llvm-project/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp

1689 lines
60 KiB
C++

//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the Hexagon target.
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonISelLowering.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "hexagon-isel"
static
cl::opt<unsigned>
MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
cl::Hidden, cl::init(2),
cl::desc("Maximum number of uses of a global address such that we still us a"
"constant extended instruction"));
//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//
namespace llvm {
void initializeHexagonDAGToDAGISelPass(PassRegistry&);
}
//===--------------------------------------------------------------------===//
/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
/// instructions for SelectionDAG operations.
///
namespace {
class HexagonDAGToDAGISel : public SelectionDAGISel {
/// Subtarget - Keep a pointer to the Hexagon Subtarget around so that we can
/// make the right decision when generating code for different targets.
const HexagonSubtarget &Subtarget;
// Keep a reference to HexagonTargetMachine.
const HexagonTargetMachine& TM;
DenseMap<const GlobalValue *, unsigned> GlobalAddressUseCountMap;
public:
explicit HexagonDAGToDAGISel(HexagonTargetMachine &targetmachine,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(targetmachine, OptLevel),
Subtarget(targetmachine.getSubtarget<HexagonSubtarget>()),
TM(targetmachine) {
initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
}
bool hasNumUsesBelowThresGA(SDNode *N) const;
SDNode *Select(SDNode *N) override;
// Complex Pattern Selectors.
inline bool foldGlobalAddress(SDValue &N, SDValue &R);
inline bool foldGlobalAddressGP(SDValue &N, SDValue &R);
bool foldGlobalAddressImpl(SDValue &N, SDValue &R, bool ShouldLookForGP);
bool SelectADDRri(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectADDRriS11_0(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectADDRriS11_1(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectADDRriS11_2(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectMEMriS11_2(SDValue& Addr, SDValue &Base, SDValue &Offset);
bool SelectADDRriS11_3(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectADDRrr(SDValue &Addr, SDValue &Base, SDValue &Offset);
bool SelectADDRriU6_0(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectADDRriU6_1(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectADDRriU6_2(SDValue& N, SDValue &R1, SDValue &R2);
bool SelectAddrFI(SDValue &N, SDValue &R);
const char *getPassName() const override {
return "Hexagon DAG->DAG Pattern Instruction Selection";
}
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) override;
bool SelectAddr(SDNode *Op, SDValue Addr, SDValue &Base, SDValue &Offset);
SDNode *SelectLoad(SDNode *N);
SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
SDLoc dl);
SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
SDLoc dl);
SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
SDNode *SelectStore(SDNode *N);
SDNode *SelectSHL(SDNode *N);
SDNode *SelectSelect(SDNode *N);
SDNode *SelectTruncate(SDNode *N);
SDNode *SelectMul(SDNode *N);
SDNode *SelectZeroExtend(SDNode *N);
SDNode *SelectIntrinsicWOChain(SDNode *N);
SDNode *SelectIntrinsicWChain(SDNode *N);
SDNode *SelectConstant(SDNode *N);
SDNode *SelectConstantFP(SDNode *N);
SDNode *SelectAdd(SDNode *N);
bool isConstExtProfitable(SDNode *N) const;
// XformMskToBitPosU5Imm - Returns the bit position which
// the single bit 32 bit mask represents.
// Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU5Imm(uint32_t Imm) {
int32_t bitPos;
bitPos = Log2_32(Imm);
assert(bitPos >= 0 && bitPos < 32 &&
"Constant out of range for 32 BitPos Memops");
return CurDAG->getTargetConstant(bitPos, MVT::i32);
}
// XformMskToBitPosU4Imm - Returns the bit position which the single bit 16 bit
// mask represents. Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU4Imm(uint16_t Imm) {
return XformMskToBitPosU5Imm(Imm);
}
// XformMskToBitPosU3Imm - Returns the bit position which the single bit 8 bit
// mask represents. Used in Clr and Set bit immediate memops.
