llvm-project/clang/lib/Lex/Preprocessor.cpp

954 lines
35 KiB
C++

//===--- Preprocess.cpp - C Language Family Preprocessor Implementation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Preprocessor interface.
//
//===----------------------------------------------------------------------===//
//
// Options to support:
// -H - Print the name of each header file used.
// -d[DNI] - Dump various things.
// -fworking-directory - #line's with preprocessor's working dir.
// -fpreprocessed
// -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD
// -W*
// -w
//
// Messages to emit:
// "Multiple include guards may be useful for:\n"
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemStatCache.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/CodeCompletionHandler.h"
#include "clang/Lex/ExternalPreprocessorSource.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/MacroArgs.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/ModuleLoader.h"
#include "clang/Lex/PTHManager.h"
#include "clang/Lex/Pragma.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Lex/ScratchBuffer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Capacity.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace clang;
LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry)
//===----------------------------------------------------------------------===//
ExternalPreprocessorSource::~ExternalPreprocessorSource() { }
Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts,
DiagnosticsEngine &diags, LangOptions &opts,
SourceManager &SM, MemoryBufferCache &PCMCache,
HeaderSearch &Headers, ModuleLoader &TheModuleLoader,
IdentifierInfoLookup *IILookup, bool OwnsHeaders,
TranslationUnitKind TUKind)
: PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), Target(nullptr),
AuxTarget(nullptr), FileMgr(Headers.getFileMgr()), SourceMgr(SM),
PCMCache(PCMCache), ScratchBuf(new ScratchBuffer(SourceMgr)),
HeaderInfo(Headers), TheModuleLoader(TheModuleLoader),
ExternalSource(nullptr), Identifiers(opts, IILookup),
PragmaHandlers(new PragmaNamespace(StringRef())),
IncrementalProcessing(false), TUKind(TUKind), CodeComplete(nullptr),
CodeCompletionFile(nullptr), CodeCompletionOffset(0),
LastTokenWasAt(false), ModuleImportExpectsIdentifier(false),
CodeCompletionReached(false), CodeCompletionII(nullptr),
MainFileDir(nullptr), SkipMainFilePreamble(0, true), CurPPLexer(nullptr),
CurDirLookup(nullptr), CurLexerKind(CLK_Lexer), CurSubmodule(nullptr),
Callbacks(nullptr), CurSubmoduleState(&NullSubmoduleState),
MacroArgCache(nullptr), Record(nullptr), MIChainHead(nullptr),
DeserialMIChainHead(nullptr) {
OwnsHeaderSearch = OwnsHeaders;
CounterValue = 0; // __COUNTER__ starts at 0.
// Clear stats.
NumDirectives = NumDefined = NumUndefined = NumPragma = 0;
NumIf = NumElse = NumEndif = 0;
NumEnteredSourceFiles = 0;
NumMacroExpanded = NumFnMacroExpanded = NumBuiltinMacroExpanded = 0;
NumFastMacroExpanded = NumTokenPaste = NumFastTokenPaste = 0;
MaxIncludeStackDepth = 0;
NumSkipped = 0;
// Default to discarding comments.
KeepComments = false;
KeepMacroComments = false;
SuppressIncludeNotFoundError = false;
// Macro expansion is enabled.
DisableMacroExpansion = false;
MacroExpansionInDirectivesOverride = false;
InMacroArgs = false;
InMacroArgPreExpansion = false;
NumCachedTokenLexers = 0;
PragmasEnabled = true;
ParsingIfOrElifDirective = false;
PreprocessedOutput = false;
CachedLexPos = 0;
// We haven't read anything from the external source.
ReadMacrosFromExternalSource = false;
// "Poison" __VA_ARGS__, which can only appear in the expansion of a macro.
// This gets unpoisoned where it is allowed.
(Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned();
SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use);
// Initialize the pragma handlers.
RegisterBuiltinPragmas();
// Initialize builtin macros like __LINE__ and friends.
