llvm-project/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp

2937 lines
106 KiB
C++

//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86AsmInstrumentation.h"
#include "X86AsmParserCommon.h"
#include "X86Operand.h"
#include "X86ISelLowering.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
using namespace llvm;
namespace {
static const char OpPrecedence[] = {
0, // IC_OR
1, // IC_AND
2, // IC_LSHIFT
2, // IC_RSHIFT
3, // IC_PLUS
3, // IC_MINUS
4, // IC_MULTIPLY
4, // IC_DIVIDE
5, // IC_RPAREN
6, // IC_LPAREN
0, // IC_IMM
0 // IC_REGISTER
};
class X86AsmParser : public MCTargetAsmParser {
MCSubtargetInfo &STI;
const MCInstrInfo &MII;
ParseInstructionInfo *InstInfo;
std::unique_ptr<X86AsmInstrumentation> Instrumentation;
private:
SMLoc consumeToken() {
MCAsmParser &Parser = getParser();
SMLoc Result = Parser.getTok().getLoc();
Parser.Lex();
return Result;
}
enum InfixCalculatorTok {
IC_OR = 0,
IC_AND,
IC_LSHIFT,
IC_RSHIFT,
IC_PLUS,
IC_MINUS,
IC_MULTIPLY,
IC_DIVIDE,
IC_RPAREN,
IC_LPAREN,
IC_IMM,
IC_REGISTER
};
class InfixCalculator {
typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
SmallVector<ICToken, 4> PostfixStack;
public:
int64_t popOperand() {
assert (!PostfixStack.empty() && "Poped an empty stack!");
ICToken Op = PostfixStack.pop_back_val();
assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
&& "Expected and immediate or register!");
return Op.second;
}
void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
assert ((Op == IC_IMM || Op == IC_REGISTER) &&
"Unexpected operand!");
PostfixStack.push_back(std::make_pair(Op, Val));
}
void popOperator() { InfixOperatorStack.pop_back(); }
void pushOperator(InfixCalculatorTok Op) {
// Push the new operator if the stack is empty.
if (InfixOperatorStack.empty()) {
InfixOperatorStack.push_back(Op);
return;
}
// Push the new operator if it has a higher precedence than the operator
// on the top of the stack or the operator on the top of the stack is a
// left parentheses.
unsigned Idx = InfixOperatorStack.size() - 1;
InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
InfixOperatorStack.push_back(Op);
return;
}
// The operator on the top of the stack has higher precedence than the
// new operator.
unsigned ParenCount = 0;
while (1) {
// Nothing to process.
if (InfixOperatorStack.empty())
break;
Idx = InfixOperatorStack.size() - 1;
StackOp = InfixOperatorStack[Idx];
if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
break;
// If we have an even parentheses count and we see a left parentheses,
// then stop processing.
if (!ParenCount && StackOp == IC_LPAREN)
break;
if (StackOp == IC_RPAREN) {
++ParenCount;
InfixOperatorStack.pop_back();
} else if (StackOp == IC_LPAREN) {
--ParenCount;
InfixOperatorStack.pop_back();
} else {
InfixOperatorStack.pop_back();
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
}
// Push the new operator.
InfixOperatorStack.push_back(Op);
}
int64_t execute() {
// Push any remaining operators onto the postfix stack.
while (!InfixOperatorStack.empty()) {
InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
PostfixStack.push_back(std::make_pair(StackOp, 0));
}
if (PostfixStack.empty())
return 0;
SmallVector<ICToken, 16> OperandStack;
for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
ICToken Op = PostfixStack[i];
if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
OperandStack.push_back(Op);
} else {
assert (OperandStack.size() > 1 && "Too few operands.");
int64_t Val;
ICToken Op2 = OperandStack.pop_back_val();
ICToken Op1 = OperandStack.pop_back_val();
switch (Op.first) {
default:
report_fatal_error("Unexpected operator!");
break;
case IC_PLUS:
Val = Op1.second + Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MINUS:
Val = Op1.second - Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_MULTIPLY:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Multiply operation with an immediate and a register!");
Val = Op1.second * Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_DIVIDE:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Divide operation with an immediate and a register!");
assert (Op2.second != 0 && "Division by zero!");
Val = Op1.second / Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_OR:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Or operation with an immediate and a register!");
Val = Op1.second | Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_AND:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"And operation with an immediate and a register!");
Val = Op1.second & Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_LSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Left shift operation with an immediate and a register!");
Val = Op1.second << Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
case IC_RSHIFT:
assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
"Right shift operation with an immediate and a register!");
Val = Op1.second >> Op2.second;
OperandStack.push_back(std::make_pair(IC_IMM, Val));
break;
}
}
}
assert (OperandStack.size() == 1 && "Expected a single result.");
return OperandStack.pop_back_val().second;
}
};
enum IntelExprState {
IES_OR,
IES_AND,
IES_LSHIFT,
IES_RSHIFT,
IES_PLUS,
IES_MINUS,
IES_NOT,
IES_MULTIPLY,
IES_DIVIDE,
IES_LBRAC,
IES_RBRAC,
IES_LPAREN,
IES_RPAREN,
IES_REGISTER,
IES_INTEGER,
IES_IDENTIFIER,
IES_ERROR
};
class IntelExprStateMachine {
IntelExprState State, PrevState;
unsigned BaseReg, IndexReg, TmpReg, Scale;
int64_t Imm;
const MCExpr *Sym;
StringRef SymName;
bool StopOnLBrac, AddImmPrefix;
InfixCalculator IC;
InlineAsmIdentifierInfo Info;
public:
IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
AddImmPrefix(addimmprefix) { Info.clear(); }
unsigned getBaseReg() { return BaseReg; }
unsigned getIndexReg() { return IndexReg; }
unsigned getScale() { return Scale; }
const MCExpr *getSym() { return Sym; }
StringRef getSymName() { return SymName; }
int64_t getImm() { return Imm + IC.execute(); }
bool isValidEndState() {
return State == IES_RBRAC || State == IES_INTEGER;
}
bool getStopOnLBrac() { return StopOnLBrac; }
bool getAddImmPrefix() { return AddImmPrefix; }
bool hadError() { return State == IES_ERROR; }
InlineAsmIdentifierInfo &getIdentifierInfo() {
return Info;
}
void onOr() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_OR;
IC.pushOperator(IC_OR);
break;
}
PrevState = CurrState;
}
void onAnd() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_AND;
IC.pushOperator(IC_AND);
break;
}
PrevState = CurrState;
}
void onLShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_LSHIFT;
IC.pushOperator(IC_LSHIFT);
break;
}
PrevState = CurrState;
}
void onRShift() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_RSHIFT;
IC.pushOperator(IC_RSHIFT);
break;
}
PrevState = CurrState;
}
void onPlus() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
case IES_REGISTER:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// a scale of 1.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 1;
}
}
break;
}
PrevState = CurrState;
}
void onMinus() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_NOT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_LPAREN:
case IES_RPAREN:
case IES_LBRAC:
case IES_RBRAC:
case IES_INTEGER:
case IES_REGISTER:
State = IES_MINUS;
// Only push the minus operator if it is not a unary operator.
if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
CurrState == IES_LPAREN || CurrState == IES_LBRAC))
IC.pushOperator(IC_MINUS);
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// a scale of 1.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 1;
}
}
break;
}
PrevState = CurrState;
}
void onNot() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_NOT:
State = IES_NOT;
break;
}
PrevState = CurrState;
}
void onRegister(unsigned Reg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_LPAREN:
State = IES_REGISTER;
TmpReg = Reg;
IC.pushOperand(IC_REGISTER);
break;
case IES_MULTIPLY:
// Index Register - Scale * Register
if (PrevState == IES_INTEGER) {
assert (!IndexReg && "IndexReg already set!");
State = IES_REGISTER;
IndexReg = Reg;
// Get the scale and replace the 'Scale * Register' with '0'.
Scale = IC.popOperand();
IC.pushOperand(IC_IMM);
IC.popOperator();
} else {
State = IES_ERROR;
}
break;
}
PrevState = CurrState;
}
void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
State = IES_INTEGER;
Sym = SymRef;
SymName = SymRefName;
IC.pushOperand(IC_IMM);
break;
}
}
bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_DIVIDE:
case IES_MULTIPLY:
case IES_LPAREN:
State = IES_INTEGER;
if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
// Index Register - Register * Scale
assert (!IndexReg && "IndexReg already set!");
IndexReg = TmpReg;
Scale = TmpInt;
if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
return true;
}
// Get the scale and replace the 'Register * Scale' with '0'.
IC.popOperator();
} else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
PrevState == IES_OR || PrevState == IES_AND ||
PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
PrevState == IES_NOT) &&
CurrState == IES_MINUS) {
// Unary minus. No need to pop the minus operand because it was never
// pushed.
IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
} else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
PrevState == IES_OR || PrevState == IES_AND ||
PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
PrevState == IES_NOT) &&
CurrState == IES_NOT) {
// Unary not. No need to pop the not operand because it was never
// pushed.
IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
} else {
IC.pushOperand(IC_IMM, TmpInt);
}
break;
}
PrevState = CurrState;
return false;
}
void onStar() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_MULTIPLY;
IC.pushOperator(IC_MULTIPLY);
break;
}
}
void onDivide() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_RPAREN:
State = IES_DIVIDE;
IC.pushOperator(IC_DIVIDE);
break;
}
}
void onLBrac() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_RBRAC:
State = IES_PLUS;
IC.pushOperator(IC_PLUS);
break;
}
}
void onRBrac() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_RBRAC;
if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
// If we already have a BaseReg, then assume this is the IndexReg with
// a scale of 1.
if (!BaseReg) {
BaseReg = TmpReg;
} else {
assert (!IndexReg && "BaseReg/IndexReg already set!");
IndexReg = TmpReg;
Scale = 1;
}
}
break;
}
PrevState = CurrState;
}
void onLParen() {
IntelExprState CurrState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_PLUS:
case IES_MINUS:
case IES_NOT:
case IES_OR:
case IES_AND:
case IES_LSHIFT:
case IES_RSHIFT:
case IES_MULTIPLY:
case IES_DIVIDE:
case IES_LPAREN:
// FIXME: We don't handle this type of unary minus or not, yet.
if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
PrevState == IES_OR || PrevState == IES_AND ||
PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
PrevState == IES_NOT) &&
(CurrState == IES_MINUS || CurrState == IES_NOT)) {
State = IES_ERROR;
break;
}
State = IES_LPAREN;
IC.pushOperator(IC_LPAREN);
break;
}
PrevState = CurrState;
}
void onRParen() {
PrevState = State;
switch (State) {
default:
State = IES_ERROR;
break;
case IES_INTEGER:
case IES_REGISTER:
case IES_RPAREN:
State = IES_RPAREN;
IC.pushOperator(IC_RPAREN);
break;
}
}
};
bool Error(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
bool MatchingInlineAsm = false) {
MCAsmParser &Parser = getParser();
if (MatchingInlineAsm) return true;
return Parser.Error(L, Msg, Ranges);
}
bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None,
bool MatchingInlineAsm = false) {
MCAsmParser &Parser = getParser();
Parser.eatToEndOfStatement();
return Error(L, Msg, Ranges, MatchingInlineAsm);
}
std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
Error(Loc, Msg);
return nullptr;
}
std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
std::unique_ptr<X86Operand> ParseOperand();
std::unique_ptr<X86Operand> ParseATTOperand();
std::unique_ptr<X86Operand> ParseIntelOperand();
std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
std::unique_ptr<X86Operand>
ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
std::unique_ptr<X86Operand>
ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size);
std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start, SMLoc End);
bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg,
SMLoc Start,
int64_t ImmDisp,
unsigned Size);
bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End);
std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
std::unique_ptr<X86Operand>
CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
unsigned IndexReg, unsigned Scale, SMLoc Start,
SMLoc End, unsigned Size, StringRef Identifier,
InlineAsmIdentifierInfo &Info);
bool ParseDirectiveWord(unsigned Size, SMLoc L);
bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
bool processInstruction(MCInst &Inst, const OperandVector &Ops);
/// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
/// instrumentation around Inst.
void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
MCStreamer &Out, bool MatchingInlineAsm);
bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
bool MatchingInlineAsm);
bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm);
bool OmitRegisterFromClobberLists(unsigned RegNo) override;
/// doSrcDstMatch - Returns true if operands are matching in their
/// word size (%si and %di, %esi and %edi, etc.). Order depends on
/// the parsing mode (Intel vs. AT&T).
bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);
/// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
/// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
/// \return \c true if no parsing errors occurred, \c false otherwise.
bool HandleAVX512Operand(OperandVector &Operands,
const MCParsedAsmOperand &Op);
bool is64BitMode() const {
// FIXME: Can tablegen auto-generate this?
return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
}
bool is32BitMode() const {
// FIXME: Can tablegen auto-generate this?
return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
}
bool is16BitMode() const {
// FIXME: Can tablegen auto-generate this?
return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
}
void SwitchMode(uint64_t mode) {
uint64_t oldMode = STI.getFeatureBits() &
(X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit);
unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(oldMode | mode));
setAvailableFeatures(FB);
assert(mode == (STI.getFeatureBits() &
(X86::Mode64Bit | X86::Mode32Bit | X86::Mode16Bit)));
}
unsigned getPointerWidth() {
if (is16BitMode()) return 16;
if (is32BitMode()) return 32;
if (is64BitMode()) return 64;
llvm_unreachable("invalid mode");
}
bool isParsingIntelSyntax() {
return getParser().getAssemblerDialect();
}
/// @name Auto-generated Matcher Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "X86GenAsmMatcher.inc"
/// }
public:
X86AsmParser(MCSubtargetInfo &sti, MCAsmParser &Parser,
const MCInstrInfo &mii, const MCTargetOptions &Options)
: MCTargetAsmParser(), STI(sti), MII(mii), InstInfo(nullptr) {
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
Instrumentation.reset(
CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
}
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
void SetFrameRegister(unsigned RegNo) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
};
} // end anonymous namespace
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
StringRef &ErrMsg) {
// If we have both a base register and an index register make sure they are
// both 64-bit or 32-bit registers.
// To support VSIB, IndexReg can be 128-bit or 256-bit registers.
if (BaseReg != 0 && IndexReg != 0) {
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
IndexReg != X86::RIZ) {
ErrMsg = "base register is 64-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
(X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
IndexReg != X86::EIZ){
ErrMsg = "base register is 32-bit, but index register is not";
return true;
}
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
ErrMsg = "base register is 16-bit, but index register is not";
return true;
}
if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
IndexReg != X86::SI && IndexReg != X86::DI) ||
((BaseReg == X86::SI || BaseReg == X86::DI) &&
IndexReg != X86::BX && IndexReg != X86::BP)) {
ErrMsg = "invalid 16-bit base/index register combination";
return true;
}
}
}
return false;
}
bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
{
// Return true and let a normal complaint about bogus operands happen.
if (!Op1.isMem() || !Op2.isMem())
return true;
// Actually these might be the other way round if Intel syntax is
// being used. It doesn't matter.
unsigned diReg = Op1.Mem.BaseReg;
unsigned siReg = Op2.Mem.BaseReg;
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
// Again, return true and let another error happen.
return true;
}
bool X86AsmParser::ParseRegister(unsigned &RegNo,
SMLoc &StartLoc, SMLoc &EndLoc) {
MCAsmParser &Parser = getParser();
RegNo = 0;
const AsmToken &PercentTok = Parser.getTok();
StartLoc = PercentTok.getLoc();
// If we encounter a %, ignore it. This code handles registers with and
// without the prefix, unprefixed registers can occur in cfi directives.
if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
Parser.Lex(); // Eat percent token.
const AsmToken &Tok = Parser.getTok();
EndLoc = Tok.getEndLoc();
if (Tok.isNot(AsmToken::Identifier)) {
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
RegNo = MatchRegisterName(Tok.getString());
// If the match failed, try the register name as lowercase.
if (RegNo == 0)
RegNo = MatchRegisterName(Tok.getString().lower());
if (!is64BitMode()) {
// FIXME: This should be done using Requires<Not64BitMode> and
// Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
// checked.
// FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
// REX prefix.
if (RegNo == X86::RIZ ||
X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
X86II::isX86_64NonExtLowByteReg(RegNo) ||
X86II::isX86_64ExtendedReg(RegNo))
return Error(StartLoc, "register %"
+ Tok.getString() + " is only available in 64-bit mode",
SMRange(StartLoc, EndLoc));
}
// Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
RegNo = X86::ST0;
Parser.Lex(); // Eat 'st'
// Check to see if we have '(4)' after %st.
if (getLexer().isNot(AsmToken::LParen))
return false;
// Lex the paren.
getParser().Lex();
const AsmToken &IntTok = Parser.getTok();
if (IntTok.isNot(AsmToken::Integer))
return Error(IntTok.getLoc(), "expected stack index");
switch (IntTok.getIntVal()) {
case 0: RegNo = X86::ST0; break;
case 1: RegNo = X86::ST1; break;
case 2: RegNo = X86::ST2; break;
case 3: RegNo = X86::ST3; break;
case 4: RegNo = X86::ST4; break;
case 5: RegNo = X86::ST5; break;
case 6: RegNo = X86::ST6; break;
case 7: RegNo = X86::ST7; break;
default: return Error(IntTok.getLoc(), "invalid stack index");
}
if (getParser().Lex().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "expected ')'");
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat ')'
return false;
}
EndLoc = Parser.getTok().getEndLoc();
// If this is "db[0-7]", match it as an alias
// for dr[0-7].
if (RegNo == 0 && Tok.getString().size() == 3 &&
Tok.getString().startswith("db")) {
switch (Tok.getString()[2]) {
case '0': RegNo = X86::DR0; break;
case '1': RegNo = X86::DR1; break;
case '2': RegNo = X86::DR2; break;
case '3': RegNo = X86::DR3; break;
case '4': RegNo = X86::DR4; break;
case '5': RegNo = X86::DR5; break;
case '6': RegNo = X86::DR6; break;
case '7': RegNo = X86::DR7; break;
}
if (RegNo != 0) {
EndLoc = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat it.