SDValue XformMskToBitPosU3Imm(uint8_t Imm) {
return XformMskToBitPosU5Imm(Imm);
}
// Return true if there is exactly one bit set in V, i.e., if V is one of the
// following integers: 2^0, 2^1, ..., 2^31.
bool ImmIsSingleBit(uint32_t v) const {
uint32_t c = CountPopulation_64(v);
// Only return true if we counted 1 bit.
return c == 1;
}
// XformM5ToU5Imm - Return a target constant with the specified value, of type
// i32 where the negative literal is transformed into a positive literal for
// use in -= memops.
inline SDValue XformM5ToU5Imm(signed Imm) {
assert( (Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
return CurDAG->getTargetConstant( - Imm, MVT::i32);
}
// XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
// [1..128], used in cmpb.gtu instructions.
inline SDValue XformU7ToU7M1Imm(signed Imm) {
assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
return CurDAG->getTargetConstant(Imm - 1, MVT::i8);
}
// XformS8ToS8M1Imm - Return a target constant decremented by 1.
inline SDValue XformSToSM1Imm(signed Imm) {
return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
}
// XformU8ToU8M1Imm - Return a target constant decremented by 1.
inline SDValue XformUToUM1Imm(unsigned Imm) {
assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
return CurDAG->getTargetConstant(Imm - 1, MVT::i32);
}
// Include the pieces autogenerated from the target description.
#include "HexagonGenDAGISel.inc"
private:
bool isValueExtension(SDValue const &Val, unsigned FromBits, SDValue &Src);
};
} // end anonymous namespace
/// createHexagonISelDag - This pass converts a legalized DAG into a
/// Hexagon-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createHexagonISelDag(HexagonTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new HexagonDAGToDAGISel(TM, OptLevel);
}
static void initializePassOnce(PassRegistry &Registry) {
const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
PassInfo *PI = new PassInfo(Name, "hexagon-isel",
&SelectionDAGISel::ID, nullptr, false, false);
Registry.registerPass(*PI, true);
}
void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
CALL_ONCE_INITIALIZATION(initializePassOnce)
}
static bool IsS11_0_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isInt<11>(v);
}
static bool IsS11_1_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,1>(v);
}
static bool IsS11_2_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,2>(v);
}
static bool IsS11_3_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// immS16 predicate - True if the immediate fits in a 16-bit sign extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedInt<11,3>(v);
}
static bool IsU6_0_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// u6 predicate - True if the immediate fits in a 6-bit unsigned extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isUInt<6>(v);
}
static bool IsU6_1_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// u6 predicate - True if the immediate fits in a 6-bit unsigned extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,1>(v);
}
static bool IsU6_2_Offset(SDNode * S) {
ConstantSDNode *N = cast<ConstantSDNode>(S);
// u6 predicate - True if the immediate fits in a 6-bit unsigned extended
// field.
int64_t v = (int64_t)N->getSExtValue();
return isShiftedUInt<6,2>(v);
}
// Intrinsics that return a a predicate.
static unsigned doesIntrinsicReturnPredicate(unsigned ID)
{
switch (ID) {
default:
return 0;
case Intrinsic::hexagon_C2_cmpeq:
case Intrinsic::hexagon_C2_cmpgt:
case Intrinsic::hexagon_C2_cmpgtu:
case Intrinsic::hexagon_C2_cmpgtup:
case Intrinsic::hexagon_C2_cmpgtp:
case Intrinsic::hexagon_C2_cmpeqp:
case Intrinsic::hexagon_C2_bitsset:
case Intrinsic::hexagon_C2_bitsclr:
case Intrinsic::hexagon_C2_cmpeqi:
case Intrinsic::hexagon_C2_cmpgti:
case Intrinsic::hexagon_C2_cmpgtui:
case Intrinsic::hexagon_C2_cmpgei:
case Intrinsic::hexagon_C2_cmpgeui:
case Intrinsic::hexagon_C2_cmplt:
case Intrinsic::hexagon_C2_cmpltu:
case Intrinsic::hexagon_C2_bitsclri:
case Intrinsic::hexagon_C2_and:
case Intrinsic::hexagon_C2_or:
case Intrinsic::hexagon_C2_xor:
case Intrinsic::hexagon_C2_andn:
case Intrinsic::hexagon_C2_not:
case Intrinsic::hexagon_C2_orn:
case Intrinsic::hexagon_C2_pxfer_map:
case Intrinsic::hexagon_C2_any8:
case Intrinsic::hexagon_C2_all8:
case Intrinsic::hexagon_A2_vcmpbeq:
case Intrinsic::hexagon_A2_vcmpbgtu:
case Intrinsic::hexagon_A2_vcmpheq:
case Intrinsic::hexagon_A2_vcmphgt:
case Intrinsic::hexagon_A2_vcmphgtu:
case Intrinsic::hexagon_A2_vcmpweq:
case Intrinsic::hexagon_A2_vcmpwgt:
case Intrinsic::hexagon_A2_vcmpwgtu:
case Intrinsic::hexagon_C2_tfrrp:
case Intrinsic::hexagon_S2_tstbit_i:
case Intrinsic::hexagon_S2_tstbit_r:
return 1;
}
}
static bool OffsetFitsS11(EVT MemType, int64_t Offset) {
if (MemType == MVT::i64 && isShiftedInt<11,3>(Offset)) {
return true;
}
if (MemType == MVT::i32 && isShiftedInt<11,2>(Offset)) {
return true;
}
if (MemType == MVT::i16 && isShiftedInt<11,1>(Offset)) {
return true;
}
if (MemType == MVT::i8 && isInt<11>(Offset)) {
return true;
}
return false;
}
//
// Try to lower loads of GlobalAdresses into base+offset loads. Custom
// lowering for GlobalAddress nodes has already turned it into a
// CONST32.
