forked from OSchip/llvm-project
218 lines
7.4 KiB
C++
218 lines
7.4 KiB
C++
//===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// \file
|
|
// This file implements a TargetTransformInfo analysis pass specific to the
|
|
// AMDGPU target machine. It uses the target's detailed information to provide
|
|
// more precise answers to certain TTI queries, while letting the target
|
|
// independent and default TTI implementations handle the rest.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUTargetTransformInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "AMDGPUtti"
|
|
|
|
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L,
|
|
TTI::UnrollingPreferences &UP) {
|
|
UP.Threshold = 300; // Twice the default.
|
|
UP.MaxCount = UINT_MAX;
|
|
UP.Partial = true;
|
|
|
|
// TODO: Do we want runtime unrolling?
|
|
|
|
for (const BasicBlock *BB : L->getBlocks()) {
|
|
const DataLayout &DL = BB->getModule()->getDataLayout();
|
|
for (const Instruction &I : *BB) {
|
|
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
|
|
if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
|
|
continue;
|
|
|
|
const Value *Ptr = GEP->getPointerOperand();
|
|
const AllocaInst *Alloca =
|
|
dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
|
|
if (Alloca) {
|
|
// We want to do whatever we can to limit the number of alloca
|
|
// instructions that make it through to the code generator. allocas
|
|
// require us to use indirect addressing, which is slow and prone to
|
|
// compiler bugs. If this loop does an address calculation on an
|
|
// alloca ptr, then we want to use a higher than normal loop unroll
|
|
// threshold. This will give SROA a better chance to eliminate these
|
|
// allocas.
|
|
//
|
|
// Don't use the maximum allowed value here as it will make some
|
|
// programs way too big.
|
|
UP.Threshold = 800;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) {
|
|
if (Vec)
|
|
return 0;
|
|
|
|
// Number of VGPRs on SI.
|
|
if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)
|
|
return 256;
|
|
|
|
return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool Vector) {
|
|
return Vector ? 0 : 32;
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
// Semi-arbitrary large amount.
|
|
return 64;
|
|
}
|
|
|
|
unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) {
|
|
// XXX - For some reason this isn't called for switch.
|
|
switch (Opcode) {
|
|
case Instruction::Br:
|
|
case Instruction::Ret:
|
|
return 10;
|
|
default:
|
|
return BaseT::getCFInstrCost(Opcode);
|
|
}
|
|
}
|
|
|
|
int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) {
|
|
switch (Opcode) {
|
|
case Instruction::ExtractElement:
|
|
// Dynamic indexing isn't free and is best avoided.
|
|
return Index == ~0u ? 2 : 0;
|
|
default:
|
|
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
}
|
|
|
|
static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII,
|
|
const IntrinsicInst *I) {
|
|
switch (I->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
case Intrinsic::not_intrinsic:
|
|
// This means we have an intrinsic that isn't defined in
|
|
// IntrinsicsAMDGPU.td
|
|
break;
|
|
|
|
case Intrinsic::amdgcn_workitem_id_x:
|
|
case Intrinsic::amdgcn_workitem_id_y:
|
|
case Intrinsic::amdgcn_workitem_id_z:
|
|
case Intrinsic::amdgcn_interp_p1:
|
|
case Intrinsic::amdgcn_interp_p2:
|
|
case Intrinsic::amdgcn_mbcnt_hi:
|
|
case Intrinsic::amdgcn_mbcnt_lo:
|
|
case Intrinsic::r600_read_tidig_x:
|
|
case Intrinsic::r600_read_tidig_y:
|
|
case Intrinsic::r600_read_tidig_z:
|
|
case Intrinsic::amdgcn_image_atomic_swap:
|
|
case Intrinsic::amdgcn_image_atomic_add:
|
|
case Intrinsic::amdgcn_image_atomic_sub:
|
|
case Intrinsic::amdgcn_image_atomic_smin:
|
|
case Intrinsic::amdgcn_image_atomic_umin:
|
|
case Intrinsic::amdgcn_image_atomic_smax:
|
|
case Intrinsic::amdgcn_image_atomic_umax:
|
|
case Intrinsic::amdgcn_image_atomic_and:
|
|
case Intrinsic::amdgcn_image_atomic_or:
|
|
case Intrinsic::amdgcn_image_atomic_xor:
|
|
case Intrinsic::amdgcn_image_atomic_inc:
|
|
case Intrinsic::amdgcn_image_atomic_dec:
|
|
case Intrinsic::amdgcn_image_atomic_cmpswap:
|
|
case Intrinsic::amdgcn_buffer_atomic_swap:
|
|
case Intrinsic::amdgcn_buffer_atomic_add:
|
|
case Intrinsic::amdgcn_buffer_atomic_sub:
|
|
case Intrinsic::amdgcn_buffer_atomic_smin:
|
|
case Intrinsic::amdgcn_buffer_atomic_umin:
|
|
case Intrinsic::amdgcn_buffer_atomic_smax:
|
|
case Intrinsic::amdgcn_buffer_atomic_umax:
|
|
case Intrinsic::amdgcn_buffer_atomic_and:
|
|
case Intrinsic::amdgcn_buffer_atomic_or:
|
|
case Intrinsic::amdgcn_buffer_atomic_xor:
|
|
case Intrinsic::amdgcn_buffer_atomic_cmpswap:
|
|
return true;
|
|
}
|
|
|
|
StringRef Name = I->getCalledFunction()->getName();
|
|
switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) {
|
|
default:
|
|
return false;
|
|
case AMDGPUIntrinsic::SI_tid:
|
|
case AMDGPUIntrinsic::SI_fs_interp:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static bool isArgPassedInSGPR(const Argument *A) {
|
|
const Function *F = A->getParent();
|
|
unsigned ShaderType = AMDGPU::getShaderType(*F);
|
|
|
|
// Arguments to compute shaders are never a source of divergence.
|
|
if (ShaderType == ShaderType::COMPUTE)
|
|
return true;
|
|
|
|
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
|
|
if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) ||
|
|
F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal))
|
|
return true;
|
|
|
|
// Everything else is in VGPRs.
|
|
return false;
|
|
}
|
|
|
|
///
|
|
/// \returns true if the result of the value could potentially be
|
|
/// different across workitems in a wavefront.
|
|
bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const {
|
|
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return !isArgPassedInSGPR(A);
|
|
|
|
// Loads from the private address space are divergent, because threads
|
|
// can execute the load instruction with the same inputs and get different
|
|
// results.
|
|
//
|
|
// All other loads are not divergent, because if threads issue loads with the
|
|
// same arguments, they will always get the same result.
|
|
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
|
|
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS;
|
|
|
|
// Atomics are divergent because they are executed sequentially: when an
|
|
// atomic operation refers to the same address in each thread, then each
|
|
// thread after the first sees the value written by the previous thread as
|
|
// original value.
|
|
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
|
|
return true;
|
|
|
|
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic);
|
|
}
|
|
|
|
// Assume all function calls are a source of divergence.
|
|
if (isa<CallInst>(V) || isa<InvokeInst>(V))
|
|
return true;
|
|
|
|
return false;
|
|
}
|