return false;
}
}
if (RegNo == 0) {
if (isParsingIntelSyntax()) return true;
return Error(StartLoc, "invalid register name",
SMRange(StartLoc, EndLoc));
}
Parser.Lex(); // Eat identifier token.
return false;
}
void X86AsmParser::SetFrameRegister(unsigned RegNo) {
Instrumentation->SetInitialFrameRegister(RegNo);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
unsigned basereg =
is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
unsigned basereg =
is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
const MCExpr *Disp = MCConstantExpr::Create(0, getContext());
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
Loc, Loc, 0);
}
std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
if (isParsingIntelSyntax())
return ParseIntelOperand();
return ParseATTOperand();
}
/// getIntelMemOperandSize - Return intel memory operand size.
static unsigned getIntelMemOperandSize(StringRef OpStr) {
unsigned Size = StringSwitch<unsigned>(OpStr)
.Cases("BYTE", "byte", 8)
.Cases("WORD", "word", 16)
.Cases("DWORD", "dword", 32)
.Cases("QWORD", "qword", 64)
.Cases("XWORD", "xword", 80)
.Cases("XMMWORD", "xmmword", 128)
.Cases("YMMWORD", "ymmword", 256)
.Cases("ZMMWORD", "zmmword", 512)
.Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
.Default(0);
return Size;
}
std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
InlineAsmIdentifierInfo &Info) {
// If we found a decl other than a VarDecl, then assume it is a FuncDecl or
// some other label reference.
if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) {
// Insert an explicit size if the user didn't have one.
if (!Size) {
Size = getPointerWidth();
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
/*Len=*/0, Size));
}
// Create an absolute memory reference in order to match against
// instructions taking a PC relative operand.
return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
Identifier, Info.OpDecl);
}
// We either have a direct symbol reference, or an offset from a symbol. The
// parser always puts the symbol on the LHS, so look there for size
// calculation purposes.
const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
bool IsSymRef =
isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
if (IsSymRef) {
if (!Size) {
Size = Info.Type * 8; // Size is in terms of bits in this context.
if (Size)
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_SizeDirective, Start,
/*Len=*/0, Size));
}
}
// When parsing inline assembly we set the base register to a non-zero value
// if we don't know the actual value at this time. This is necessary to
// get the matching correct in some cases.
BaseReg = BaseReg ? BaseReg : 1;
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
IndexReg, Scale, Start, End, Size, Identifier,
Info.OpDecl);
}
static void
RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> *AsmRewrites,
StringRef SymName, int64_t ImmDisp,
int64_t FinalImmDisp, SMLoc &BracLoc,
SMLoc &StartInBrac, SMLoc &End) {
// Remove the '[' and ']' from the IR string.
AsmRewrites->push_back(AsmRewrite(AOK_Skip, BracLoc, 1));
AsmRewrites->push_back(AsmRewrite(AOK_Skip, End, 1));
// If ImmDisp is non-zero, then we parsed a displacement before the
// bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
// If ImmDisp doesn't match the displacement computed by the state machine
// then we have an additional displacement in the bracketed expression.
if (ImmDisp != FinalImmDisp) {
if (ImmDisp) {
// We have an immediate displacement before the bracketed expression.
// Adjust this to match the final immediate displacement.
bool Found = false;
for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
E = AsmRewrites->end(); I != E; ++I) {
if ((*I).Loc.getPointer() > BracLoc.getPointer())
continue;
if ((*I).Kind == AOK_ImmPrefix || (*I).Kind == AOK_Imm) {
assert (!Found && "ImmDisp already rewritten.");
(*I).Kind = AOK_Imm;
(*I).Len = BracLoc.getPointer() - (*I).Loc.getPointer();
(*I).Val = FinalImmDisp;
Found = true;
break;
}
}
assert (Found && "Unable to rewrite ImmDisp.");
(void)Found;
} else {
// We have a symbolic and an immediate displacement, but no displacement
// before the bracketed expression. Put the immediate displacement
// before the bracketed expression.
AsmRewrites->push_back(AsmRewrite(AOK_Imm, BracLoc, 0, FinalImmDisp));
}
}
// Remove all the ImmPrefix rewrites within the brackets.
for (SmallVectorImpl<AsmRewrite>::iterator I = AsmRewrites->begin(),
E = AsmRewrites->end(); I != E; ++I) {
if ((*I).Loc.getPointer() < StartInBrac.getPointer())
continue;
if ((*I).Kind == AOK_ImmPrefix)
(*I).Kind = AOK_Delete;
}
const char *SymLocPtr = SymName.data();
// Skip everything before the symbol.
if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
assert(Len > 0 && "Expected a non-negative length.");
AsmRewrites->push_back(AsmRewrite(AOK_Skip, StartInBrac, Len));
}
// Skip everything after the symbol.
if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
assert(Len > 0 && "Expected a non-negative length.");
AsmRewrites->push_back(AsmRewrite(AOK_Skip, Loc, Len));
}
}
bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
bool Done = false;
while (!Done) {
bool UpdateLocLex = true;
// The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
// identifier. Don't try an parse it as a register.
if (Tok.getString().startswith("."))
break;
// If we're parsing an immediate expression, we don't expect a '['.
if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
break;
AsmToken::TokenKind TK = getLexer().getKind();
switch (TK) {
default: {
if (SM.isValidEndState()) {
Done = true;
break;
}
return Error(Tok.getLoc(), "unknown token in expression");
}
case AsmToken::EndOfStatement: {
Done = true;
break;
}
case AsmToken::String:
case AsmToken::Identifier: {
// This could be a register or a symbolic displacement.
unsigned TmpReg;
const MCExpr *Val;
SMLoc IdentLoc = Tok.getLoc();
StringRef Identifier = Tok.getString();
if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
SM.onRegister(TmpReg);
UpdateLocLex = false;
break;
} else {
if (!isParsingInlineAsm()) {
if (getParser().parsePrimaryExpr(Val, End))
return Error(Tok.getLoc(), "Unexpected identifier!");
} else {
// This is a dot operator, not an adjacent identifier.
if (Identifier.find('.') != StringRef::npos) {
return false;
} else {
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return true;
}
}
SM.onIdentifierExpr(Val, Identifier);
UpdateLocLex = false;
break;
}
return Error(Tok.getLoc(), "Unexpected identifier!");
}
case AsmToken::Integer: {
StringRef ErrMsg;
if (isParsingInlineAsm() && SM.getAddImmPrefix())
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix,
Tok.getLoc()));
// Look for 'b' or 'f' following an Integer as a directional label
SMLoc Loc = getTok().getLoc();
int64_t IntVal = getTok().getIntVal();
End = consumeToken();
UpdateLocLex = false;
if (getLexer().getKind() == AsmToken::Identifier) {
StringRef IDVal = getTok().getString();
if (IDVal == "f" || IDVal == "b") {
MCSymbol *Sym =
getContext().GetDirectionalLocalSymbol(IntVal, IDVal == "b");
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
const MCExpr *Val =
MCSymbolRefExpr::Create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined())
return Error(Loc, "invalid reference to undefined symbol");
StringRef Identifier = Sym->getName();
SM.onIdentifierExpr(Val, Identifier);
End = consumeToken();
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
} else {
if (SM.onInteger(IntVal, ErrMsg))
return Error(Loc, ErrMsg);
}
break;
}
case AsmToken::Plus: SM.onPlus(); break;
case AsmToken::Minus: SM.onMinus(); break;
case AsmToken::Tilde: SM.onNot(); break;
case AsmToken::Star: SM.onStar(); break;
case AsmToken::Slash: SM.onDivide(); break;
case AsmToken::Pipe: SM.onOr(); break;
case AsmToken::Amp: SM.onAnd(); break;
case AsmToken::LessLess:
SM.onLShift(); break;
case AsmToken::GreaterGreater:
SM.onRShift(); break;
case AsmToken::LBrac: SM.onLBrac(); break;
case AsmToken::RBrac: SM.onRBrac(); break;
case AsmToken::LParen: SM.onLParen(); break;
case AsmToken::RParen: SM.onRParen(); break;
}
if (SM.hadError())
return Error(Tok.getLoc(), "unknown token in expression");
if (!Done && UpdateLocLex)
End = consumeToken();
}
return false;
}
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
int64_t ImmDisp, unsigned Size) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
if (getLexer().isNot(AsmToken::LBrac))
return ErrorOperand(BracLoc, "Expected '[' token!");
Parser.Lex(); // Eat '['
SMLoc StartInBrac = Tok.getLoc();
// Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ]. We
// may have already parsed an immediate displacement before the bracketed
// expression.
IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
if (ParseIntelExpression(SM, End))
return nullptr;
const MCExpr *Disp = nullptr;
if (const MCExpr *Sym = SM.getSym()) {
// A symbolic displacement.
Disp = Sym;
if (isParsingInlineAsm())
RewriteIntelBracExpression(InstInfo->AsmRewrites, SM.getSymName(),
ImmDisp, SM.getImm(), BracLoc, StartInBrac,
End);
}
if (SM.getImm() || !Disp) {
const MCExpr *Imm = MCConstantExpr::Create(SM.getImm(), getContext());
if (Disp)
Disp = MCBinaryExpr::CreateAdd(Disp, Imm, getContext());
else
Disp = Imm; // An immediate displacement only.
