check legal use of new values.
|
|
bool HexagonMCChecker::checkNewValues() {
|
|
for (auto &I : NewUses) {
|
|
unsigned R = I.first;
|
|
NewSense &US = I.second;
|
|
|
|
if (!hasValidNewValueDef(US, NewDefs[R])) {
|
|
reportErrorNewValue(R);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkRegistersReadOnly() {
|
|
for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
MCInst const &Inst = *I.getInst();
|
|
unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs();
|
|
for (unsigned j = 0; j < Defs; ++j) {
|
|
MCOperand const &Operand = Inst.getOperand(j);
|
|
assert(Operand.isReg() && "Def is not a register");
|
|
unsigned Register = Operand.getReg();
|
|
if (ReadOnly.find(Register) != ReadOnly.end()) {
|
|
reportError(Inst.getLoc(), "Cannot write to read-only register `" +
|
|
Twine(RI.getName(Register)) + "'");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool HexagonMCChecker::registerUsed(unsigned Register) {
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB))
|
|
for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(),
|
|
n = I.getNumOperands();
|
|
j < n; ++j) {
|
|
MCOperand const &Operand = I.getOperand(j);
|
|
if (Operand.isReg() && Operand.getReg() == Register)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void HexagonMCChecker::checkRegisterCurDefs() {
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
|
|
if (HexagonMCInstrInfo::isCVINew(MCII, I) &&
|
|
HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) {
|
|
unsigned Register = I.getOperand(0).getReg();
|
|
if (!registerUsed(Register))
|
|
reportWarning("Register `" + Twine(RI.getName(Register)) +
|
|
"' used with `.cur' "
|
|
"but not used in the same packet");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for legal register uses and definitions.
|
|
bool HexagonMCChecker::checkRegisters() {
|
|
// Check for proper register definitions.
|
|
for (const auto &I : Defs) {
|
|
unsigned R = I.first;
|
|
|
|
if (isLoopRegister(R) && Defs.count(R) > 1 &&
|
|
(HexagonMCInstrInfo::isInnerLoop(MCB) ||
|
|
HexagonMCInstrInfo::isOuterLoop(MCB))) {
|
|
// Error out for definitions of loop registers at the end of a loop.
|
|
reportError("loop-setup and some branch instructions "
|
|
"cannot be in the same packet");
|
|
return false;
|
|
}
|
|
if (SoftDefs.count(R)) {
|
|
// Error out for explicit changes to registers also weakly defined
|
|
// (e.g., "{ usr = r0; r0 = sfadd(...) }").
|
|
unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
|
|
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
|
|
reportErrorRegisters(BadR);
|
|
return false;
|
|
}
|
|
if (!isPredicateRegister(R) && Defs[R].size() > 1) {
|
|
// Check for multiple register definitions.
|
|
PredSet &PM = Defs[R];
|
|
|
|
// Check for multiple unconditional register definitions.
|
|
if (PM.count(Unconditional)) {
|
|
// Error out on an unconditional change when there are any other
|
|
// changes, conditional or not.
|
|
unsigned UsrR = Hexagon::USR;
|
|
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
|
|
reportErrorRegisters(BadR);
|
|
return false;
|
|
}
|
|
// Check for multiple conditional register definitions.
|
|
for (const auto &J : PM) {
|
|
PredSense P = J;
|
|
|
|
// Check for multiple uses of the same condition.
|
|
if (PM.count(P) > 1) {
|
|
// Error out on conditional changes based on the same predicate
|
|
// (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
|
|
reportErrorRegisters(R);
|
|
return false;
|
|
}
|
|
// Check for the use of the complementary condition.
|
|
P.second = !P.second;
|
|
if (PM.count(P) && PM.size() > 2) {
|
|
// Error out on conditional changes based on the same predicate
|
|
// multiple times
|
|
// (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =...").
|
|
reportErrorRegisters(R);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for use of temporary definitions.
