forked from OSchip/llvm-project
735 lines
26 KiB
C++
735 lines
26 KiB
C++
//===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// For best-case performance on Cortex-A57, we should try to use a balanced
|
|
// mix of odd and even D-registers when performing a critical sequence of
|
|
// independent, non-quadword FP/ASIMD floating-point multiply or
|
|
// multiply-accumulate operations.
|
|
//
|
|
// This pass attempts to detect situations where the register allocation may
|
|
// adversely affect this load balancing and to change the registers used so as
|
|
// to better utilize the CPU.
|
|
//
|
|
// Ideally we'd just take each multiply or multiply-accumulate in turn and
|
|
// allocate it alternating even or odd registers. However, multiply-accumulates
|
|
// are most efficiently performed in the same functional unit as their
|
|
// accumulation operand. Therefore this pass tries to find maximal sequences
|
|
// ("Chains") of multiply-accumulates linked via their accumulation operand,
|
|
// and assign them all the same "color" (oddness/evenness).
|
|
//
|
|
// This optimization affects S-register and D-register floating point
|
|
// multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
|
|
// FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
|
|
// not affected.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/EquivalenceClasses.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <list>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
|
|
|
|
// Enforce the algorithm to use the scavenged register even when the original
|
|
// destination register is the correct color. Used for testing.
|
|
static cl::opt<bool>
|
|
TransformAll("aarch64-a57-fp-load-balancing-force-all",
|
|
cl::desc("Always modify dest registers regardless of color"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
// Never use the balance information obtained from chains - return a specific
|
|
// color always. Used for testing.
|
|
static cl::opt<unsigned>
|
|
OverrideBalance("aarch64-a57-fp-load-balancing-override",
|
|
cl::desc("Ignore balance information, always return "
|
|
"(1: Even, 2: Odd)."),
|
|
cl::init(0), cl::Hidden);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions
|
|
|
|
// Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
|
|
static bool isMul(MachineInstr *MI) {
|
|
switch (MI->getOpcode()) {
|
|
case AArch64::FMULSrr:
|
|
case AArch64::FNMULSrr:
|
|
case AArch64::FMULDrr:
|
|
case AArch64::FNMULDrr:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
|
|
static bool isMla(MachineInstr *MI) {
|
|
switch (MI->getOpcode()) {
|
|
case AArch64::FMSUBSrrr:
|
|
case AArch64::FMADDSrrr:
|
|
case AArch64::FNMSUBSrrr:
|
|
case AArch64::FNMADDSrrr:
|
|
case AArch64::FMSUBDrrr:
|
|
case AArch64::FMADDDrrr:
|
|
case AArch64::FNMSUBDrrr:
|
|
case AArch64::FNMADDDrrr:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A "color", which is either even or odd. Yes, these aren't really colors
|
|
/// but the algorithm is conceptually doing two-color graph coloring.
|
|
enum class Color { Even, Odd };
|
|
#ifndef NDEBUG
|
|
static const char *ColorNames[2] = { "Even", "Odd" };
|
|
#endif
|
|
|
|
class Chain;
|
|
|
|
class AArch64A57FPLoadBalancing : public MachineFunctionPass {
|
|
MachineRegisterInfo *MRI;
|
|
const TargetRegisterInfo *TRI;
|
|
RegisterClassInfo RCI;
|
|
|
|
public:
|
|
static char ID;
|
|
explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
|
|
initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &F) override;
|
|
|
|
const char *getPassName() const override {
|
|
return "A57 FP Anti-dependency breaker";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
bool runOnBasicBlock(MachineBasicBlock &MBB);
|
|
bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
|
|
int &Balance);
|
|
bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
|
|
int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
|
|
void scanInstruction(MachineInstr *MI, unsigned Idx,
|
|
std::map<unsigned, Chain*> &Active,
|
|
std::vector<std::unique_ptr<Chain>> &AllChains);
|
|
void maybeKillChain(MachineOperand &MO, unsigned Idx,
|
|
std::map<unsigned, Chain*> &RegChains);
|
|
Color getColor(unsigned Register);
|
|
Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
|
|
};
|
|
}
|
|
|
|
char AArch64A57FPLoadBalancing::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
|
|
"AArch64 A57 FP Load-Balancing", false, false)
|
|
INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
|
|
"AArch64 A57 FP Load-Balancing", false, false)
|
|
|
|
namespace {
|
|
/// A Chain is a sequence of instructions that are linked together by
|
|
/// an accumulation operand. For example:
|
|
///
|
|
/// fmul d0<def>, ?
