llvm-project/llvm/lib/Target/Hexagon/Disassembler/HexagonDisassembler.cpp

701 lines
28 KiB
C++

//===- HexagonDisassembler.cpp - Disassembler for Hexagon ISA -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-disassembler"
#include "Hexagon.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCChecker.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
using namespace llvm;
using namespace Hexagon;
using DecodeStatus = MCDisassembler::DecodeStatus;
namespace {
/// \brief Hexagon disassembler for all Hexagon platforms.
class HexagonDisassembler : public MCDisassembler {
public:
std::unique_ptr<MCInstrInfo const> const MCII;
std::unique_ptr<MCInst *> CurrentBundle;
HexagonDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
MCInstrInfo const *MCII)
: MCDisassembler(STI, Ctx), MCII(MCII), CurrentBundle(new MCInst *) {}
DecodeStatus getSingleInstruction(MCInst &Instr, MCInst &MCB,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream, raw_ostream &CStream,
bool &Complete) const;
DecodeStatus getInstruction(MCInst &Instr, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &VStream,
raw_ostream &CStream) const override;
void addSubinstOperands(MCInst *MI, unsigned opcode, unsigned inst) const;
};
} // end anonymous namespace
static uint32_t fullValue(MCInstrInfo const &MCII, MCInst &MCB, MCInst &MI,
int64_t Value) {
MCInst const *Extender = HexagonMCInstrInfo::extenderForIndex(
MCB, HexagonMCInstrInfo::bundleSize(MCB));
if (!Extender || MI.size() != HexagonMCInstrInfo::getExtendableOp(MCII, MI))
return Value;
unsigned Alignment = HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
uint32_t Lower6 = static_cast<uint32_t>(Value >> Alignment) & 0x3f;
int64_t Bits;
bool Success = Extender->getOperand(0).getExpr()->evaluateAsAbsolute(Bits);
assert(Success); (void)Success;
uint32_t Upper26 = static_cast<uint32_t>(Bits);
uint32_t Operand = Upper26 | Lower6;
return Operand;
}
static HexagonDisassembler const &disassembler(void const *Decoder) {
return *static_cast<HexagonDisassembler const *>(Decoder);
}
template <size_t T>
static void signedDecoder(MCInst &MI, unsigned tmp, const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
int64_t FullValue =
fullValue(*Disassembler.MCII, **Disassembler.CurrentBundle, MI,
SignExtend64<T>(tmp));
int64_t Extended = SignExtend64<32>(FullValue);
HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext());
}
// Forward declare these because the auto-generated code will reference them.
// Definitions are further down.
static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeGeneralSubRegsRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeHvxVRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus
DecodeGeneralDoubleLow8RegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address, const void *Decoder);
static DecodeStatus DecodeHvxWRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeHvxQRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder);
static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
uint64_t Address, const void *Decoder);
static DecodeStatus s32_0ImmDecoder(MCInst &MI, unsigned tmp,
uint64_t /*Address*/, const void *Decoder);
static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
const void *Decoder);
static DecodeStatus s4_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<4>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s29_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<14>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s8_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<8>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s4_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<7>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s31_1ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<12>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s3_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<3>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s30_2ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<13>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s6_0ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<6>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s6_3ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<9>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s4_1ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<5>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