//
SDNode *HexagonDAGToDAGISel::SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl) {
SDValue Chain = LD->getChain();
SDNode* Const32 = LD->getBasePtr().getNode();
unsigned Opcode = 0;
if (Const32->getOpcode() == HexagonISD::CONST32 &&
ISD::isNormalLoad(LD)) {
SDValue Base = Const32->getOperand(0);
EVT LoadedVT = LD->getMemoryVT();
int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset();
if (Offset != 0 && OffsetFitsS11(LoadedVT, Offset)) {
MVT PointerTy = getTargetLowering()->getPointerTy();
const GlobalValue* GV =
cast<GlobalAddressSDNode>(Base)->getGlobal();
SDValue TargAddr =
CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0);
SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set,
dl, PointerTy,
TargAddr);
// Figure out base + offset opcode
if (LoadedVT == MVT::i64) Opcode = Hexagon::L2_loadrd_io;
else if (LoadedVT == MVT::i32) Opcode = Hexagon::L2_loadri_io;
else if (LoadedVT == MVT::i16) Opcode = Hexagon::L2_loadrh_io;
else if (LoadedVT == MVT::i8) Opcode = Hexagon::L2_loadrb_io;
else llvm_unreachable("unknown memory type");
// Build indexed load.
SDValue TargetConstOff = CurDAG->getTargetConstant(Offset, PointerTy);
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
LD->getValueType(0),
MVT::Other,
SDValue(NewBase,0),
TargetConstOff,
Chain);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
ReplaceUses(LD, Result);
return Result;
}
}
return SelectCode(LD);
}
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
unsigned Opcode,
SDLoc dl)
{
SDValue Chain = LD->getChain();
EVT LoadedVT = LD->getMemoryVT();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
SDNode *OffsetNode = Offset.getNode();
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
SDValue N1 = LD->getOperand(1);
SDValue CPTmpN1_0;
SDValue CPTmpN1_1;
if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
N1.getNode()->getValueType(0) == MVT::i32) {
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
TM.getSubtargetImpl()->getInstrInfo());
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConst = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
MVT::Other, Base, TargetConst,
Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
SDValue(Result_1, 0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result_2, 0),
SDValue(Result_1, 1),
SDValue(Result_1, 2)
};
ReplaceUses(Froms, Tos, 3);
return Result_2;
}
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other, Base, TargetConst0,
Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl,
MVT::i64, SDValue(Result_1, 0));
SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl,
MVT::i32, Base, TargetConstVal,
SDValue(Result_1, 1));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result_2, 0),
SDValue(Result_3, 0),
SDValue(Result_1, 1)
};
ReplaceUses(Froms, Tos, 3);
return Result_2;
}
return SelectCode(LD);
}
SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
unsigned Opcode,
SDLoc dl)
{
SDValue Chain = LD->getChain();
EVT LoadedVT = LD->getMemoryVT();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
SDNode *OffsetNode = Offset.getNode();
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
SDValue N1 = LD->getOperand(1);
SDValue CPTmpN1_0;
SDValue CPTmpN1_1;
if (SelectADDRriS11_2(N1, CPTmpN1_0, CPTmpN1_1) &&
N1.getNode()->getValueType(0) == MVT::i32) {
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
TM.getSubtargetImpl()->getInstrInfo());
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::i32, MVT::Other, Base,
TargetConstVal, Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
TargetConst0);
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2,0),
SDValue(Result_1,0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result_3, 0),
SDValue(Result_1, 1),
SDValue(Result_1, 2)
};
ReplaceUses(Froms, Tos, 3);
return Result_3;
}
// Generate an indirect load.
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other,
Base, TargetConst0, Chain);
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
TargetConst0);
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2,0),
SDValue(Result_1,0));
// Add offset to base.