}
// Parse struct field access. Intel requires a dot, but MSVC doesn't. MSVC
// will in fact do global lookup the field name inside all global typedefs,
// but we don't emulate that.
if (Tok.getString().find('.') != StringRef::npos) {
const MCExpr *NewDisp;
if (ParseIntelDotOperator(Disp, NewDisp))
return nullptr;
End = Tok.getEndLoc();
Parser.Lex(); // Eat the field.
Disp = NewDisp;
}
int BaseReg = SM.getBaseReg();
int IndexReg = SM.getIndexReg();
int Scale = SM.getScale();
if (!isParsingInlineAsm()) {
// handle [-42]
if (!BaseReg && !IndexReg) {
if (!SegReg)
return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
Start, End, Size);
}
StringRef ErrMsg;
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
Error(StartInBrac, ErrMsg);
return nullptr;
}
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
IndexReg, Scale, Start, End, Size);
}
InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
End, Size, SM.getSymName(), Info);
}
// Inline assembly may use variable names with namespace alias qualifiers.
bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
StringRef &Identifier,
InlineAsmIdentifierInfo &Info,
bool IsUnevaluatedOperand, SMLoc &End) {
MCAsmParser &Parser = getParser();
assert (isParsingInlineAsm() && "Expected to be parsing inline assembly.");
Val = nullptr;
StringRef LineBuf(Identifier.data());
void *Result =
SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
const AsmToken &Tok = Parser.getTok();
SMLoc Loc = Tok.getLoc();
// Advance the token stream until the end of the current token is
// after the end of what the frontend claimed.
const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
while (true) {
End = Tok.getEndLoc();
getLexer().Lex();
assert(End.getPointer() <= EndPtr && "frontend claimed part of a token?");
if (End.getPointer() == EndPtr) break;
}
Identifier = LineBuf;
// If the identifier lookup was unsuccessful, assume that we are dealing with
// a label.
if (!Result) {
StringRef InternalName =
SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
Loc, false);
assert(InternalName.size() && "We should have an internal name here.");
// Push a rewrite for replacing the identifier name with the internal name.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Label, Loc,
Identifier.size(),
InternalName));
}
// Create the symbol reference.
MCSymbol *Sym = getContext().GetOrCreateSymbol(Identifier);
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
Val = MCSymbolRefExpr::Create(Sym, Variant, getParser().getContext());
return false;
}
/// \brief Parse intel style segment override.
std::unique_ptr<X86Operand>
X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
unsigned Size) {
MCAsmParser &Parser = getParser();
assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
const AsmToken &Tok = Parser.getTok(); // Eat colon.
if (Tok.isNot(AsmToken::Colon))
return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
Parser.Lex(); // Eat ':'
int64_t ImmDisp = 0;
if (getLexer().is(AsmToken::Integer)) {
ImmDisp = Tok.getIntVal();
AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
if (isParsingInlineAsm())
InstInfo->AsmRewrites->push_back(
AsmRewrite(AOK_ImmPrefix, ImmDispToken.getLoc()));
if (getLexer().isNot(AsmToken::LBrac)) {
// An immediate following a 'segment register', 'colon' token sequence can
// be followed by a bracketed expression. If it isn't we know we have our
// final segment override.
const MCExpr *Disp = MCConstantExpr::Create(ImmDisp, getContext());
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
/*BaseReg=*/0, /*IndexReg=*/0, /*Scale=*/1,
Start, ImmDispToken.getEndLoc(), Size);
}
}
if (getLexer().is(AsmToken::LBrac))
return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
const MCExpr *Val;
SMLoc End;
if (!isParsingInlineAsm()) {
if (getParser().parsePrimaryExpr(Val, End))
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
}
InlineAsmIdentifierInfo Info;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return nullptr;
return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
/*Scale=*/1, Start, End, Size, Identifier, Info);
}
//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
std::unique_ptr<X86Operand>
X86AsmParser::ParseRoundingModeOp(SMLoc Start, SMLoc End) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
consumeToken(); // Eat "{"
if (Tok.getIdentifier().startswith("r")){
int rndMode = StringSwitch<int>(Tok.getIdentifier())
.Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
.Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
.Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
.Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
.Default(-1);
if (-1 == rndMode)
return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
Parser.Lex(); // Eat "r*" of r*-sae
if (!getLexer().is(AsmToken::Minus))
return ErrorOperand(Tok.getLoc(), "Expected - at this point");
Parser.Lex(); // Eat "-"
Parser.Lex(); // Eat the sae
if (!getLexer().is(AsmToken::RCurly))
return ErrorOperand(Tok.getLoc(), "Expected } at this point");
Parser.Lex(); // Eat "}"
const MCExpr *RndModeOp =
MCConstantExpr::Create(rndMode, Parser.getContext());
return X86Operand::CreateImm(RndModeOp, Start, End);
}
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
}
/// ParseIntelMemOperand - Parse intel style memory operand.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
SMLoc Start,
unsigned Size) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc End;
// Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
if (getLexer().is(AsmToken::LBrac))
return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
assert(ImmDisp == 0);
const MCExpr *Val;
if (!isParsingInlineAsm()) {
if (getParser().parsePrimaryExpr(Val, End))
return ErrorOperand(Tok.getLoc(), "unknown token in expression");
return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
}
InlineAsmIdentifierInfo Info;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return nullptr;
if (!getLexer().is(AsmToken::LBrac))
return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
/*Scale=*/1, Start, End, Size, Identifier, Info);
Parser.Lex(); // Eat '['
// Parse Identifier [ ImmDisp ]
IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true,
/*AddImmPrefix=*/false);
if (ParseIntelExpression(SM, End))
return nullptr;
if (SM.getSym()) {
Error(Start, "cannot use more than one symbol in memory operand");
return nullptr;
}
if (SM.getBaseReg()) {
Error(Start, "cannot use base register with variable reference");
return nullptr;
}
if (SM.getIndexReg()) {
Error(Start, "cannot use index register with variable reference");
return nullptr;
}
const MCExpr *Disp = MCConstantExpr::Create(SM.getImm(), getContext());
// BaseReg is non-zero to avoid assertions. In the context of inline asm,
// we're pointing to a local variable in memory, so the base register is
// really the frame or stack pointer.
return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
/*BaseReg=*/1, /*IndexReg=*/0, /*Scale=*/1,
Start, End, Size, Identifier, Info.OpDecl);
}
/// Parse the '.' operator.
bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
const MCExpr *&NewDisp) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
int64_t OrigDispVal, DotDispVal;
// FIXME: Handle non-constant expressions.
if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
OrigDispVal = OrigDisp->getValue();
else
return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
// Drop the optional '.'.
StringRef DotDispStr = Tok.getString();
if (DotDispStr.startswith("."))
DotDispStr = DotDispStr.drop_front(1);
// .Imm gets lexed as a real.
if (Tok.is(AsmToken::Real)) {
APInt DotDisp;
DotDispStr.getAsInteger(10, DotDisp);
DotDispVal = DotDisp.getZExtValue();
} else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
unsigned DotDisp;
std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
DotDisp))
return Error(Tok.getLoc(), "Unable to lookup field reference!");
DotDispVal = DotDisp;
} else
return Error(Tok.getLoc(), "Unexpected token type!");
if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
unsigned Len = DotDispStr.size();
unsigned Val = OrigDispVal + DotDispVal;
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_DotOperator, Loc, Len,
Val));
}
NewDisp = MCConstantExpr::Create(OrigDispVal + DotDispVal, getContext());
return false;
}
/// Parse the 'offset' operator. This operator is used to specify the
/// location rather then the content of a variable.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc OffsetOfLoc = Tok.getLoc();
Parser.Lex(); // Eat offset.
const MCExpr *Val;
InlineAsmIdentifierInfo Info;
SMLoc Start = Tok.getLoc(), End;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/false, End))
return nullptr;
// Don't emit the offset operator.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Skip, OffsetOfLoc, 7));
// The offset operator will have an 'r' constraint, thus we need to create
// register operand to ensure proper matching. Just pick a GPR based on
// the size of a pointer.
unsigned RegNo =
is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
OffsetOfLoc, Identifier, Info.OpDecl);
}
enum IntelOperatorKind {
IOK_LENGTH,
IOK_SIZE,
IOK_TYPE
};
/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
/// returns the number of elements in an array. It returns the value 1 for
/// non-array variables. The SIZE operator returns the size of a C or C++
/// variable. A variable's size is the product of its LENGTH and TYPE. The
/// TYPE operator returns the size of a C or C++ type or variable. If the
/// variable is an array, TYPE returns the size of a single element.