static DecodeStatus s4_2ImmDecoder(MCInst &MI, unsigned tmp, uint64_t,
const void *Decoder) {
signedDecoder<6>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
#include "HexagonGenDisassemblerTables.inc"
static MCDisassembler *createHexagonDisassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
return new HexagonDisassembler(STI, Ctx, T.createMCInstrInfo());
}
extern "C" void LLVMInitializeHexagonDisassembler() {
TargetRegistry::RegisterMCDisassembler(getTheHexagonTarget(),
createHexagonDisassembler);
}
DecodeStatus HexagonDisassembler::getInstruction(MCInst &MI, uint64_t &Size,
ArrayRef<uint8_t> Bytes,
uint64_t Address,
raw_ostream &os,
raw_ostream &cs) const {
DecodeStatus Result = DecodeStatus::Success;
bool Complete = false;
Size = 0;
*CurrentBundle = &MI;
MI = HexagonMCInstrInfo::createBundle();
while (Result == Success && !Complete) {
if (Bytes.size() < HEXAGON_INSTR_SIZE)
return MCDisassembler::Fail;
MCInst *Inst = new (getContext()) MCInst;
Result = getSingleInstruction(*Inst, MI, Bytes, Address, os, cs, Complete);
MI.addOperand(MCOperand::createInst(Inst));
Size += HEXAGON_INSTR_SIZE;
Bytes = Bytes.slice(HEXAGON_INSTR_SIZE);
}
if (Result == MCDisassembler::Fail)
return Result;
if (Size > HEXAGON_MAX_PACKET_SIZE)
return MCDisassembler::Fail;
HexagonMCChecker Checker(getContext(), *MCII, STI, MI,
*getContext().getRegisterInfo(), false);
if (!Checker.check())
return MCDisassembler::Fail;
return MCDisassembler::Success;
}
static void adjustDuplex(MCInst &MI, MCContext &Context) {
switch (MI.getOpcode()) {
case Hexagon::SA1_setin1:
MI.insert(MI.begin() + 1,
MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
break;
case Hexagon::SA1_dec:
MI.insert(MI.begin() + 2,
MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
break;
default:
break;
}
}
DecodeStatus HexagonDisassembler::getSingleInstruction(
MCInst &MI, MCInst &MCB, ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &os, raw_ostream &cs, bool &Complete) const {
assert(Bytes.size() >= HEXAGON_INSTR_SIZE);
uint32_t Instruction = support::endian::read32le(Bytes.data());
auto BundleSize = HexagonMCInstrInfo::bundleSize(MCB);
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_LOOP_END) {
if (BundleSize == 0)
HexagonMCInstrInfo::setInnerLoop(MCB);
else if (BundleSize == 1)
HexagonMCInstrInfo::setOuterLoop(MCB);
else
return DecodeStatus::Fail;
}
MCInst const *Extender = HexagonMCInstrInfo::extenderForIndex(
MCB, HexagonMCInstrInfo::bundleSize(MCB));
DecodeStatus Result = DecodeStatus::Fail;
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_DUPLEX) {
unsigned duplexIClass;
uint8_t const *DecodeLow, *DecodeHigh;
duplexIClass = ((Instruction >> 28) & 0xe) | ((Instruction >> 13) & 0x1);
switch (duplexIClass) {
default:
return MCDisassembler::Fail;
case 0:
DecodeLow = DecoderTableSUBINSN_L132;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 1:
DecodeLow = DecoderTableSUBINSN_L232;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 2:
DecodeLow = DecoderTableSUBINSN_L232;
DecodeHigh = DecoderTableSUBINSN_L232;
break;
case 3:
DecodeLow = DecoderTableSUBINSN_A32;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 4:
DecodeLow = DecoderTableSUBINSN_L132;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 5:
DecodeLow = DecoderTableSUBINSN_L232;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 6:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 7:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_A32;
break;
case 8:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 9:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_L232;
break;
case 10:
DecodeLow = DecoderTableSUBINSN_S132;
DecodeHigh = DecoderTableSUBINSN_S132;
break;
case 11:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_S132;
break;
case 12:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_L132;
break;
case 13:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_L232;
break;
case 14:
DecodeLow = DecoderTableSUBINSN_S232;
DecodeHigh = DecoderTableSUBINSN_S232;
break;
}
MI.setOpcode(Hexagon::DuplexIClass0 + duplexIClass);
MCInst *MILow = new (getContext()) MCInst;
MCInst *MIHigh = new (getContext()) MCInst;
Result = decodeInstruction(DecodeLow, *MILow, Instruction & 0x1fff, Address,
this, STI);
if (Result != DecodeStatus::Success)
return DecodeStatus::Fail;
adjustDuplex(*MILow, getContext());
Result = decodeInstruction(
DecodeHigh, *MIHigh, (Instruction >> 16) & 0x1fff, Address, this, STI);
if (Result != DecodeStatus::Success)
return DecodeStatus::Fail;
adjustDuplex(*MIHigh, getContext());
MCOperand OPLow = MCOperand::createInst(MILow);
MCOperand OPHigh = MCOperand::createInst(MIHigh);
MI.addOperand(OPLow);
MI.addOperand(OPHigh);
Complete = true;
} else {
if ((Instruction & HexagonII::INST_PARSE_MASK) ==
HexagonII::INST_PARSE_PACKET_END)
Complete = true;
if (Extender != nullptr)
Result = decodeInstruction(DecoderTableMustExtend32, MI, Instruction,
Address, this, STI);
if (Result != MCDisassembler::Success)
Result = decodeInstruction(DecoderTable32, MI, Instruction, Address, this,
STI);
if (Result != MCDisassembler::Success &&
STI.getFeatureBits()[Hexagon::ExtensionHVX])
Result = decodeInstruction(DecoderTableEXT_mmvec32, MI, Instruction,
Address, this, STI);
}
switch (MI.getOpcode()) {
case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
case Hexagon::J4_cmpeqn1_f_jumpnv_t:
case Hexagon::J4_cmpeqn1_fp0_jump_nt:
case Hexagon::J4_cmpeqn1_fp0_jump_t:
case Hexagon::J4_cmpeqn1_fp1_jump_nt:
case Hexagon::J4_cmpeqn1_fp1_jump_t:
case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
case Hexagon::J4_cmpeqn1_t_jumpnv_t:
case Hexagon::J4_cmpeqn1_tp0_jump_nt:
case Hexagon::J4_cmpeqn1_tp0_jump_t:
case Hexagon::J4_cmpeqn1_tp1_jump_nt:
case Hexagon::J4_cmpeqn1_tp1_jump_t:
case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
case Hexagon::J4_cmpgtn1_f_jumpnv_t:
case Hexagon::J4_cmpgtn1_fp0_jump_nt:
case Hexagon::J4_cmpgtn1_fp0_jump_t:
case Hexagon::J4_cmpgtn1_fp1_jump_nt:
case Hexagon::J4_cmpgtn1_fp1_jump_t:
case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
case Hexagon::J4_cmpgtn1_t_jumpnv_t:
case Hexagon::J4_cmpgtn1_tp0_jump_nt:
case Hexagon::J4_cmpgtn1_tp0_jump_t:
case Hexagon::J4_cmpgtn1_tp1_jump_nt:
case Hexagon::J4_cmpgtn1_tp1_jump_t:
MI.insert(MI.begin() + 1,
MCOperand::createExpr(MCConstantExpr::create(-1, getContext())));
break;
default:
break;
}
if (HexagonMCInstrInfo::isNewValue(*MCII, MI)) {
unsigned OpIndex = HexagonMCInstrInfo::getNewValueOp(*MCII, MI);
MCOperand &MCO = MI.getOperand(OpIndex);
assert(MCO.isReg() && "New value consumers must be registers");
unsigned Register =
getContext().getRegisterInfo()->getEncodingValue(MCO.getReg());
if ((Register & 0x6) == 0)
// HexagonPRM 10.11 Bit 1-2 == 0 is reserved
return MCDisassembler::Fail;
unsigned Lookback = (Register & 0x6) >> 1;
unsigned Offset = 1;
bool Vector = HexagonMCInstrInfo::isVector(*MCII, MI);
auto Instructions = HexagonMCInstrInfo::bundleInstructions(**CurrentBundle);
auto i = Instructions.end() - 1;
for (auto n = Instructions.begin() - 1;; --i, ++Offset) {
if (i == n)
// Couldn't find producer
return MCDisassembler::Fail;
if (Vector && !HexagonMCInstrInfo::isVector(*MCII, *i->getInst()))
// Skip scalars when calculating distances for vectors
++Lookback;
if (HexagonMCInstrInfo::isImmext(*i->getInst()))
++Lookback;
if (Offset == Lookback)
break;
}
auto const &Inst = *i->getInst();
bool SubregBit = (Register & 0x1) != 0;
if (SubregBit && HexagonMCInstrInfo::hasNewValue2(*MCII, Inst)) {
// If subreg bit is set we're selecting the second produced newvalue
unsigned Producer =
HexagonMCInstrInfo::getNewValueOperand2(*MCII, Inst).getReg();
assert(Producer != Hexagon::NoRegister);
MCO.setReg(Producer);
} else if (HexagonMCInstrInfo::hasNewValue(*MCII, Inst)) {
unsigned Producer =
HexagonMCInstrInfo::getNewValueOperand(*MCII, Inst).getReg();
if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
Producer = ((Producer - Hexagon::W0) << 1) + SubregBit + Hexagon::V0;
else if (SubregBit)
// Hexagon PRM 10.11 New-value operands
// Nt[0] is reserved and should always be encoded as zero.