|
|
/// fmla d1<def>, ?, ?, d0<kill>
|
|
/// fmla d2<def>, ?, ?, d1<kill>
|
|
///
|
|
/// There may be other instructions interleaved in the sequence that
|
|
/// do not belong to the chain. These other instructions must not use
|
|
/// the "chain" register at any point.
|
|
///
|
|
/// We currently only support chains where the "chain" operand is killed
|
|
/// at each link in the chain for simplicity.
|
|
/// A chain has three important instructions - Start, Last and Kill.
|
|
/// * The start instruction is the first instruction in the chain.
|
|
/// * Last is the final instruction in the chain.
|
|
/// * Kill may or may not be defined. If defined, Kill is the instruction
|
|
/// where the outgoing value of the Last instruction is killed.
|
|
/// This information is important as if we know the outgoing value is
|
|
/// killed with no intervening uses, we can safely change its register.
|
|
///
|
|
/// Without a kill instruction, we must assume the outgoing value escapes
|
|
/// beyond our model and either must not change its register or must
|
|
/// create a fixup FMOV to keep the old register value consistent.
|
|
///
|
|
class Chain {
|
|
public:
|
|
/// The important (marker) instructions.
|
|
MachineInstr *StartInst, *LastInst, *KillInst;
|
|
/// The index, from the start of the basic block, that each marker
|
|
/// appears. These are stored so we can do quick interval tests.
|
|
unsigned StartInstIdx, LastInstIdx, KillInstIdx;
|
|
/// All instructions in the chain.
|
|
std::set<MachineInstr*> Insts;
|
|
/// True if KillInst cannot be modified. If this is true,
|
|
/// we cannot change LastInst's outgoing register.
|
|
/// This will be true for tied values and regmasks.
|
|
bool KillIsImmutable;
|
|
/// The "color" of LastInst. This will be the preferred chain color,
|
|
/// as changing intermediate nodes is easy but changing the last
|
|
/// instruction can be more tricky.
|
|
Color LastColor;
|
|
|
|
Chain(MachineInstr *MI, unsigned Idx, Color C)
|
|
: StartInst(MI), LastInst(MI), KillInst(nullptr),
|
|
StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
|
|
LastColor(C) {
|
|
Insts.insert(MI);
|
|
}
|
|
|
|
/// Add a new instruction into the chain. The instruction's dest operand
|
|
/// has the given color.
|
|
void add(MachineInstr *MI, unsigned Idx, Color C) {
|
|
LastInst = MI;
|
|
LastInstIdx = Idx;
|
|
LastColor = C;
|
|
assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
|
|
"Chain: broken invariant. A Chain can only be killed after its last "
|
|
"def");
|
|
|
|
Insts.insert(MI);
|
|
}
|
|
|
|
/// Return true if MI is a member of the chain.
|
|
bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
|
|
|
|
/// Return the number of instructions in the chain.
|
|
unsigned size() const {
|
|
return Insts.size();
|
|
}
|
|
|
|
/// Inform the chain that its last active register (the dest register of
|
|
/// LastInst) is killed by MI with no intervening uses or defs.
|
|
void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
|
|
KillInst = MI;
|
|
KillInstIdx = Idx;
|
|
KillIsImmutable = Immutable;
|
|
assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
|
|
"Chain: broken invariant. A Chain can only be killed after its last "
|
|
"def");
|
|
}
|
|
|
|
/// Return the first instruction in the chain.
|
|
MachineInstr *getStart() const { return StartInst; }
|
|
/// Return the last instruction in the chain.
|
|
MachineInstr *getLast() const { return LastInst; }
|
|
/// Return the "kill" instruction (as set with setKill()) or NULL.
|
|
MachineInstr *getKill() const { return KillInst; }
|
|
/// Return an instruction that can be used as an iterator for the end
|
|
/// of the chain. This is the maximum of KillInst (if set) and LastInst.