RegisterBuiltinMacros();
if(LangOpts.Borland) {
Ident__exception_info = getIdentifierInfo("_exception_info");
Ident___exception_info = getIdentifierInfo("__exception_info");
Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation");
Ident__exception_code = getIdentifierInfo("_exception_code");
Ident___exception_code = getIdentifierInfo("__exception_code");
Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode");
Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination");
Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination");
Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination");
} else {
Ident__exception_info = Ident__exception_code = nullptr;
Ident__abnormal_termination = Ident___exception_info = nullptr;
Ident___exception_code = Ident___abnormal_termination = nullptr;
Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr;
Ident_AbnormalTermination = nullptr;
}
}
Preprocessor::~Preprocessor() {
assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!");
IncludeMacroStack.clear();
// Destroy any macro definitions.
while (MacroInfoChain *I = MIChainHead) {
MIChainHead = I->Next;
I->~MacroInfoChain();
}
// Free any cached macro expanders.
// This populates MacroArgCache, so all TokenLexers need to be destroyed
// before the code below that frees up the MacroArgCache list.
std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr);
CurTokenLexer.reset();
while (DeserializedMacroInfoChain *I = DeserialMIChainHead) {
DeserialMIChainHead = I->Next;
I->~DeserializedMacroInfoChain();
}
// Free any cached MacroArgs.
for (MacroArgs *ArgList = MacroArgCache; ArgList;)
ArgList = ArgList->deallocate();
// Delete the header search info, if we own it.
if (OwnsHeaderSearch)
delete &HeaderInfo;
}
void Preprocessor::Initialize(const TargetInfo &Target,
const TargetInfo *AuxTarget) {
assert((!this->Target || this->Target == &Target) &&
"Invalid override of target information");
this->Target = &Target;
assert((!this->AuxTarget || this->AuxTarget == AuxTarget) &&
"Invalid override of aux target information.");
this->AuxTarget = AuxTarget;
// Initialize information about built-ins.
BuiltinInfo.InitializeTarget(Target, AuxTarget);
HeaderInfo.setTarget(Target);
}
void Preprocessor::InitializeForModelFile() {
NumEnteredSourceFiles = 0;
// Reset pragmas
PragmaHandlersBackup = std::move(PragmaHandlers);
PragmaHandlers = llvm::make_unique<PragmaNamespace>(StringRef());
RegisterBuiltinPragmas();
// Reset PredefinesFileID
PredefinesFileID = FileID();
}
void Preprocessor::FinalizeForModelFile() {
NumEnteredSourceFiles = 1;
PragmaHandlers = std::move(PragmaHandlersBackup);
}
void Preprocessor::setPTHManager(PTHManager* pm) {
PTH.reset(pm);
FileMgr.addStatCache(PTH->createStatCache());
}
void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const {
llvm::errs() << tok::getTokenName(Tok.getKind()) << " '"
<< getSpelling(Tok) << "'";
if (!DumpFlags) return;
llvm::errs() << "\t";
if (Tok.isAtStartOfLine())
llvm::errs() << " [StartOfLine]";
if (Tok.hasLeadingSpace())
llvm::errs() << " [LeadingSpace]";
if (Tok.isExpandDisabled())
llvm::errs() << " [ExpandDisabled]";
if (Tok.needsCleaning()) {
const char *Start = SourceMgr.getCharacterData(Tok.getLocation());
llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength())
<< "']";
}
llvm::errs() << "\tLoc=<";
DumpLocation(Tok.getLocation());
llvm::errs() << ">";
}
void Preprocessor::DumpLocation(SourceLocation Loc) const {
Loc.dump(SourceMgr);
}
void Preprocessor::DumpMacro(const MacroInfo &MI) const {
llvm::errs() << "MACRO: ";
for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) {
DumpToken(MI.getReplacementToken(i));
llvm::errs() << " ";
}
llvm::errs() << "\n";
}
void Preprocessor::PrintStats() {
llvm::errs() << "\n*** Preprocessor Stats:\n";
llvm::errs() << NumDirectives << " directives found:\n";
llvm::errs() << " " << NumDefined << " #define.\n";
llvm::errs() << " " << NumUndefined << " #undef.\n";
llvm::errs() << " #include/#include_next/#import:\n";
llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n";
llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n";
llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n";
llvm::errs() << " " << NumElse << " #else/#elif.\n";
llvm::errs() << " " << NumEndif << " #endif.\n";
llvm::errs() << " " << NumPragma << " #pragma.\n";
llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n";
llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/"
<< NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, "
<< NumFastMacroExpanded << " on the fast path.\n";
llvm::errs() << (NumFastTokenPaste+NumTokenPaste)
<< " token paste (##) operations performed, "
<< NumFastTokenPaste << " on the fast path.\n";
llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total";
llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory();
llvm::errs() << "\n Macro Expanded Tokens: "
<< llvm::capacity_in_bytes(MacroExpandedTokens);
llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity();
// FIXME: List information for all submodules.