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc TypeLoc = Tok.getLoc();
Parser.Lex(); // Eat operator.
const MCExpr *Val = nullptr;
InlineAsmIdentifierInfo Info;
SMLoc Start = Tok.getLoc(), End;
StringRef Identifier = Tok.getString();
if (ParseIntelIdentifier(Val, Identifier, Info,
/*Unevaluated=*/true, End))
return nullptr;
if (!Info.OpDecl)
return ErrorOperand(Start, "unable to lookup expression");
unsigned CVal = 0;
switch(OpKind) {
default: llvm_unreachable("Unexpected operand kind!");
case IOK_LENGTH: CVal = Info.Length; break;
case IOK_SIZE: CVal = Info.Size; break;
case IOK_TYPE: CVal = Info.Type; break;
}
// Rewrite the type operator and the C or C++ type or variable in terms of an
// immediate. E.g. TYPE foo -> $$4
unsigned Len = End.getPointer() - TypeLoc.getPointer();
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, TypeLoc, Len, CVal));
const MCExpr *Imm = MCConstantExpr::Create(CVal, getContext());
return X86Operand::CreateImm(Imm, Start, End);
}
std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
SMLoc Start, End;
// Offset, length, type and size operators.
if (isParsingInlineAsm()) {
StringRef AsmTokStr = Tok.getString();
if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
return ParseIntelOffsetOfOperator();
if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
return ParseIntelOperator(IOK_LENGTH);
if (AsmTokStr == "size" || AsmTokStr == "SIZE")
return ParseIntelOperator(IOK_SIZE);
if (AsmTokStr == "type" || AsmTokStr == "TYPE")
return ParseIntelOperator(IOK_TYPE);
}
unsigned Size = getIntelMemOperandSize(Tok.getString());
if (Size) {
Parser.Lex(); // Eat operand size (e.g., byte, word).
if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
Parser.Lex(); // Eat ptr.
}
Start = Tok.getLoc();
// Immediate.
if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) {
AsmToken StartTok = Tok;
IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
/*AddImmPrefix=*/false);
if (ParseIntelExpression(SM, End))
return nullptr;
int64_t Imm = SM.getImm();
if (isParsingInlineAsm()) {
unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
if (StartTok.getString().size() == Len)
// Just add a prefix if this wasn't a complex immediate expression.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_ImmPrefix, Start));
else
// Otherwise, rewrite the complex expression as a single immediate.
InstInfo->AsmRewrites->push_back(AsmRewrite(AOK_Imm, Start, Len, Imm));
}
if (getLexer().isNot(AsmToken::LBrac)) {
// If a directional label (ie. 1f or 2b) was parsed above from
// ParseIntelExpression() then SM.getSym() was set to a pointer to
// to the MCExpr with the directional local symbol and this is a
// memory operand not an immediate operand.
if (SM.getSym())
return X86Operand::CreateMem(getPointerWidth(), SM.getSym(), Start, End,
Size);
const MCExpr *ImmExpr = MCConstantExpr::Create(Imm, getContext());
return X86Operand::CreateImm(ImmExpr, Start, End);
}
// Only positive immediates are valid.
if (Imm < 0)
return ErrorOperand(Start, "expected a positive immediate displacement "
"before bracketed expr.");
// Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
return ParseIntelMemOperand(Imm, Start, Size);
}
// rounding mode token
if (STI.getFeatureBits() & X86::FeatureAVX512 &&
getLexer().is(AsmToken::LCurly))
return ParseRoundingModeOp(Start, End);
// Register.
unsigned RegNo = 0;
if (!ParseRegister(RegNo, Start, End)) {
// If this is a segment register followed by a ':', then this is the start
// of a segment override, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
}
// Memory operand.
return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
}
std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
MCAsmParser &Parser = getParser();
switch (getLexer().getKind()) {
default:
// Parse a memory operand with no segment register.
return ParseMemOperand(0, Parser.getTok().getLoc());
case AsmToken::Percent: {
// Read the register.
unsigned RegNo;
SMLoc Start, End;
if (ParseRegister(RegNo, Start, End)) return nullptr;
if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
Error(Start, "%eiz and %riz can only be used as index registers",
SMRange(Start, End));
return nullptr;
}
// If this is a segment register followed by a ':', then this is the start
// of a memory reference, otherwise this is a normal register reference.
if (getLexer().isNot(AsmToken::Colon))
return X86Operand::CreateReg(RegNo, Start, End);
if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
return ErrorOperand(Start, "invalid segment register");
getParser().Lex(); // Eat the colon.
return ParseMemOperand(RegNo, Start);
}
case AsmToken::Dollar: {
// $42 -> immediate.
SMLoc Start = Parser.getTok().getLoc(), End;
Parser.Lex();
const MCExpr *Val;
if (getParser().parseExpression(Val, End))
return nullptr;
return X86Operand::CreateImm(Val, Start, End);
}
case AsmToken::LCurly:{
SMLoc Start = Parser.getTok().getLoc(), End;
if (STI.getFeatureBits() & X86::FeatureAVX512)
return ParseRoundingModeOp(Start, End);
return ErrorOperand(Start, "unknown token in expression");
}
}
}
bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
const MCParsedAsmOperand &Op) {
MCAsmParser &Parser = getParser();
if(STI.getFeatureBits() & X86::FeatureAVX512) {
if (getLexer().is(AsmToken::LCurly)) {
// Eat "{" and mark the current place.
const SMLoc consumedToken = consumeToken();
// Distinguish {1to<NUM>} from {%k<NUM>}.
if(getLexer().is(AsmToken::Integer)) {
// Parse memory broadcasting ({1to<NUM>}).
if (getLexer().getTok().getIntVal() != 1)
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected 1to<NUM> at this point");
Parser.Lex(); // Eat "1" of 1to8
if (!getLexer().is(AsmToken::Identifier) ||
!getLexer().getTok().getIdentifier().startswith("to"))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected 1to<NUM> at this point");
// Recognize only reasonable suffixes.
const char *BroadcastPrimitive =
StringSwitch<const char*>(getLexer().getTok().getIdentifier())
.Case("to2", "{1to2}")
.Case("to4", "{1to4}")
.Case("to8", "{1to8}")
.Case("to16", "{1to16}")
.Default(nullptr);
if (!BroadcastPrimitive)
return !ErrorAndEatStatement(getLexer().getLoc(),
"Invalid memory broadcast primitive.");
Parser.Lex(); // Eat "toN" of 1toN
if (!getLexer().is(AsmToken::RCurly))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected } at this point");
Parser.Lex(); // Eat "}"
Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
consumedToken));
// No AVX512 specific primitives can pass
// after memory broadcasting, so return.
return true;
} else {
// Parse mask register {%k1}
Operands.push_back(X86Operand::CreateToken("{", consumedToken));
if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
Operands.push_back(std::move(Op));
if (!getLexer().is(AsmToken::RCurly))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected } at this point");
Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
// Parse "zeroing non-masked" semantic {z}
if (getLexer().is(AsmToken::LCurly)) {
Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
if (!getLexer().is(AsmToken::Identifier) ||
getLexer().getTok().getIdentifier() != "z")
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected z at this point");
Parser.Lex(); // Eat the z
if (!getLexer().is(AsmToken::RCurly))
return !ErrorAndEatStatement(getLexer().getLoc(),
"Expected } at this point");
Parser.Lex(); // Eat the }
}
}
}
}
}
return true;
}
/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
/// has already been parsed if present.
std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
SMLoc MemStart) {
MCAsmParser &Parser = getParser();
// We have to disambiguate a parenthesized expression "(4+5)" from the start
// of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
// only way to do this without lookahead is to eat the '(' and see what is
// after it.
const MCExpr *Disp = MCConstantExpr::Create(0, getParser().getContext());
if (getLexer().isNot(AsmToken::LParen)) {
SMLoc ExprEnd;
if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd);
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
} else {
// Okay, we have a '('. We don't know if this is an expression or not, but
// so we have to eat the ( to see beyond it.
SMLoc LParenLoc = Parser.getTok().getLoc();
Parser.Lex(); // Eat the '('.
if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
// Nothing to do here, fall into the code below with the '(' part of the
// memory operand consumed.
} else {
SMLoc ExprEnd;
// It must be an parenthesized expression, parse it now.
if (getParser().parseParenExpression(Disp, ExprEnd))
return nullptr;
// After parsing the base expression we could either have a parenthesized
// memory address or not. If not, return now. If so, eat the (.
if (getLexer().isNot(AsmToken::LParen)) {
// Unless we have a segment register, treat this as an immediate.
if (SegReg == 0)
return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc,
ExprEnd);
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
MemStart, ExprEnd);
}
// Eat the '('.
Parser.Lex();
}
}
// If we reached here, then we just ate the ( of the memory operand. Process
// the rest of the memory operand.
unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
SMLoc IndexLoc, BaseLoc;
if (getLexer().is(AsmToken::Percent)) {
SMLoc StartLoc, EndLoc;
BaseLoc = Parser.getTok().getLoc();
if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
Error(StartLoc, "eiz and riz can only be used as index registers",
SMRange(StartLoc, EndLoc));
return nullptr;
}
}
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex(); // Eat the comma.
IndexLoc = Parser.getTok().getLoc();
// Following the comma we should have either an index register, or a scale
// value. We don't support the later form, but we want to parse it
// correctly.