|
|
MachineBasicBlock::iterator getEnd() const {
|
|
return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
|
|
}
|
|
|
|
/// Can the Kill instruction (assuming one exists) be modified?
|
|
bool isKillImmutable() const { return KillIsImmutable; }
|
|
|
|
/// Return the preferred color of this chain.
|
|
Color getPreferredColor() {
|
|
if (OverrideBalance != 0)
|
|
return OverrideBalance == 1 ? Color::Even : Color::Odd;
|
|
return LastColor;
|
|
}
|
|
|
|
/// Return true if this chain (StartInst..KillInst) overlaps with Other.
|
|
bool rangeOverlapsWith(const Chain &Other) const {
|
|
unsigned End = KillInst ? KillInstIdx : LastInstIdx;
|
|
unsigned OtherEnd = Other.KillInst ?
|
|
Other.KillInstIdx : Other.LastInstIdx;
|
|
|
|
return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
|
|
}
|
|
|
|
/// Return true if this chain starts before Other.
|
|
bool startsBefore(const Chain *Other) const {
|
|
return StartInstIdx < Other->StartInstIdx;
|
|
}
|
|
|
|
/// Return true if the group will require a fixup MOV at the end.
|
|
bool requiresFixup() const {
|
|
return (getKill() && isKillImmutable()) || !getKill();
|
|
}
|
|
|
|
/// Return a simple string representation of the chain.
|
|
std::string str() const {
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
|
|
OS << "{";
|
|
StartInst->print(OS, /* SkipOpers= */true);
|
|
OS << " -> ";
|
|
LastInst->print(OS, /* SkipOpers= */true);
|
|
if (KillInst) {
|
|
OS << " (kill @ ";
|
|
KillInst->print(OS, /* SkipOpers= */true);
|
|
OS << ")";
|
|
}
|
|
OS << "}";
|
|
|
|
return OS.str();
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
|
|
// Don't do anything if this isn't an A53 or A57.
|
|
if (!(F.getSubtarget<AArch64Subtarget>().isCortexA53() ||
|
|
F.getSubtarget<AArch64Subtarget>().isCortexA57()))
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
|
|
|
|
MRI = &F.getRegInfo();
|
|
TRI = F.getRegInfo().getTargetRegisterInfo();
|
|
RCI.runOnMachineFunction(F);
|
|
|
|
for (auto &MBB : F) {
|
|
Changed |= runOnBasicBlock(MBB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
|
|
|
|
// First, scan the basic block producing a set of chains.
|
|
|
|
// The currently "active" chains - chains that can be added to and haven't
|
|
// been killed yet. This is keyed by register - all chains can only have one
|
|
// "link" register between each inst in the chain.
|
|
std::map<unsigned, Chain*> ActiveChains;
|
|
std::vector<std::unique_ptr<Chain>> AllChains;
|
|
unsigned Idx = 0;
|
|
for (auto &MI : MBB)
|
|
scanInstruction(&MI, Idx++, ActiveChains, AllChains);
|
|
|
|
DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
|
|
|
|
// Group the chains into disjoint sets based on their liveness range. This is
|
|
// a poor-man's version of graph coloring. Ideally we'd create an interference
|
|
// graph and perform full-on graph coloring on that, but;
|
|
// (a) That's rather heavyweight for only two colors.
|
|
// (b) We expect multiple disjoint interference regions - in practice the live
|
|
// range of chains is quite small and they are clustered between loads
|
|
// and stores.
|
|
EquivalenceClasses<Chain*> EC;
|
|
for (auto &I : AllChains)
|
|
EC.insert(I.get());
|
|
|
|
for (auto &I : AllChains)
|
|
for (auto &J : AllChains)
|
|
if (I != J && I->rangeOverlapsWith(*J))
|
|
EC.unionSets(I.get(), J.get());
|
|
DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
|
|
|
|
// Now we assume that every member of an equivalence class interferes
|
|
// with every other member of that class, and with no members of other classes.
|
|
|
|
// Convert the EquivalenceClasses to a simpler set of sets.
|
|
std::vector<std::vector<Chain*> > V;
|
|
for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
|
|
std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
|
|
if (Cs.empty()) continue;
|
|
V.push_back(std::move(Cs));
|
|
}
|
|
|
|
// Now we have a set of sets, order them by start address so
|
|
// we can iterate over them sequentially.