llvm::errs() << "\n Macros: "
<< llvm::capacity_in_bytes(CurSubmoduleState->Macros);
llvm::errs() << "\n #pragma push_macro Info: "
<< llvm::capacity_in_bytes(PragmaPushMacroInfo);
llvm::errs() << "\n Poison Reasons: "
<< llvm::capacity_in_bytes(PoisonReasons);
llvm::errs() << "\n Comment Handlers: "
<< llvm::capacity_in_bytes(CommentHandlers) << "\n";
}
Preprocessor::macro_iterator
Preprocessor::macro_begin(bool IncludeExternalMacros) const {
if (IncludeExternalMacros && ExternalSource &&
!ReadMacrosFromExternalSource) {
ReadMacrosFromExternalSource = true;
ExternalSource->ReadDefinedMacros();
}
// Make sure we cover all macros in visible modules.
for (const ModuleMacro &Macro : ModuleMacros)
CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState()));
return CurSubmoduleState->Macros.begin();
}
size_t Preprocessor::getTotalMemory() const {
return BP.getTotalMemory()
+ llvm::capacity_in_bytes(MacroExpandedTokens)
+ Predefines.capacity() /* Predefines buffer. */
// FIXME: Include sizes from all submodules, and include MacroInfo sizes,
// and ModuleMacros.
+ llvm::capacity_in_bytes(CurSubmoduleState->Macros)
+ llvm::capacity_in_bytes(PragmaPushMacroInfo)
+ llvm::capacity_in_bytes(PoisonReasons)
+ llvm::capacity_in_bytes(CommentHandlers);
}
Preprocessor::macro_iterator
Preprocessor::macro_end(bool IncludeExternalMacros) const {
if (IncludeExternalMacros && ExternalSource &&
!ReadMacrosFromExternalSource) {
ReadMacrosFromExternalSource = true;
ExternalSource->ReadDefinedMacros();
}
return CurSubmoduleState->Macros.end();
}
/// \brief Compares macro tokens with a specified token value sequence.
static bool MacroDefinitionEquals(const MacroInfo *MI,
ArrayRef<TokenValue> Tokens) {
return Tokens.size() == MI->getNumTokens() &&
std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin());
}
StringRef Preprocessor::getLastMacroWithSpelling(
SourceLocation Loc,
ArrayRef<TokenValue> Tokens) const {
SourceLocation BestLocation;
StringRef BestSpelling;
for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end();
I != E; ++I) {
const MacroDirective::DefInfo
Def = I->second.findDirectiveAtLoc(Loc, SourceMgr);
if (!Def || !Def.getMacroInfo())
continue;
if (!Def.getMacroInfo()->isObjectLike())
continue;
if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens))
continue;
SourceLocation Location = Def.getLocation();
// Choose the macro defined latest.