//
// Not that even though it would be completely consistent to support syntax
// like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
if (getLexer().is(AsmToken::Percent)) {
SMLoc L;
if (ParseRegister(IndexReg, L, L)) return nullptr;
if (getLexer().isNot(AsmToken::RParen)) {
// Parse the scale amount:
// ::= ',' [scale-expression]
if (getLexer().isNot(AsmToken::Comma)) {
Error(Parser.getTok().getLoc(),
"expected comma in scale expression");
return nullptr;
}
Parser.Lex(); // Eat the comma.
if (getLexer().isNot(AsmToken::RParen)) {
SMLoc Loc = Parser.getTok().getLoc();
int64_t ScaleVal;
if (getParser().parseAbsoluteExpression(ScaleVal)){
Error(Loc, "expected scale expression");
return nullptr;
}
// Validate the scale amount.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
ScaleVal != 1) {
Error(Loc, "scale factor in 16-bit address must be 1");
return nullptr;
}
if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8){
Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
return nullptr;
}
Scale = (unsigned)ScaleVal;
}
}
} else if (getLexer().isNot(AsmToken::RParen)) {
// A scale amount without an index is ignored.
// index.
SMLoc Loc = Parser.getTok().getLoc();
int64_t Value;
if (getParser().parseAbsoluteExpression(Value))
return nullptr;
if (Value != 1)
Warning(Loc, "scale factor without index register is ignored");
Scale = 1;
}
}
// Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
if (getLexer().isNot(AsmToken::RParen)) {
Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
return nullptr;
}
SMLoc MemEnd = Parser.getTok().getEndLoc();
Parser.Lex(); // Eat the ')'.
// Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
// and then only in non-64-bit modes. Except for DX, which is a special case
// because an unofficial form of in/out instructions uses it.
if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
(is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
BaseReg != X86::SI && BaseReg != X86::DI)) &&
BaseReg != X86::DX) {
Error(BaseLoc, "invalid 16-bit base register");
return nullptr;
}
if (BaseReg == 0 &&
X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
Error(IndexLoc, "16-bit memory operand may not include only index register");
return nullptr;
}
StringRef ErrMsg;
if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
Error(BaseLoc, ErrMsg);
return nullptr;
}
if (SegReg || BaseReg || IndexReg)
return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
IndexReg, Scale, MemStart, MemEnd);
return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd);
}
bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) {
MCAsmParser &Parser = getParser();
InstInfo = &Info;
StringRef PatchedName = Name;
// FIXME: Hack to recognize setneb as setne.
if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
PatchedName != "setb" && PatchedName != "setnb")
PatchedName = PatchedName.substr(0, Name.size()-1);
// FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
(PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
bool IsVCMP = PatchedName[0] == 'v';
unsigned CCIdx = IsVCMP ? 4 : 3;
unsigned ComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(CCIdx, PatchedName.size() - 2))
.Case("eq", 0x00)
.Case("lt", 0x01)
.Case("le", 0x02)
.Case("unord", 0x03)
.Case("neq", 0x04)
.Case("nlt", 0x05)
.Case("nle", 0x06)
.Case("ord", 0x07)
/* AVX only from here */
.Case("eq_uq", 0x08)
.Case("nge", 0x09)
.Case("ngt", 0x0A)
.Case("false", 0x0B)
.Case("neq_oq", 0x0C)
.Case("ge", 0x0D)
.Case("gt", 0x0E)
.Case("true", 0x0F)
.Case("eq_os", 0x10)
.Case("lt_oq", 0x11)
.Case("le_oq", 0x12)
.Case("unord_s", 0x13)
.Case("neq_us", 0x14)
.Case("nlt_uq", 0x15)
.Case("nle_uq", 0x16)
.Case("ord_s", 0x17)
.Case("eq_us", 0x18)
.Case("nge_uq", 0x19)
.Case("ngt_uq", 0x1A)
.Case("false_os", 0x1B)
.Case("neq_os", 0x1C)
.Case("ge_oq", 0x1D)
.Case("gt_oq", 0x1E)
.Case("true_us", 0x1F)
.Default(~0U);
if (ComparisonCode != ~0U && (IsVCMP || ComparisonCode < 8)) {
Operands.push_back(X86Operand::CreateToken(PatchedName.slice(0, CCIdx),
NameLoc));
const MCExpr *ImmOp = MCConstantExpr::Create(ComparisonCode,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
PatchedName = PatchedName.substr(PatchedName.size() - 2);
}
}
// FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcmp") &&
(PatchedName.endswith("b") || PatchedName.endswith("w") ||
PatchedName.endswith("d") || PatchedName.endswith("q"))) {
unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned ComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - CCIdx))
.Case("eq", 0x0) // Only allowed on unsigned. Checked below.
.Case("lt", 0x1)
.Case("le", 0x2)
//.Case("false", 0x3) // Not a documented alias.
.Case("neq", 0x4)
.Case("nlt", 0x5)
.Case("nle", 0x6)
//.Case("true", 0x7) // Not a documented alias.
.Default(~0U);
if (ComparisonCode != ~0U && (ComparisonCode != 0 || CCIdx == 2)) {
Operands.push_back(X86Operand::CreateToken("vpcmp", NameLoc));
const MCExpr *ImmOp = MCConstantExpr::Create(ComparisonCode,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
}
}
// FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
if (PatchedName.startswith("vpcom") &&
(PatchedName.endswith("b") || PatchedName.endswith("w") ||
PatchedName.endswith("d") || PatchedName.endswith("q"))) {
unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
unsigned ComparisonCode = StringSwitch<unsigned>(
PatchedName.slice(5, PatchedName.size() - CCIdx))
.Case("lt", 0x0)
.Case("le", 0x1)
.Case("gt", 0x2)
.Case("ge", 0x3)
.Case("eq", 0x4)
.Case("neq", 0x5)
.Case("false", 0x6)
.Case("true", 0x7)
.Default(~0U);
if (ComparisonCode != ~0U) {
Operands.push_back(X86Operand::CreateToken("vpcom", NameLoc));
const MCExpr *ImmOp = MCConstantExpr::Create(ComparisonCode,
getParser().getContext());
Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
}
}
Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
// Determine whether this is an instruction prefix.
bool isPrefix =
Name == "lock" || Name == "rep" ||
Name == "repe" || Name == "repz" ||
Name == "repne" || Name == "repnz" ||
Name == "rex64" || Name == "data16";
// This does the actual operand parsing. Don't parse any more if we have a
// prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
// just want to parse the "lock" as the first instruction and the "incl" as
// the next one.
if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
// Parse '*' modifier.
if (getLexer().is(AsmToken::Star))
Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
// Read the operands.
while(1) {
if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
Operands.push_back(std::move(Op));
if (!HandleAVX512Operand(Operands, *Operands.back()))
return true;
} else {
Parser.eatToEndOfStatement();
return true;
}
// check for comma and eat it
if (getLexer().is(AsmToken::Comma))
Parser.Lex();
else
break;
}
if (getLexer().isNot(AsmToken::EndOfStatement))
return ErrorAndEatStatement(getLexer().getLoc(),
"unexpected token in argument list");
}
// Consume the EndOfStatement or the prefix separator Slash
if (getLexer().is(AsmToken::EndOfStatement) ||
(isPrefix && getLexer().is(AsmToken::Slash)))
Parser.Lex();
// This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
// "outb %al, %dx". Out doesn't take a memory form, but this is a widely
// documented form in various unofficial manuals, so a lot of code uses it.
if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands.back();
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
}
}
// Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
if (Op.isMem() && Op.Mem.SegReg == 0 &&
isa<MCConstantExpr>(Op.Mem.Disp) &&
cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
SMLoc Loc = Op.getEndLoc();
Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
}
}
// Append default arguments to "ins[bwld]"
if (Name.startswith("ins") && Operands.size() == 1 &&
(Name == "insb" || Name == "insw" || Name == "insl" ||
Name == "insd" )) {
if (isParsingIntelSyntax()) {
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
Operands.push_back(DefaultMemDIOperand(NameLoc));
} else {
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
Operands.push_back(DefaultMemDIOperand(NameLoc));
}
}
// Append default arguments to "outs[bwld]"
if (Name.startswith("outs") && Operands.size() == 1 &&
(Name == "outsb" || Name == "outsw" || Name == "outsl" ||
Name == "outsd" )) {
if (isParsingIntelSyntax()) {
Operands.push_back(DefaultMemSIOperand(NameLoc));
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
} else {
Operands.push_back(DefaultMemSIOperand(NameLoc));
Operands.push_back(X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
}
}
// Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
// values of $SIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("lods") && Operands.size() == 1 &&
(Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
Operands.push_back(DefaultMemSIOperand(NameLoc));
// Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("stos") && Operands.size() == 1 &&
(Name == "stos" || Name == "stosb" || Name == "stosw" ||
Name == "stosl" || Name == "stosd" || Name == "stosq"))
Operands.push_back(DefaultMemDIOperand(NameLoc));
// Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
// values of $DIREG according to the mode. It would be nice if this
// could be achieved with InstAlias in the tables.