|
|
for (const auto &I : TmpDefs) {
|
|
unsigned R = I;
|
|
|
|
if (!Uses.count(R)) {
|
|
// special case for vhist
|
|
bool vHistFound = false;
|
|
for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) ==
|
|
HexagonII::TypeCVI_HIST) {
|
|
vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
|
|
break;
|
|
}
|
|
}
|
|
// Warn on an unused temporary definition.
|
|
if (!vHistFound) {
|
|
reportWarning("register `" + Twine(RI.getName(R)) +
|
|
"' used with `.tmp' but not used in the same packet");
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check for legal use of solo insns.
|
|
bool HexagonMCChecker::checkSolo() {
|
|
if (HexagonMCInstrInfo::bundleSize(MCB) > 1)
|
|
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
|
|
if (HexagonMCInstrInfo::isSolo(MCII, I)) {
|
|
reportError(I.getLoc(), "Instruction is marked `isSolo' and "
|
|
"cannot have other instructions in "
|
|
"the same packet");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkShuffle() {
|
|
HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB);
|
|
return MCSDX.check();
|
|
}
|
|
|
|
void HexagonMCChecker::compoundRegisterMap(unsigned &Register) {
|
|
switch (Register) {
|
|
default:
|
|
break;
|
|
case Hexagon::R15:
|
|
Register = Hexagon::R23;
|
|
break;
|
|
case Hexagon::R14:
|
|
Register = Hexagon::R22;
|
|
break;
|
|
case Hexagon::R13:
|
|
Register = Hexagon::R21;
|
|
break;
|
|
case Hexagon::R12:
|
|
Register = Hexagon::R20;
|
|
break;
|
|
case Hexagon::R11:
|
|
Register = Hexagon::R19;
|
|
break;
|
|
case Hexagon::R10:
|
|
Register = Hexagon::R18;
|
|
break;
|
|
case Hexagon::R9:
|
|
Register = Hexagon::R17;
|
|
break;
|
|
case Hexagon::R8:
|
|
Register = Hexagon::R16;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool HexagonMCChecker::hasValidNewValueDef(const NewSense &Use,
|
|
const NewSenseList &Defs) const {
|
|
bool Strict = !RelaxNVChecks;
|
|
|
|
for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
|
|
const NewSense &Def = Defs[i];
|
|
// NVJ cannot use a new FP value [7.6.1]
|
|
if (Use.IsNVJ && (Def.IsFloat || Def.PredReg != 0))
|
|
continue;
|
|
// If the definition was not predicated, then it does not matter if
|
|
// the use is.
|
|
if (Def.PredReg == 0)
|
|
return true;
|
|
// With the strict checks, both the definition and the use must be
|
|
// predicated on the same register and condition.
|
|
if (Strict) {
|
|
if (Def.PredReg == Use.PredReg && Def.Cond == Use.Cond)
|
|
return true;
|
|
} else {
|
|
// With the relaxed checks, if the definition was predicated, the only
|
|
// detectable violation is if the use is predicated on the opposing
|
|
// condition, otherwise, it's ok.
|
|
if (Def.PredReg != Use.PredReg || Def.Cond == Use.Cond)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void HexagonMCChecker::reportErrorRegisters(unsigned Register) {
|
|
reportError("register `" + Twine(RI.getName(Register)) +
|
|
"' modified more than once");
|
|
}
|
|
|
|
void HexagonMCChecker::reportErrorNewValue(unsigned Register) {
|
|
reportError("register `" + Twine(RI.getName(Register)) +
|
|
"' used with `.new' "
|
|
"but not validly modified in the same packet");
|
|
}
|
|
|
|
void HexagonMCChecker::reportError(Twine const &Msg) {
|
|
reportError(MCB.getLoc(), Msg);
|
|
}
|
|
|
|
void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) {
|
|
if (ReportErrors)
|
|
Context.reportError(Loc, Msg);
|
|
}
|
|
|
|
void HexagonMCChecker::reportWarning(Twine const &Msg) {
|
|
if (ReportErrors) {
|
|
auto SM = Context.getSourceManager();
|
|
if (SM)
|
|
SM->PrintMessage(MCB.getLoc(), SourceMgr::DK_Warning, Msg);
|
|
}
|
|
}
|