if (BestLocation.isInvalid() ||
(Location.isValid() &&
SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) {
BestLocation = Location;
BestSpelling = I->first->getName();
}
}
return BestSpelling;
}
void Preprocessor::recomputeCurLexerKind() {
if (CurLexer)
CurLexerKind = CLK_Lexer;
else if (CurPTHLexer)
CurLexerKind = CLK_PTHLexer;
else if (CurTokenLexer)
CurLexerKind = CLK_TokenLexer;
else
CurLexerKind = CLK_CachingLexer;
}
bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File,
unsigned CompleteLine,
unsigned CompleteColumn) {
assert(File);
assert(CompleteLine && CompleteColumn && "Starts from 1:1");
assert(!CodeCompletionFile && "Already set");
using llvm::MemoryBuffer;
// Load the actual file's contents.
bool Invalid = false;
const MemoryBuffer *Buffer = SourceMgr.getMemoryBufferForFile(File, &Invalid);
if (Invalid)
return true;
// Find the byte position of the truncation point.
const char *Position = Buffer->getBufferStart();
for (unsigned Line = 1; Line < CompleteLine; ++Line) {
for (; *Position; ++Position) {
if (*Position != '\r' && *Position != '\n')
continue;
// Eat \r\n or \n\r as a single line.
if ((Position[1] == '\r' || Position[1] == '\n') &&
Position[0] != Position[1])
++Position;
++Position;
break;
}
}
Position += CompleteColumn - 1;
// If pointing inside the preamble, adjust the position at the beginning of
// the file after the preamble.
if (SkipMainFilePreamble.first &&
SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) {
if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first)
Position = Buffer->getBufferStart() + SkipMainFilePreamble.first;
}
if (Position > Buffer->getBufferEnd())
Position = Buffer->getBufferEnd();
CodeCompletionFile = File;
CodeCompletionOffset = Position - Buffer->getBufferStart();
std::unique_ptr<MemoryBuffer> NewBuffer =
MemoryBuffer::getNewUninitMemBuffer(Buffer->getBufferSize() + 1,
Buffer->getBufferIdentifier());
char *NewBuf = const_cast<char*>(NewBuffer->getBufferStart());
char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf);
*NewPos = '\0';
std::copy(Position, Buffer->getBufferEnd(), NewPos+1);
SourceMgr.overrideFileContents(File, std::move(NewBuffer));
return false;
}
void Preprocessor::CodeCompleteNaturalLanguage() {
if (CodeComplete)
CodeComplete->CodeCompleteNaturalLanguage();
setCodeCompletionReached();
}
/// getSpelling - This method is used to get the spelling of a token into a
/// SmallVector. Note that the returned StringRef may not point to the
/// supplied buffer if a copy can be avoided.
StringRef Preprocessor::getSpelling(const Token &Tok,
SmallVectorImpl<char> &Buffer,
bool *Invalid) const {
// NOTE: this has to be checked *before* testing for an IdentifierInfo.
if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) {
// Try the fast path.
if (const IdentifierInfo *II = Tok.getIdentifierInfo())
return II->getName();
}
// Resize the buffer if we need to copy into it.
if (Tok.needsCleaning())
Buffer.resize(Tok.getLength());
const char *Ptr = Buffer.data();
unsigned Len = getSpelling(Tok, Ptr, Invalid);
return StringRef(Ptr, Len);
}
/// CreateString - Plop the specified string into a scratch buffer and return a
/// location for it. If specified, the source location provides a source
/// location for the token.
void Preprocessor::CreateString(StringRef Str, Token &Tok,
SourceLocation ExpansionLocStart,
SourceLocation ExpansionLocEnd) {
Tok.setLength(Str.size());
const char *DestPtr;
SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr);
if (ExpansionLocStart.isValid())
Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart,
ExpansionLocEnd, Str.size());
Tok.setLocation(Loc);
// If this is a raw identifier or a literal token, set the pointer data.
if (Tok.is(tok::raw_identifier))
Tok.setRawIdentifierData(DestPtr);
else if (Tok.isLiteral())
Tok.setLiteralData(DestPtr);
}
Module *Preprocessor::getCurrentModule() {
if (!getLangOpts().isCompilingModule())
return nullptr;
return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule);
}
//===----------------------------------------------------------------------===//
// Preprocessor Initialization Methods
//===----------------------------------------------------------------------===//
/// EnterMainSourceFile - Enter the specified FileID as the main source file,
/// which implicitly adds the builtin defines etc.