SDNode* Result_4 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
Base, TargetConstVal,
SDValue(Result_1, 1));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result_3, 0), // Load value.
SDValue(Result_4, 0), // New address.
SDValue(Result_1, 1)
};
ReplaceUses(Froms, Tos, 3);
return Result_3;
}
return SelectCode(LD);
}
SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
SDValue Offset = LD->getOffset();
SDNode *OffsetNode = Offset.getNode();
// Get the constant value.
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
EVT LoadedVT = LD->getMemoryVT();
unsigned Opcode = 0;
// Check for zero ext loads.
bool zextval = (LD->getExtensionType() == ISD::ZEXTLOAD);
// Figure out the opcode.
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
TM.getSubtargetImpl()->getInstrInfo());
if (LoadedVT == MVT::i64) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
Opcode = Hexagon::L2_loadrd_pi;
else
Opcode = Hexagon::L2_loadrd_io;
} else if (LoadedVT == MVT::i32) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
Opcode = Hexagon::L2_loadri_pi;
else
Opcode = Hexagon::L2_loadri_io;
} else if (LoadedVT == MVT::i16) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
Opcode = zextval ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
else
Opcode = zextval ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
} else if (LoadedVT == MVT::i8) {
if (TII->isValidAutoIncImm(LoadedVT, Val))
Opcode = zextval ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
else
Opcode = zextval ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
} else
llvm_unreachable("unknown memory type");
// For zero ext i64 loads, we need to add combine instructions.
if (LD->getValueType(0) == MVT::i64 &&
LD->getExtensionType() == ISD::ZEXTLOAD) {
return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
}
if (LD->getValueType(0) == MVT::i64 &&
LD->getExtensionType() == ISD::SEXTLOAD) {
// Handle sign ext i64 loads.
return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
}
if (TII->isValidAutoIncImm(LoadedVT, Val)) {
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
LD->getValueType(0),
MVT::i32, MVT::Other, Base,
TargetConstVal, Chain);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result, 0),
SDValue(Result, 1),
SDValue(Result, 2)
};
ReplaceUses(Froms, Tos, 3);
return Result;
} else {
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
LD->getValueType(0),
MVT::Other, Base, TargetConst0,
Chain);
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
Base, TargetConstVal,
SDValue(Result_1, 1));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = LD->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
const SDValue Froms[] = { SDValue(LD, 0),
SDValue(LD, 1),
SDValue(LD, 2)
};
const SDValue Tos[] = { SDValue(Result_1, 0),
SDValue(Result_2, 0),
SDValue(Result_1, 1)
};
ReplaceUses(Froms, Tos, 3);
return Result_1;
}
}
SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
SDNode *result;
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
ISD::MemIndexedMode AM = LD->getAddressingMode();
// Handle indexed loads.
if (AM != ISD::UNINDEXED) {
result = SelectIndexedLoad(LD, dl);
} else {
result = SelectBaseOffsetLoad(LD, dl);
}
return result;
}
SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
SDValue Chain = ST->getChain();
SDValue Base = ST->getBasePtr();
SDValue Offset = ST->getOffset();
SDValue Value = ST->getValue();
SDNode *OffsetNode = Offset.getNode();
// Get the constant value.
int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
EVT StoredVT = ST->getMemoryVT();
// Offset value must be within representable range
// and must have correct alignment properties.
const HexagonInstrInfo *TII = static_cast<const HexagonInstrInfo *>(
TM.getSubtargetImpl()->getInstrInfo());
if (TII->isValidAutoIncImm(StoredVT, Val)) {
SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, MVT::i32), Value,
Chain};
unsigned Opcode = 0;
// Figure out the post inc version of opcode.
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
else llvm_unreachable("unknown memory type");
// Build post increment store.
SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
MVT::Other, Ops);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = ST->getMemOperand();
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
ReplaceUses(ST, Result);
ReplaceUses(SDValue(ST,1), SDValue(Result,1));
return Result;
}
// Note: Order of operands matches the def of instruction:
// def STrid : STInst<(outs), (ins MEMri:$addr, DoubleRegs:$src1), ...
// and it differs for POST_ST* for instance.
SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, MVT::i32), Value,
Chain};
unsigned Opcode = 0;
// Figure out the opcode.
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
else llvm_unreachable("unknown memory type");
// Build regular store.
SDValue TargetConstVal = CurDAG->getTargetConstant(Val, MVT::i32);
SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
// Build splitted incriment instruction.
SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::ADD_ri, dl, MVT::i32,
Base,
TargetConstVal,
SDValue(Result_1, 0));
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = ST->getMemOperand();
cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
return Result_2;
}
SDNode *HexagonDAGToDAGISel::SelectBaseOffsetStore(StoreSDNode *ST,
SDLoc dl) {
SDValue Chain = ST->getChain();
SDNode* Const32 = ST->getBasePtr().getNode();
SDValue Value = ST->getValue();
unsigned Opcode = 0;
// Try to lower stores of GlobalAdresses into indexed stores. Custom
// lowering for GlobalAddress nodes has already turned it into a
// CONST32. Avoid truncating stores for the moment. Post-inc stores
// do the same. Don't think there's a reason for it, so will file a
// bug to fix.
if ((Const32->getOpcode() == HexagonISD::CONST32) &&
!(Value.getValueType() == MVT::i64 && ST->isTruncatingStore())) {
SDValue Base = Const32->getOperand(0);
if (Base.getOpcode() == ISD::TargetGlobalAddress) {
EVT StoredVT = ST->getMemoryVT();
int64_t Offset = cast<GlobalAddressSDNode>(Base)->getOffset();
if (Offset != 0 && OffsetFitsS11(StoredVT, Offset)) {
MVT PointerTy = getTargetLowering()->getPointerTy();
const GlobalValue* GV =
cast<GlobalAddressSDNode>(Base)->getGlobal();
SDValue TargAddr =
CurDAG->getTargetGlobalAddress(GV, dl, PointerTy, 0);
SDNode* NewBase = CurDAG->getMachineNode(Hexagon::CONST32_set,
dl, PointerTy,
TargAddr);
// Figure out base + offset opcode
if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
else llvm_unreachable("unknown memory type");
SDValue Ops[] = {SDValue(NewBase,0),
CurDAG->getTargetConstant(Offset,PointerTy),
Value, Chain};
// build indexed store
SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
MVT::Other, Ops);
MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
MemOp[0] = ST->getMemOperand();
cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
ReplaceUses(ST, Result);
return Result;
}
}
}
return SelectCode(ST);
}
SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
SDLoc dl(N);
StoreSDNode *ST = cast<StoreSDNode>(N);
ISD::MemIndexedMode AM = ST->getAddressingMode();
// Handle indexed stores.
if (AM != ISD::UNINDEXED) {
return SelectIndexedStore(ST, dl);
}
return SelectBaseOffsetStore(ST, dl);
}
SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
SDLoc dl(N);
//
// %conv.i = sext i32 %tmp1 to i64
// %conv2.i = sext i32 %add to i64
// %mul.i = mul nsw i64 %conv2.i, %conv.i
//
// --- match with the following ---
//
// %mul.i = mpy (%tmp1, %add)
//
if (N->getValueType(0) == MVT::i64) {
// Shifting a i64 signed multiply.
SDValue MulOp0 = N->getOperand(0);
SDValue MulOp1 = N->getOperand(1);
SDValue OP0;
SDValue OP1;
// Handle sign_extend and sextload.
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext0 = MulOp0.getOperand(0);
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
OP0 = Sext0;
} else if (MulOp0.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
return SelectCode(N);
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
} else {
return SelectCode(N);
}
// Same goes for the second operand.
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext1 = MulOp1.getOperand(0);
if (Sext1.getNode()->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
OP1 = Sext1;
} else if (MulOp1.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
return SelectCode(N);
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(), TargetConst0,
Chain), 0);
} else {
return SelectCode(N);
}
// Generate a mpy instruction.
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
OP0, OP1);
ReplaceUses(N, Result);
return Result;
}
return SelectCode(N);
}
SDNode *HexagonDAGToDAGISel::SelectSelect(SDNode *N) {
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
if (N0.getOpcode() == ISD::SETCC) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == ISD::SIGN_EXTEND_INREG) {
SDValue N000 = N00.getOperand(0);
SDValue N001 = N00.getOperand(1);
if (cast<VTSDNode>(N001)->getVT() == MVT::i16) {
SDValue N01 = N0.getOperand(1);
SDValue N02 = N0.getOperand(2);
// Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2,
// i16:Other),IntRegs:i32:$src1, SETLT:Other),IntRegs:i32:$src1,
// IntRegs:i32:$src2)
// Emits: (MAXh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2)
// Pattern complexity = 9 cost = 1 size = 0.