if (Name.startswith("scas") && Operands.size() == 1 &&
(Name == "scas" || Name == "scasb" || Name == "scasw" ||
Name == "scasl" || Name == "scasd" || Name == "scasq"))
Operands.push_back(DefaultMemDIOperand(NameLoc));
// Add default SI and DI operands to "cmps[bwlq]".
if (Name.startswith("cmps") &&
(Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
if (Operands.size() == 1) {
if (isParsingIntelSyntax()) {
Operands.push_back(DefaultMemSIOperand(NameLoc));
Operands.push_back(DefaultMemDIOperand(NameLoc));
} else {
Operands.push_back(DefaultMemDIOperand(NameLoc));
Operands.push_back(DefaultMemSIOperand(NameLoc));
}
} else if (Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
X86Operand &Op2 = (X86Operand &)*Operands[2];
if (!doSrcDstMatch(Op, Op2))
return Error(Op.getStartLoc(),
"mismatching source and destination index registers");
}
}
// Add default SI and DI operands to "movs[bwlq]".
if ((Name.startswith("movs") &&
(Name == "movs" || Name == "movsb" || Name == "movsw" ||
Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
(Name.startswith("smov") &&
(Name == "smov" || Name == "smovb" || Name == "smovw" ||
Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
if (Operands.size() == 1) {
if (Name == "movsd")
Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
if (isParsingIntelSyntax()) {
Operands.push_back(DefaultMemDIOperand(NameLoc));
Operands.push_back(DefaultMemSIOperand(NameLoc));
} else {
Operands.push_back(DefaultMemSIOperand(NameLoc));
Operands.push_back(DefaultMemDIOperand(NameLoc));
}
} else if (Operands.size() == 3) {
X86Operand &Op = (X86Operand &)*Operands[1];
X86Operand &Op2 = (X86Operand &)*Operands[2];
if (!doSrcDstMatch(Op, Op2))
return Error(Op.getStartLoc(),
"mismatching source and destination index registers");
}
}
// FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
// "shift <op>".
if ((Name.startswith("shr") || Name.startswith("sar") ||
Name.startswith("shl") || Name.startswith("sal") ||
Name.startswith("rcl") || Name.startswith("rcr") ||
Name.startswith("rol") || Name.startswith("ror")) &&
Operands.size() == 3) {
if (isParsingIntelSyntax()) {
// Intel syntax
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
Operands.pop_back();
} else {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
Operands.erase(Operands.begin() + 1);
}
}
// Transforms "int $3" into "int3" as a size optimization. We can't write an
// instalias with an immediate operand yet.
if (Name == "int" && Operands.size() == 2) {
X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
cast<MCConstantExpr>(Op1.getImm())->getValue() == 3) {
Operands.erase(Operands.begin() + 1);
static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
}
}
return false;
}
static bool convertToSExti8(MCInst &Inst, unsigned Opcode, unsigned Reg,
bool isCmp) {
MCInst TmpInst;
TmpInst.setOpcode(Opcode);
if (!isCmp)
TmpInst.addOperand(MCOperand::CreateReg(Reg));
TmpInst.addOperand(MCOperand::CreateReg(Reg));
TmpInst.addOperand(Inst.getOperand(0));
Inst = TmpInst;
return true;
}
static bool convert16i16to16ri8(MCInst &Inst, unsigned Opcode,
bool isCmp = false) {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti16i8Value(Inst.getOperand(0).getImm()))
return false;
return convertToSExti8(Inst, Opcode, X86::AX, isCmp);
}
static bool convert32i32to32ri8(MCInst &Inst, unsigned Opcode,
bool isCmp = false) {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti32i8Value(Inst.getOperand(0).getImm()))
return false;
return convertToSExti8(Inst, Opcode, X86::EAX, isCmp);
}
static bool convert64i32to64ri8(MCInst &Inst, unsigned Opcode,
bool isCmp = false) {
if (!Inst.getOperand(0).isImm() ||
!isImmSExti64i8Value(Inst.getOperand(0).getImm()))
return false;
return convertToSExti8(Inst, Opcode, X86::RAX, isCmp);
}
bool X86AsmParser::validateInstruction(MCInst &Inst, const OperandVector &Ops) {
switch (Inst.getOpcode()) {
default: return true;
case X86::INT:
X86Operand &Op = static_cast<X86Operand &>(*Ops[1]);
assert(Op.isImm() && "expected immediate");
int64_t Res;
if (!Op.getImm()->EvaluateAsAbsolute(Res) || Res > 255) {
Error(Op.getStartLoc(), "interrupt vector must be in range [0-255]");
return false;
}
return true;
}
llvm_unreachable("handle the instruction appropriately");
}
bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
switch (Inst.getOpcode()) {
default: return false;
case X86::AND16i16: return convert16i16to16ri8(Inst, X86::AND16ri8);
case X86::AND32i32: return convert32i32to32ri8(Inst, X86::AND32ri8);
case X86::AND64i32: return convert64i32to64ri8(Inst, X86::AND64ri8);
case X86::XOR16i16: return convert16i16to16ri8(Inst, X86::XOR16ri8);
case X86::XOR32i32: return convert32i32to32ri8(Inst, X86::XOR32ri8);
case X86::XOR64i32: return convert64i32to64ri8(Inst, X86::XOR64ri8);
case X86::OR16i16: return convert16i16to16ri8(Inst, X86::OR16ri8);
case X86::OR32i32: return convert32i32to32ri8(Inst, X86::OR32ri8);
case X86::OR64i32: return convert64i32to64ri8(Inst, X86::OR64ri8);
case X86::CMP16i16: return convert16i16to16ri8(Inst, X86::CMP16ri8, true);
case X86::CMP32i32: return convert32i32to32ri8(Inst, X86::CMP32ri8, true);
case X86::CMP64i32: return convert64i32to64ri8(Inst, X86::CMP64ri8, true);
case X86::ADD16i16: return convert16i16to16ri8(Inst, X86::ADD16ri8);
case X86::ADD32i32: return convert32i32to32ri8(Inst, X86::ADD32ri8);
case X86::ADD64i32: return convert64i32to64ri8(Inst, X86::ADD64ri8);
case X86::SUB16i16: return convert16i16to16ri8(Inst, X86::SUB16ri8);
case X86::SUB32i32: return convert32i32to32ri8(Inst, X86::SUB32ri8);
case X86::SUB64i32: return convert64i32to64ri8(Inst, X86::SUB64ri8);
case X86::ADC16i16: return convert16i16to16ri8(Inst, X86::ADC16ri8);
case X86::ADC32i32: return convert32i32to32ri8(Inst, X86::ADC32ri8);
case X86::ADC64i32: return convert64i32to64ri8(Inst, X86::ADC64ri8);
case X86::SBB16i16: return convert16i16to16ri8(Inst, X86::SBB16ri8);
case X86::SBB32i32: return convert32i32to32ri8(Inst, X86::SBB32ri8);
case X86::SBB64i32: return convert64i32to64ri8(Inst, X86::SBB64ri8);
case X86::VMOVAPDrr:
case X86::VMOVAPDYrr:
case X86::VMOVAPSrr:
case X86::VMOVAPSYrr:
case X86::VMOVDQArr:
case X86::VMOVDQAYrr:
case X86::VMOVDQUrr:
case X86::VMOVDQUYrr:
case X86::VMOVUPDrr:
case X86::VMOVUPDYrr:
case X86::VMOVUPSrr:
case X86::VMOVUPSYrr: {
if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
!X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
case X86::VMOVSDrr:
case X86::VMOVSSrr: {
if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
!X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
return false;
unsigned NewOpc;
switch (Inst.getOpcode()) {
default: llvm_unreachable("Invalid opcode");
case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
}
Inst.setOpcode(NewOpc);
return true;
}
}
}
static const char *getSubtargetFeatureName(uint64_t Val);
void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
MCStreamer &Out) {
Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(),
MII, Out);
}
bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
if (isParsingIntelSyntax())
return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
MatchingInlineAsm);
}
void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
OperandVector &Operands, MCStreamer &Out,
bool MatchingInlineAsm) {
// FIXME: This should be replaced with a real .td file alias mechanism.
// Also, MatchInstructionImpl should actually *do* the EmitInstruction
// call.
const char *Repl = StringSwitch<const char *>(Op.getToken())
.Case("finit", "fninit")
.Case("fsave", "fnsave")
.Case("fstcw", "fnstcw")
.Case("fstcww", "fnstcw")
.Case("fstenv", "fnstenv")
.Case("fstsw", "fnstsw")
.Case("fstsww", "fnstsw")
.Case("fclex", "fnclex")
.Default(nullptr);
if (Repl) {
MCInst Inst;
Inst.setOpcode(X86::WAIT);
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
}
}
bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
bool MatchingInlineAsm) {
assert(ErrorInfo && "Unknown missing feature!");
ArrayRef<SMRange> EmptyRanges = None;
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "instruction requires:";
uint64_t Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask)
OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
Mask <<= 1;
}
return Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
}
bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
assert(Op.isToken() && "Leading operand should always be a mnemonic!");
ArrayRef<SMRange> EmptyRanges = None;
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
bool WasOriginallyInvalidOperand = false;
MCInst Inst;
// First, try a direct match.
switch (MatchInstructionImpl(Operands, Inst,
ErrorInfo, MatchingInlineAsm,
isParsingIntelSyntax())) {
default: llvm_unreachable("Unexpected match result!");
case Match_Success:
if (!validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the
// individual transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
case Match_MissingFeature:
return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
case Match_InvalidOperand:
WasOriginallyInvalidOperand = true;
break;
case Match_MnemonicFail:
break;
}
// FIXME: Ideally, we would only attempt suffix matches for things which are
// valid prefixes, and we could just infer the right unambiguous
// type. However, that requires substantially more matcher support than the
// following hack.