|
|
std::sort(V.begin(), V.end(),
|
|
[](const std::vector<Chain*> &A,
|
|
const std::vector<Chain*> &B) {
|
|
return A.front()->startsBefore(B.front());
|
|
});
|
|
|
|
// As we only have two colors, we can track the global (BB-level) balance of
|
|
// odds versus evens. We aim to keep this near zero to keep both execution
|
|
// units fed.
|
|
// Positive means we're even-heavy, negative we're odd-heavy.
|
|
//
|
|
// FIXME: If chains have interdependencies, for example:
|
|
// mul r0, r1, r2
|
|
// mul r3, r0, r1
|
|
// We do not model this and may color each one differently, assuming we'll
|
|
// get ILP when we obviously can't. This hasn't been seen to be a problem
|
|
// in practice so far, so we simplify the algorithm by ignoring it.
|
|
int Parity = 0;
|
|
|
|
for (auto &I : V)
|
|
Changed |= colorChainSet(std::move(I), MBB, Parity);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
|
|
std::vector<Chain*> &L) {
|
|
if (L.empty())
|
|
return nullptr;
|
|
|
|
// We try and get the best candidate from L to color next, given that our
|
|
// preferred color is "PreferredColor". L is ordered from larger to smaller
|
|
// chains. It is beneficial to color the large chains before the small chains,
|
|
// but if we can't find a chain of the maximum length with the preferred color,
|
|
// we fuzz the size and look for slightly smaller chains before giving up and
|
|
// returning a chain that must be recolored.
|
|
|
|
// FIXME: Does this need to be configurable?
|
|
const unsigned SizeFuzz = 1;
|
|
unsigned MinSize = L.front()->size() - SizeFuzz;
|
|
for (auto I = L.begin(), E = L.end(); I != E; ++I) {
|
|
if ((*I)->size() <= MinSize) {
|
|
// We've gone past the size limit. Return the previous item.
|
|
Chain *Ch = *--I;
|
|
L.erase(I);
|
|
return Ch;
|
|
}
|
|
|
|
if ((*I)->getPreferredColor() == PreferredColor) {
|
|
Chain *Ch = *I;
|
|
L.erase(I);
|
|
return Ch;
|
|
}
|
|
}
|
|
|
|
// Bailout case - just return the first item.
|
|
Chain *Ch = L.front();
|
|
L.erase(L.begin());
|
|
return Ch;
|
|
}
|
|
|
|
bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
|
|
MachineBasicBlock &MBB,
|
|
int &Parity) {
|
|
bool Changed = false;
|
|
DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
|
|
|
|
// Sort by descending size order so that we allocate the most important
|
|
// sets first.
|
|
// Tie-break equivalent sizes by sorting chains requiring fixups before
|
|
// those without fixups. The logic here is that we should look at the
|
|
// chains that we cannot change before we look at those we can,
|
|
// so the parity counter is updated and we know what color we should
|
|
// change them to!
|
|
// Final tie-break with instruction order so pass output is stable (i.e. not
|
|
// dependent on malloc'd pointer values).
|
|
std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
|
|
if (G1->size() != G2->size())
|
|
return G1->size() > G2->size();
|
|
if (G1->requiresFixup() != G2->requiresFixup())
|
|
return G1->requiresFixup() > G2->requiresFixup();
|
|
// Make sure startsBefore() produces a stable final order.
|
|
assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
|
|
"Starts before not total order!");
|
|
return G1->startsBefore(G2);
|
|
});
|
|
|
|
Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
|
|
while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
|
|
// Start off by assuming we'll color to our own preferred color.
|
|
Color C = PreferredColor;
|
|
if (Parity == 0)
|
|
// But if we really don't care, use the chain's preferred color.
|
|
C = G->getPreferredColor();
|
|
|
|
DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
|
|
<< ColorNames[(int)C] << "\n");
|
|
|
|
// If we'll need a fixup FMOV, don't bother. Testing has shown that this
|
|
// happens infrequently and when it does it has at least a 50% chance of
|
|
// slowing code down instead of speeding it up.