void Preprocessor::EnterMainSourceFile() {
// We do not allow the preprocessor to reenter the main file. Doing so will
// cause FileID's to accumulate information from both runs (e.g. #line
// information) and predefined macros aren't guaranteed to be set properly.
assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!");
FileID MainFileID = SourceMgr.getMainFileID();
// If MainFileID is loaded it means we loaded an AST file, no need to enter
// a main file.
if (!SourceMgr.isLoadedFileID(MainFileID)) {
// Enter the main file source buffer.
EnterSourceFile(MainFileID, nullptr, SourceLocation());
// If we've been asked to skip bytes in the main file (e.g., as part of a
// precompiled preamble), do so now.
if (SkipMainFilePreamble.first > 0)
CurLexer->SkipBytes(SkipMainFilePreamble.first,
SkipMainFilePreamble.second);
// Tell the header info that the main file was entered. If the file is later
// #imported, it won't be re-entered.
if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID))
HeaderInfo.IncrementIncludeCount(FE);
}
// Preprocess Predefines to populate the initial preprocessor state.
std::unique_ptr<llvm::MemoryBuffer> SB =
llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>");
assert(SB && "Cannot create predefined source buffer");
FileID FID = SourceMgr.createFileID(std::move(SB));
assert(FID.isValid() && "Could not create FileID for predefines?");
setPredefinesFileID(FID);
// Start parsing the predefines.
EnterSourceFile(FID, nullptr, SourceLocation());
}
void Preprocessor::EndSourceFile() {
// Notify the client that we reached the end of the source file.
if (Callbacks)
Callbacks->EndOfMainFile();
}
//===----------------------------------------------------------------------===//
// Lexer Event Handling.
//===----------------------------------------------------------------------===//
/// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the
/// identifier information for the token and install it into the token,
/// updating the token kind accordingly.
IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const {
assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!");
// Look up this token, see if it is a macro, or if it is a language keyword.
IdentifierInfo *II;
if (!Identifier.needsCleaning() && !Identifier.hasUCN()) {
// No cleaning needed, just use the characters from the lexed buffer.
II = getIdentifierInfo(Identifier.getRawIdentifier());
} else {
// Cleaning needed, alloca a buffer, clean into it, then use the buffer.
SmallString<64> IdentifierBuffer;
StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer);
if (Identifier.hasUCN()) {
SmallString<64> UCNIdentifierBuffer;
expandUCNs(UCNIdentifierBuffer, CleanedStr);
II = getIdentifierInfo(UCNIdentifierBuffer);
} else {
II = getIdentifierInfo(CleanedStr);
}
}
// Update the token info (identifier info and appropriate token kind).
Identifier.setIdentifierInfo(II);
Identifier.setKind(II->getTokenID());
return II;
}
void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) {
PoisonReasons[II] = DiagID;
}
void Preprocessor::PoisonSEHIdentifiers(bool Poison) {
assert(Ident__exception_code && Ident__exception_info);
assert(Ident___exception_code && Ident___exception_info);
Ident__exception_code->setIsPoisoned(Poison);
Ident___exception_code->setIsPoisoned(Poison);
Ident_GetExceptionCode->setIsPoisoned(Poison);
Ident__exception_info->setIsPoisoned(Poison);
Ident___exception_info->setIsPoisoned(Poison);
Ident_GetExceptionInfo->setIsPoisoned(Poison);
Ident__abnormal_termination->setIsPoisoned(Poison);
Ident___abnormal_termination->setIsPoisoned(Poison);
Ident_AbnormalTermination->setIsPoisoned(Poison);
}
void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) {
assert(Identifier.getIdentifierInfo() &&
"Can't handle identifiers without identifier info!");
llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it =
PoisonReasons.find(Identifier.getIdentifierInfo());
if(it == PoisonReasons.end())
Diag(Identifier, diag::err_pp_used_poisoned_id);
else
Diag(Identifier,it->second) << Identifier.getIdentifierInfo();
}
/// \brief Returns a diagnostic message kind for reporting a future keyword as
/// appropriate for the identifier and specified language.