return MCDisassembler::Fail;
assert(Producer != Hexagon::NoRegister);
MCO.setReg(Producer);
} else
return MCDisassembler::Fail;
}
if (Extender != nullptr) {
MCInst const &Inst = HexagonMCInstrInfo::isDuplex(*MCII, MI)
? *MI.getOperand(1).getInst()
: MI;
if (!HexagonMCInstrInfo::isExtendable(*MCII, Inst) &&
!HexagonMCInstrInfo::isExtended(*MCII, Inst))
return MCDisassembler::Fail;
}
return Result;
}
static DecodeStatus DecodeRegisterClass(MCInst &Inst, unsigned RegNo,
ArrayRef<MCPhysReg> Table) {
if (RegNo < Table.size()) {
Inst.addOperand(MCOperand::createReg(Table[RegNo]));
return MCDisassembler::Success;
}
return MCDisassembler::Fail;
}
static DecodeStatus DecodeIntRegsLow8RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
return DecodeIntRegsRegisterClass(Inst, RegNo, Address, Decoder);
}
static DecodeStatus DecodeIntRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t Address,
const void *Decoder) {
static const MCPhysReg IntRegDecoderTable[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
Hexagon::R5, Hexagon::R6, Hexagon::R7, Hexagon::R8, Hexagon::R9,
Hexagon::R10, Hexagon::R11, Hexagon::R12, Hexagon::R13, Hexagon::R14,
Hexagon::R15, Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23, Hexagon::R24,
Hexagon::R25, Hexagon::R26, Hexagon::R27, Hexagon::R28, Hexagon::R29,
Hexagon::R30, Hexagon::R31};
return DecodeRegisterClass(Inst, RegNo, IntRegDecoderTable);
}
static DecodeStatus DecodeGeneralSubRegsRegisterClass(MCInst &Inst,
unsigned RegNo,
uint64_t Address,
const void *Decoder) {
static const MCPhysReg GeneralSubRegDecoderTable[] = {
Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3,
Hexagon::R4, Hexagon::R5, Hexagon::R6, Hexagon::R7,
Hexagon::R16, Hexagon::R17, Hexagon::R18, Hexagon::R19,
Hexagon::R20, Hexagon::R21, Hexagon::R22, Hexagon::R23,
};
return DecodeRegisterClass(Inst, RegNo, GeneralSubRegDecoderTable);
}
static DecodeStatus DecodeHvxVRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxVRDecoderTable[] = {
Hexagon::V0, Hexagon::V1, Hexagon::V2, Hexagon::V3, Hexagon::V4,
Hexagon::V5, Hexagon::V6, Hexagon::V7, Hexagon::V8, Hexagon::V9,
Hexagon::V10, Hexagon::V11, Hexagon::V12, Hexagon::V13, Hexagon::V14,
Hexagon::V15, Hexagon::V16, Hexagon::V17, Hexagon::V18, Hexagon::V19,
Hexagon::V20, Hexagon::V21, Hexagon::V22, Hexagon::V23, Hexagon::V24,
Hexagon::V25, Hexagon::V26, Hexagon::V27, Hexagon::V28, Hexagon::V29,
Hexagon::V30, Hexagon::V31};
return DecodeRegisterClass(Inst, RegNo, HvxVRDecoderTable);
}
static DecodeStatus DecodeDoubleRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg DoubleRegDecoderTable[] = {
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
Hexagon::D4, Hexagon::D5, Hexagon::D6, Hexagon::D7,
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11,
Hexagon::D12, Hexagon::D13, Hexagon::D14, Hexagon::D15};
return DecodeRegisterClass(Inst, RegNo >> 1, DoubleRegDecoderTable);
}
static DecodeStatus DecodeGeneralDoubleLow8RegsRegisterClass(
MCInst &Inst, unsigned RegNo, uint64_t /*Address*/, const void *Decoder) {
static const MCPhysReg GeneralDoubleLow8RegDecoderTable[] = {
Hexagon::D0, Hexagon::D1, Hexagon::D2, Hexagon::D3,
Hexagon::D8, Hexagon::D9, Hexagon::D10, Hexagon::D11};
return DecodeRegisterClass(Inst, RegNo, GeneralDoubleLow8RegDecoderTable);
}
static DecodeStatus DecodeHvxWRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxWRDecoderTable[] = {
Hexagon::W0, Hexagon::W1, Hexagon::W2, Hexagon::W3,
Hexagon::W4, Hexagon::W5, Hexagon::W6, Hexagon::W7,
Hexagon::W8, Hexagon::W9, Hexagon::W10, Hexagon::W11,
Hexagon::W12, Hexagon::W13, Hexagon::W14, Hexagon::W15};
return (DecodeRegisterClass(Inst, RegNo >> 1, HvxWRDecoderTable));