|
|
if (G->requiresFixup() && C != G->getPreferredColor()) {
|
|
C = G->getPreferredColor();
|
|
DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
|
|
"color remains " << ColorNames[(int)C] << "\n");
|
|
}
|
|
|
|
Changed |= colorChain(G, C, MBB);
|
|
|
|
Parity += (C == Color::Even) ? G->size() : -G->size();
|
|
PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
|
|
MachineBasicBlock &MBB) {
|
|
RegScavenger RS;
|
|
RS.enterBasicBlock(&MBB);
|
|
RS.forward(MachineBasicBlock::iterator(G->getStart()));
|
|
|
|
// Can we find an appropriate register that is available throughout the life
|
|
// of the chain?
|
|
unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
|
|
BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
|
|
for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
|
|
I != E; ++I) {
|
|
RS.forward(I);
|
|
AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
|
|
|
|
// Remove any registers clobbered by a regmask or any def register that is
|
|
// immediately dead.
|
|
for (auto J : I->operands()) {
|
|
if (J.isRegMask())
|
|
AvailableRegs.clearBitsNotInMask(J.getRegMask());
|
|
|
|
if (J.isReg() && J.isDef()) {
|
|
MCRegAliasIterator AI(J.getReg(), TRI, /*IncludeSelf=*/true);
|
|
if (J.isDead())
|
|
for (; AI.isValid(); ++AI)
|
|
AvailableRegs.reset(*AI);
|
|
#ifndef NDEBUG
|
|
else
|
|
for (; AI.isValid(); ++AI)
|
|
assert(!AvailableRegs[*AI] &&
|
|
"Non-dead def should have been removed by now!");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure we allocate in-order, to get the cheapest registers first.
|
|
auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
|
|
for (auto Reg : Ord) {
|
|
if (!AvailableRegs[Reg])
|
|
continue;
|
|
if (C == getColor(Reg))
|
|
return Reg;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
|
|
MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
|
|
<< ColorNames[(int)C] << ")\n");
|
|
|
|
// Try and obtain a free register of the right class. Without a register
|
|
// to play with we cannot continue.
|
|
int Reg = scavengeRegister(G, C, MBB);
|
|
if (Reg == -1) {
|
|
DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
|
|
return false;
|
|
}
|
|
DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
|
|
|
|
std::map<unsigned, unsigned> Substs;
|
|
for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
|
|
I != E; ++I) {
|
|
if (!G->contains(I) &&
|
|
(&*I != G->getKill() || G->isKillImmutable()))
|
|
continue;
|
|
|
|
// I is a member of G, or I is a mutable instruction that kills G.
|
|
|
|
std::vector<unsigned> ToErase;
|
|
for (auto &U : I->operands()) {
|
|
if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
|
|
unsigned OrigReg = U.getReg();
|
|
U.setReg(Substs[OrigReg]);
|
|
if (U.isKill())
|
|
// Don't erase straight away, because there may be other operands
|
|
// that also reference this substitution!
|
|
ToErase.push_back(OrigReg);
|
|
} else if (U.isRegMask()) {
|
|
for (auto J : Substs) {
|
|
if (U.clobbersPhysReg(J.first))
|
|
ToErase.push_back(J.first);
|
|
}
|
|
}
|
|
}
|
|
// Now it's safe to remove the substs identified earlier.
|
|
for (auto J : ToErase)
|
|
Substs.erase(J);
|
|
|
|
// Only change the def if this isn't the last instruction.
|
|
if (&*I != G->getKill()) {
|
|
MachineOperand &MO = I->getOperand(0);
|
|
|
|
bool Change = TransformAll || getColor(MO.getReg()) != C;
|
|
if (G->requiresFixup() && &*I == G->getLast())
|
|
Change = false;
|
|
|
|
if (Change) {
|
|
Substs[MO.getReg()] = Reg;
|
|
MO.setReg(Reg);
|
|
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
assert(Substs.size() == 0 && "No substitutions should be left active!");
|
|
|
|
if (G->getKill()) {
|
|
DEBUG(dbgs() << " - Kill instruction seen.\n");
|
|
} else {
|
|
// We didn't have a kill instruction, but we didn't seem to need to change
|
|
// the destination register anyway.
|
|
DEBUG(dbgs() << " - Destination register not changed.\n");
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void AArch64A57FPLoadBalancing::scanInstruction(
|
|
MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
|
|
std::vector<std::unique_ptr<Chain>> &AllChains) {
|
|
// Inspect "MI", updating ActiveChains and AllChains.
|
|
|
|
if (isMul(MI)) {
|
|
|
|
for (auto &I : MI->uses())
|
|
maybeKillChain(I, Idx, ActiveChains);
|
|
for (auto &I : MI->defs())
|
|
maybeKillChain(I, Idx, ActiveChains);
|
|
|
|
// Create a new chain. Multiplies don't require forwarding so can go on any
|
|
// unit.