static diag::kind getFutureCompatDiagKind(const IdentifierInfo &II,
const LangOptions &LangOpts) {
assert(II.isFutureCompatKeyword() && "diagnostic should not be needed");
if (LangOpts.CPlusPlus)
return llvm::StringSwitch<diag::kind>(II.getName())
#define CXX11_KEYWORD(NAME, FLAGS) \
.Case(#NAME, diag::warn_cxx11_keyword)
#include "clang/Basic/TokenKinds.def"
;
llvm_unreachable(
"Keyword not known to come from a newer Standard or proposed Standard");
}
void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const {
assert(II.isOutOfDate() && "not out of date");
getExternalSource()->updateOutOfDateIdentifier(II);
}
/// HandleIdentifier - This callback is invoked when the lexer reads an
/// identifier. This callback looks up the identifier in the map and/or
/// potentially macro expands it or turns it into a named token (like 'for').
///
/// Note that callers of this method are guarded by checking the
/// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the
/// IdentifierInfo methods that compute these properties will need to change to
/// match.
bool Preprocessor::HandleIdentifier(Token &Identifier) {
assert(Identifier.getIdentifierInfo() &&
"Can't handle identifiers without identifier info!");
IdentifierInfo &II = *Identifier.getIdentifierInfo();
// If the information about this identifier is out of date, update it from
// the external source.
// We have to treat __VA_ARGS__ in a special way, since it gets
// serialized with isPoisoned = true, but our preprocessor may have
// unpoisoned it if we're defining a C99 macro.
if (II.isOutOfDate()) {
bool CurrentIsPoisoned = false;
if (&II == Ident__VA_ARGS__)
CurrentIsPoisoned = Ident__VA_ARGS__->isPoisoned();
updateOutOfDateIdentifier(II);
Identifier.setKind(II.getTokenID());
if (&II == Ident__VA_ARGS__)
II.setIsPoisoned(CurrentIsPoisoned);
}
// If this identifier was poisoned, and if it was not produced from a macro
// expansion, emit an error.
if (II.isPoisoned() && CurPPLexer) {
HandlePoisonedIdentifier(Identifier);
}
// If this is a macro to be expanded, do it.
if (MacroDefinition MD = getMacroDefinition(&II)) {
auto *MI = MD.getMacroInfo();
assert(MI && "macro definition with no macro info?");
if (!DisableMacroExpansion) {
if (!Identifier.isExpandDisabled() && MI->isEnabled()) {
// C99 6.10.3p10: If the preprocessing token immediately after the
// macro name isn't a '(', this macro should not be expanded.
if (!MI->isFunctionLike() || isNextPPTokenLParen())
return HandleMacroExpandedIdentifier(Identifier, MD);
} else {
// C99 6.10.3.4p2 says that a disabled macro may never again be
// expanded, even if it's in a context where it could be expanded in the
// future.
Identifier.setFlag(Token::DisableExpand);
if (MI->isObjectLike() || isNextPPTokenLParen())
Diag(Identifier, diag::pp_disabled_macro_expansion);
}
}
}
// If this identifier is a keyword in a newer Standard or proposed Standard,
// produce a warning. Don't warn if we're not considering macro expansion,
// since this identifier might be the name of a macro.
// FIXME: This warning is disabled in cases where it shouldn't be, like
// "#define constexpr constexpr", "int constexpr;"
if (II.isFutureCompatKeyword() && !DisableMacroExpansion) {
Diag(Identifier, getFutureCompatDiagKind(II, getLangOpts()))
<< II.getName();
// Don't diagnose this keyword again in this translation unit.