}
static DecodeStatus DecodePredRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg PredRegDecoderTable[] = {Hexagon::P0, Hexagon::P1,
Hexagon::P2, Hexagon::P3};
return DecodeRegisterClass(Inst, RegNo, PredRegDecoderTable);
}
static DecodeStatus DecodeHvxQRRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
static const MCPhysReg HvxQRDecoderTable[] = {Hexagon::Q0, Hexagon::Q1,
Hexagon::Q2, Hexagon::Q3};
return DecodeRegisterClass(Inst, RegNo, HvxQRDecoderTable);
}
static DecodeStatus DecodeCtrRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
using namespace Hexagon;
static const MCPhysReg CtrlRegDecoderTable[] = {
/* 0 */ SA0, LC0, SA1, LC1,
/* 4 */ P3_0, C5, M0, M1,
/* 8 */ USR, PC, UGP, GP,
/* 12 */ CS0, CS1, UPCYCLELO, UPCYCLEHI,
/* 16 */ FRAMELIMIT, FRAMEKEY, PKTCOUNTLO, PKTCOUNTHI,
/* 20 */ 0, 0, 0, 0,
/* 24 */ 0, 0, 0, 0,
/* 28 */ 0, 0, UTIMERLO, UTIMERHI
};
if (RegNo >= array_lengthof(CtrlRegDecoderTable))
return MCDisassembler::Fail;
static_assert(NoRegister == 0, "Expecting NoRegister to be 0");
if (CtrlRegDecoderTable[RegNo] == NoRegister)
return MCDisassembler::Fail;
unsigned Register = CtrlRegDecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeCtrRegs64RegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
using namespace Hexagon;
static const MCPhysReg CtrlReg64DecoderTable[] = {
/* 0 */ C1_0, 0, C3_2, 0,
/* 4 */ C5_4, 0, C7_6, 0,
/* 8 */ C9_8, 0, C11_10, 0,
/* 12 */ CS, 0, UPCYCLE, 0,
/* 16 */ C17_16, 0, PKTCOUNT, 0,
/* 20 */ 0, 0, 0, 0,
/* 24 */ 0, 0, 0, 0,
/* 28 */ 0, 0, UTIMER, 0
};
if (RegNo >= array_lengthof(CtrlReg64DecoderTable))
return MCDisassembler::Fail;
static_assert(NoRegister == 0, "Expecting NoRegister to be 0");
if (CtrlReg64DecoderTable[RegNo] == NoRegister)
return MCDisassembler::Fail;
unsigned Register = CtrlReg64DecoderTable[RegNo];
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus DecodeModRegsRegisterClass(MCInst &Inst, unsigned RegNo,
uint64_t /*Address*/,
const void *Decoder) {
unsigned Register = 0;
switch (RegNo) {
case 0:
Register = Hexagon::M0;
break;
case 1:
Register = Hexagon::M1;
break;
default:
return MCDisassembler::Fail;
}
Inst.addOperand(MCOperand::createReg(Register));
return MCDisassembler::Success;
}
static DecodeStatus unsignedImmDecoder(MCInst &MI, unsigned tmp,
uint64_t /*Address*/,
const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
int64_t FullValue =
fullValue(*Disassembler.MCII, **Disassembler.CurrentBundle, MI, tmp);
assert(FullValue >= 0 && "Negative in unsigned decoder");
HexagonMCInstrInfo::addConstant(MI, FullValue, Disassembler.getContext());
return MCDisassembler::Success;
}
static DecodeStatus s32_0ImmDecoder(MCInst &MI, unsigned tmp,
uint64_t /*Address*/, const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI);
tmp = SignExtend64(tmp, Bits);
signedDecoder<32>(MI, tmp, Decoder);
return MCDisassembler::Success;
}
// custom decoder for various jump/call immediates
static DecodeStatus brtargetDecoder(MCInst &MI, unsigned tmp, uint64_t Address,
const void *Decoder) {
HexagonDisassembler const &Disassembler = disassembler(Decoder);
unsigned Bits = HexagonMCInstrInfo::getExtentBits(*Disassembler.MCII, MI);
// r13_2 is not extendable, so if there are no extent bits, it's r13_2
if (Bits == 0)
Bits = 15;
uint32_t FullValue =
fullValue(*Disassembler.MCII, **Disassembler.CurrentBundle, MI,
SignExtend64(tmp, Bits));
int64_t Extended = SignExtend64<32>(FullValue) + Address;
if (!Disassembler.tryAddingSymbolicOperand(MI, Extended, Address, true, 0, 4))
HexagonMCInstrInfo::addConstant(MI, Extended, Disassembler.getContext());
return MCDisassembler::Success;
}