// Change the operand to point to a temporary token.
StringRef Base = Op.getToken();
SmallString<16> Tmp;
Tmp += Base;
Tmp += ' ';
Op.setTokenValue(Tmp.str());
// If this instruction starts with an 'f', then it is a floating point stack
// instruction. These come in up to three forms for 32-bit, 64-bit, and
// 80-bit floating point, which use the suffixes s,l,t respectively.
//
// Otherwise, we assume that this may be an integer instruction, which comes
// in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
// Check for the various suffix matches.
uint64_t ErrorInfoIgnore;
uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
unsigned Match[4];
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
Tmp.back() = Suffixes[I];
Match[I] = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
MatchingInlineAsm, isParsingIntelSyntax());
// If this returned as a missing feature failure, remember that.
if (Match[I] == Match_MissingFeature)
ErrorInfoMissingFeature = ErrorInfoIgnore;
}
// Restore the old token.
Op.setTokenValue(Base);
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
}
// Otherwise, the match failed, try to produce a decent error message.
// If we had multiple suffix matches, then identify this as an ambiguous
// match.
if (NumSuccessfulMatches > 1) {
char MatchChars[4];
unsigned NumMatches = 0;
for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
if (Match[I] == Match_Success)
MatchChars[NumMatches++] = Suffixes[I];
SmallString<126> Msg;
raw_svector_ostream OS(Msg);
OS << "ambiguous instructions require an explicit suffix (could be ";
for (unsigned i = 0; i != NumMatches; ++i) {
if (i != 0)
OS << ", ";
if (i + 1 == NumMatches)
OS << "or ";
OS << "'" << Base << MatchChars[i] << "'";
}
OS << ")";
Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
return true;
}
// Okay, we know that none of the variants matched successfully.
// If all of the instructions reported an invalid mnemonic, then the original
// mnemonic was invalid.
if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
if (!WasOriginallyInvalidOperand) {
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
Ranges, MatchingInlineAsm);
}
// Recover location info for the operand if we know which was the problem.
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction",
EmptyRanges, MatchingInlineAsm);
X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
if (Operand.getStartLoc().isValid()) {
SMRange OperandRange = Operand.getLocRange();
return Error(Operand.getStartLoc(), "invalid operand for instruction",
OperandRange, MatchingInlineAsm);
}
}
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = ErrorInfoMissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
EmptyRanges, MatchingInlineAsm);
return true;
}
bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
assert(Op.isToken() && "Leading operand should always be a mnemonic!");
StringRef Mnemonic = Op.getToken();
ArrayRef<SMRange> EmptyRanges = None;
// First, handle aliases that expand to multiple instructions.
MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
MCInst Inst;
// Find one unsized memory operand, if present.
X86Operand *UnsizedMemOp = nullptr;
for (const auto &Op : Operands) {
X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
if (X86Op->isMemUnsized())
UnsizedMemOp = X86Op;
}
// Allow some instructions to have implicitly pointer-sized operands. This is
// compatible with gas.
if (UnsizedMemOp) {
static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
for (const char *Instr : PtrSizedInstrs) {
if (Mnemonic == Instr) {
UnsizedMemOp->Mem.Size = getPointerWidth();
break;
}
}
}
// If an unsized memory operand is present, try to match with each memory
// operand size. In Intel assembly, the size is not part of the instruction
// mnemonic.
SmallVector<unsigned, 8> Match;
uint64_t ErrorInfoMissingFeature = 0;
if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
for (unsigned Size : MopSizes) {
UnsizedMemOp->Mem.Size = Size;
uint64_t ErrorInfoIgnore;
unsigned LastOpcode = Inst.getOpcode();
unsigned M =
MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
MatchingInlineAsm, isParsingIntelSyntax());
if (Match.empty() || LastOpcode != Inst.getOpcode())
Match.push_back(M);
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeature = ErrorInfoIgnore;
}
// Restore the size of the unsized memory operand if we modified it.
if (UnsizedMemOp)
UnsizedMemOp->Mem.Size = 0;
}
// If we haven't matched anything yet, this is not a basic integer or FPU
// operation. There shouldn't be any ambiguity in our mnemonic table, so try
// matching with the unsized operand.
if (Match.empty()) {
Match.push_back(MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm,
isParsingIntelSyntax()));
// If this returned as a missing feature failure, remember that.
if (Match.back() == Match_MissingFeature)
ErrorInfoMissingFeature = ErrorInfo;
}
// Restore the size of the unsized memory operand if we modified it.
if (UnsizedMemOp)
UnsizedMemOp->Mem.Size = 0;
// If it's a bad mnemonic, all results will be the same.
if (Match.back() == Match_MnemonicFail) {
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
Ranges, MatchingInlineAsm);
}
// If exactly one matched, then we treat that as a successful match (and the
// instruction will already have been filled in correctly, since the failing
// matches won't have modified it).
unsigned NumSuccessfulMatches =
std::count(std::begin(Match), std::end(Match), Match_Success);
if (NumSuccessfulMatches == 1) {
if (!validateInstruction(Inst, Operands))
return true;
// Some instructions need post-processing to, for example, tweak which
// encoding is selected. Loop on it while changes happen so the individual
// transformations can chain off each other.
if (!MatchingInlineAsm)
while (processInstruction(Inst, Operands))
;
Inst.setLoc(IDLoc);
if (!MatchingInlineAsm)
EmitInstruction(Inst, Operands, Out);
Opcode = Inst.getOpcode();
return false;
} else if (NumSuccessfulMatches > 1) {
assert(UnsizedMemOp &&
"multiple matches only possible with unsized memory operands");
ArrayRef<SMRange> Ranges =
MatchingInlineAsm ? EmptyRanges : UnsizedMemOp->getLocRange();
return Error(UnsizedMemOp->getStartLoc(),
"ambiguous operand size for instruction '" + Mnemonic + "\'",
Ranges, MatchingInlineAsm);
}
// If one instruction matched with a missing feature, report this as a
// missing feature.
if (std::count(std::begin(Match), std::end(Match),
Match_MissingFeature) == 1) {
ErrorInfo = ErrorInfoMissingFeature;
return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
MatchingInlineAsm);
}
// If one instruction matched with an invalid operand, report this as an
// operand failure.
if (std::count(std::begin(Match), std::end(Match),
Match_InvalidOperand) == 1) {
return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
MatchingInlineAsm);
}
// If all of these were an outright failure, report it in a useless way.
return Error(IDLoc, "unknown instruction mnemonic", EmptyRanges,
MatchingInlineAsm);
}
bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
}
bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
MCAsmParser &Parser = getParser();
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".word")
return ParseDirectiveWord(2, DirectiveID.getLoc());
else if (IDVal.startswith(".code"))
return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
else if (IDVal.startswith(".att_syntax")) {
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "prefix")
Parser.Lex();
else if (Parser.getTok().getString() == "noprefix")
return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
"supported: registers must have a "
"'%' prefix in .att_syntax");
}
getParser().setAssemblerDialect(0);
return false;
} else if (IDVal.startswith(".intel_syntax")) {
getParser().setAssemblerDialect(1);
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (Parser.getTok().getString() == "noprefix")
Parser.Lex();
else if (Parser.getTok().getString() == "prefix")
return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
"supported: registers must not have "
"a '%' prefix in .intel_syntax");
}
return false;
}
return true;
}
/// ParseDirectiveWord
/// ::= .word [ expression (, expression)* ]
bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
const MCExpr *Value;
if (getParser().parseExpression(Value))
return false;
getParser().getStreamer().EmitValue(Value, Size);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma)) {
Error(L, "unexpected token in directive");
return false;
}
Parser.Lex();
}
}
Parser.Lex();
return false;
}
/// ParseDirectiveCode
/// ::= .code16 | .code32 | .code64
bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
MCAsmParser &Parser = getParser();
if (IDVal == ".code16") {
Parser.Lex();
if (!is16BitMode()) {
SwitchMode(X86::Mode16Bit);
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
}
} else if (IDVal == ".code32") {
Parser.Lex();
if (!is32BitMode()) {
SwitchMode(X86::Mode32Bit);
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
}
} else if (IDVal == ".code64") {
Parser.Lex();
if (!is64BitMode()) {
SwitchMode(X86::Mode64Bit);
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
}
} else {
Error(L, "unknown directive " + IDVal);
return false;
}
return false;
}
// Force static initialization.
extern "C" void LLVMInitializeX86AsmParser() {
RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#define GET_SUBTARGET_FEATURE_NAME
#include "X86GenAsmMatcher.inc"