II.setIsFutureCompatKeyword(false);
}
// C++ 2.11p2: If this is an alternative representation of a C++ operator,
// then we act as if it is the actual operator and not the textual
// representation of it.
if (II.isCPlusPlusOperatorKeyword())
Identifier.setIdentifierInfo(nullptr);
// If this is an extension token, diagnose its use.
// We avoid diagnosing tokens that originate from macro definitions.
// FIXME: This warning is disabled in cases where it shouldn't be,
// like "#define TY typeof", "TY(1) x".
if (II.isExtensionToken() && !DisableMacroExpansion)
Diag(Identifier, diag::ext_token_used);
// If this is the 'import' contextual keyword following an '@', note
// that the next token indicates a module name.
//
// Note that we do not treat 'import' as a contextual
// keyword when we're in a caching lexer, because caching lexers only get
// used in contexts where import declarations are disallowed.
//
// Likewise if this is the C++ Modules TS import keyword.
if (((LastTokenWasAt && II.isModulesImport()) ||
Identifier.is(tok::kw_import)) &&
!InMacroArgs && !DisableMacroExpansion &&
(getLangOpts().Modules || getLangOpts().DebuggerSupport) &&
CurLexerKind != CLK_CachingLexer) {
ModuleImportLoc = Identifier.getLocation();
ModuleImportPath.clear();
ModuleImportExpectsIdentifier = true;
CurLexerKind = CLK_LexAfterModuleImport;
}
return true;
}
void Preprocessor::Lex(Token &Result) {
// We loop here until a lex function returns a token; this avoids recursion.
bool ReturnedToken;
do {
switch (CurLexerKind) {
case CLK_Lexer:
ReturnedToken = CurLexer->Lex(Result);
break;
case CLK_PTHLexer:
ReturnedToken = CurPTHLexer->Lex(Result);
break;
case CLK_TokenLexer:
ReturnedToken = CurTokenLexer->Lex(Result);
break;
case CLK_CachingLexer:
CachingLex(Result);
ReturnedToken = true;
break;
case CLK_LexAfterModuleImport:
LexAfterModuleImport(Result);
ReturnedToken = true;
break;
}
} while (!ReturnedToken);
if (Result.is(tok::code_completion))
setCodeCompletionIdentifierInfo(Result.getIdentifierInfo());
LastTokenWasAt = Result.is(tok::at);
}
/// \brief Lex a token following the 'import' contextual keyword.
///
void Preprocessor::LexAfterModuleImport(Token &Result) {
// Figure out what kind of lexer we actually have.
recomputeCurLexerKind();
// Lex the next token.
Lex(Result);
// The token sequence
//
// import identifier (. identifier)*
//
// indicates a module import directive. We already saw the 'import'
// contextual keyword, so now we're looking for the identifiers.
if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) {
// We expected to see an identifier here, and we did; continue handling
// identifiers.
ModuleImportPath.push_back(std::make_pair(Result.getIdentifierInfo(),
Result.getLocation()));
ModuleImportExpectsIdentifier = false;
CurLexerKind = CLK_LexAfterModuleImport;
return;
}
// If we're expecting a '.' or a ';', and we got a '.', then wait until we
// see the next identifier. (We can also see a '[[' that begins an
// attribute-specifier-seq here under the C++ Modules TS.)
if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) {
ModuleImportExpectsIdentifier = true;
CurLexerKind = CLK_LexAfterModuleImport;
return;
}
// If we have a non-empty module path, load the named module.
if (!ModuleImportPath.empty()) {
// Under the Modules TS, the dot is just part of the module name, and not
// a real hierarachy separator. Flatten such module names now.