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
|
|
DEBUG(dbgs() << "New chain started for register "
|
|
<< TRI->getName(DestReg) << " at " << *MI);
|
|
|
|
auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
|
|
ActiveChains[DestReg] = G.get();
|
|
AllChains.push_back(std::move(G));
|
|
|
|
} else if (isMla(MI)) {
|
|
|
|
// It is beneficial to keep MLAs on the same functional unit as their
|
|
// accumulator operand.
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
unsigned AccumReg = MI->getOperand(3).getReg();
|
|
|
|
maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
|
|
maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
|
|
if (DestReg != AccumReg)
|
|
maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
|
|
|
|
if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
|
|
DEBUG(dbgs() << "Chain found for accumulator register "
|
|
<< TRI->getName(AccumReg) << " in MI " << *MI);
|
|
|
|
// For simplicity we only chain together sequences of MULs/MLAs where the
|
|
// accumulator register is killed on each instruction. This means we don't
|
|
// need to track other uses of the registers we want to rewrite.
|
|
//
|
|
// FIXME: We could extend to handle the non-kill cases for more coverage.
|
|
if (MI->getOperand(3).isKill()) {
|
|
// Add to chain.
|
|
DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
|
|
ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
|
|
// Handle cases where the destination is not the same as the accumulator.
|
|
if (DestReg != AccumReg) {
|
|
ActiveChains[DestReg] = ActiveChains[AccumReg];
|
|
ActiveChains.erase(AccumReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
|
|
<< "marked <kill>!\n");
|
|
maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Creating new chain for dest register "
|
|
<< TRI->getName(DestReg) << "\n");
|
|
auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
|
|
ActiveChains[DestReg] = G.get();
|
|
AllChains.push_back(std::move(G));
|
|
|
|
} else {
|
|
|
|
// Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
|
|
// lists.
|
|
for (auto &I : MI->uses())
|
|
maybeKillChain(I, Idx, ActiveChains);
|
|
for (auto &I : MI->defs())
|
|
maybeKillChain(I, Idx, ActiveChains);
|
|
|
|
}
|
|
}
|
|
|
|
void AArch64A57FPLoadBalancing::
|
|
maybeKillChain(MachineOperand &MO, unsigned Idx,
|
|
std::map<unsigned, Chain*> &ActiveChains) {
|
|
// Given an operand and the set of active chains (keyed by register),
|
|
// determine if a chain should be ended and remove from ActiveChains.
|
|
MachineInstr *MI = MO.getParent();
|
|
|
|
if (MO.isReg()) {
|
|
|
|
// If this is a KILL of a current chain, record it.
|
|
if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
|
|
DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
|
|
<< "\n");
|
|
ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
|
|
}
|
|
ActiveChains.erase(MO.getReg());
|
|
|
|
} else if (MO.isRegMask()) {
|
|
|
|
for (auto I = ActiveChains.begin(), E = ActiveChains.end();
|
|
I != E;) {
|
|
if (MO.clobbersPhysReg(I->first)) {
|
|
DEBUG(dbgs() << "Kill (regmask) seen for chain "
|
|
<< TRI->getName(I->first) << "\n");
|
|
I->second->setKill(MI, Idx, /*Immutable=*/true);
|
|
ActiveChains.erase(I++);
|
|
} else
|
|
++I;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
|
|
if ((TRI->getEncodingValue(Reg) % 2) == 0)
|
|
return Color::Even;
|
|
else
|
|
return Color::Odd;
|
|
}
|
|
|
|
// Factory function used by AArch64TargetMachine to add the pass to the passmanager.
|
|
FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
|
|
return new AArch64A57FPLoadBalancing();
|
|
}
|