//
// FIXME: Is this the right level to be performing this transformation?
std::string FlatModuleName;
if (getLangOpts().ModulesTS) {
for (auto &Piece : ModuleImportPath) {
if (!FlatModuleName.empty())
FlatModuleName += ".";
FlatModuleName += Piece.first->getName();
}
SourceLocation FirstPathLoc = ModuleImportPath[0].second;
ModuleImportPath.clear();
ModuleImportPath.push_back(
std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc));
}
Module *Imported = nullptr;
if (getLangOpts().Modules) {
Imported = TheModuleLoader.loadModule(ModuleImportLoc,
ModuleImportPath,
Module::Hidden,
/*IsIncludeDirective=*/false);
if (Imported)
makeModuleVisible(Imported, ModuleImportLoc);
}
if (Callbacks && (getLangOpts().Modules || getLangOpts().DebuggerSupport))
Callbacks->moduleImport(ModuleImportLoc, ModuleImportPath, Imported);
}
}
void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) {
CurSubmoduleState->VisibleModules.setVisible(
M, Loc, [](Module *) {},
[&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) {
// FIXME: Include the path in the diagnostic.
// FIXME: Include the import location for the conflicting module.
Diag(ModuleImportLoc, diag::warn_module_conflict)
<< Path[0]->getFullModuleName()
<< Conflict->getFullModuleName()
<< Message;
});
// Add this module to the imports list of the currently-built submodule.
if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M)
BuildingSubmoduleStack.back().M->Imports.insert(M);
}
bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String,
const char *DiagnosticTag,
bool AllowMacroExpansion) {
// We need at least one string literal.
if (Result.isNot(tok::string_literal)) {
Diag(Result, diag::err_expected_string_literal)
<< /*Source='in...'*/0 << DiagnosticTag;
return false;
}
// Lex string literal tokens, optionally with macro expansion.
SmallVector<Token, 4> StrToks;
do {
StrToks.push_back(Result);
if (Result.hasUDSuffix())
Diag(Result, diag::err_invalid_string_udl);
if (AllowMacroExpansion)
Lex(Result);
else
LexUnexpandedToken(Result);
} while (Result.is(tok::string_literal));
// Concatenate and parse the strings.
StringLiteralParser Literal(StrToks, *this);
assert(Literal.isAscii() && "Didn't allow wide strings in");
if (Literal.hadError)
return false;
if (Literal.Pascal) {
Diag(StrToks[0].getLocation(), diag::err_expected_string_literal)
<< /*Source='in...'*/0 << DiagnosticTag;
return false;
}
String = Literal.GetString();
return true;
}
bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) {
assert(Tok.is(tok::numeric_constant));
SmallString<8> IntegerBuffer;
bool NumberInvalid = false;
StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid);
if (NumberInvalid)
return false;
NumericLiteralParser Literal(Spelling, Tok.getLocation(), *this);
if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix())
return false;
llvm::APInt APVal(64, 0);
if (Literal.GetIntegerValue(APVal))
return false;
Lex(Tok);
Value = APVal.getLimitedValue();
return true;
}
void Preprocessor::addCommentHandler(CommentHandler *Handler) {
assert(Handler && "NULL comment handler");
assert(std::find(CommentHandlers.begin(), CommentHandlers.end(), Handler) ==
CommentHandlers.end() && "Comment handler already registered");
CommentHandlers.push_back(Handler);
}
void Preprocessor::removeCommentHandler(CommentHandler *Handler) {
std::vector<CommentHandler *>::iterator Pos
= std::find(CommentHandlers.begin(), CommentHandlers.end(), Handler);
assert(Pos != CommentHandlers.end() && "Comment handler not registered");
CommentHandlers.erase(Pos);
}
bool Preprocessor::HandleComment(Token &result, SourceRange Comment) {
bool AnyPendingTokens = false;
for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(),
HEnd = CommentHandlers.end();
H != HEnd; ++H) {
if ((*H)->HandleComment(*this, Comment))
AnyPendingTokens = true;
}
if (!AnyPendingTokens || getCommentRetentionState())
return false;
Lex(result);
return true;
}
ModuleLoader::~ModuleLoader() { }
CommentHandler::~CommentHandler() { }
CodeCompletionHandler::~CodeCompletionHandler() { }
void Preprocessor::createPreprocessingRecord() {
if (Record)
return;
Record = new PreprocessingRecord(getSourceManager());
addPPCallbacks(std::unique_ptr<PPCallbacks>(Record));
}