if (cast<CondCodeSDNode>(N02)->get() == ISD::SETLT) {
SDValue N1 = N->getOperand(1);
if (N01 == N1) {
SDValue N2 = N->getOperand(2);
if (N000 == N2 &&
N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
SDNode *SextNode = CurDAG->getMachineNode(Hexagon::A2_sxth, dl,
MVT::i32, N000);
SDNode *Result = CurDAG->getMachineNode(Hexagon::A2_max, dl,
MVT::i32,
SDValue(SextNode, 0),
N1);
ReplaceUses(N, Result);
return Result;
}
}
}
// Pattern: (select:i32 (setcc:i1 (sext_inreg:i32 IntRegs:i32:$src2,
// i16:Other), IntRegs:i32:$src1, SETGT:Other), IntRegs:i32:$src1,
// IntRegs:i32:$src2)
// Emits: (MINh_rr:i32 IntRegs:i32:$src1, IntRegs:i32:$src2)
// Pattern complexity = 9 cost = 1 size = 0.
if (cast<CondCodeSDNode>(N02)->get() == ISD::SETGT) {
SDValue N1 = N->getOperand(1);
if (N01 == N1) {
SDValue N2 = N->getOperand(2);
if (N000 == N2 &&
N0.getNode()->getValueType(N0.getResNo()) == MVT::i1 &&
N00.getNode()->getValueType(N00.getResNo()) == MVT::i32) {
SDNode *SextNode = CurDAG->getMachineNode(Hexagon::A2_sxth, dl,
MVT::i32, N000);
SDNode *Result = CurDAG->getMachineNode(Hexagon::A2_min, dl,
MVT::i32,
SDValue(SextNode, 0),
N1);
ReplaceUses(N, Result);
return Result;
}
}
}
}
}
}
return SelectCode(N);
}
SDNode *HexagonDAGToDAGISel::SelectTruncate(SDNode *N) {
SDLoc dl(N);
SDValue Shift = N->getOperand(0);
//
// %conv.i = sext i32 %tmp1 to i64
// %conv2.i = sext i32 %add to i64
// %mul.i = mul nsw i64 %conv2.i, %conv.i
// %shr5.i = lshr i64 %mul.i, 32
// %conv3.i = trunc i64 %shr5.i to i32
//
// --- match with the following ---
//
// %conv3.i = mpy (%tmp1, %add)
//
// Trunc to i32.
if (N->getValueType(0) == MVT::i32) {
// Trunc from i64.
if (Shift.getNode()->getValueType(0) == MVT::i64) {
// Trunc child is logical shift right.
if (Shift.getOpcode() != ISD::SRL) {
return SelectCode(N);
}
SDValue ShiftOp0 = Shift.getOperand(0);
SDValue ShiftOp1 = Shift.getOperand(1);
// Shift by const 32
if (ShiftOp1.getOpcode() != ISD::Constant) {
return SelectCode(N);
}
int32_t ShiftConst =
cast<ConstantSDNode>(ShiftOp1.getNode())->getSExtValue();
if (ShiftConst != 32) {
return SelectCode(N);
}
// Shifting a i64 signed multiply
SDValue Mul = ShiftOp0;
if (Mul.getOpcode() != ISD::MUL) {
return SelectCode(N);
}
SDValue MulOp0 = Mul.getOperand(0);
SDValue MulOp1 = Mul.getOperand(1);
SDValue OP0;
SDValue OP1;
// Handle sign_extend and sextload
if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext0 = MulOp0.getOperand(0);
if (Sext0.getNode()->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
OP0 = Sext0;
} else if (MulOp0.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
return SelectCode(N);
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(),
TargetConst0, Chain), 0);
} else {
return SelectCode(N);
}
// Same goes for the second operand.
if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
SDValue Sext1 = MulOp1.getOperand(0);
if (Sext1.getNode()->getValueType(0) != MVT::i32)
return SelectCode(N);
OP1 = Sext1;
} else if (MulOp1.getOpcode() == ISD::LOAD) {
LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
if (LD->getMemoryVT() != MVT::i32 ||
LD->getExtensionType() != ISD::SEXTLOAD ||
LD->getAddressingMode() != ISD::UNINDEXED) {
return SelectCode(N);
}
SDValue Chain = LD->getChain();
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
MVT::Other,
LD->getBasePtr(),
TargetConst0, Chain), 0);
} else {
return SelectCode(N);
}
// Generate a mpy instruction.
SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpy_up, dl, MVT::i32,
OP0, OP1);
ReplaceUses(N, Result);
return Result;
}
}
return SelectCode(N);
}
SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) == MVT::i32) {
SDValue Shl_0 = N->getOperand(0);
SDValue Shl_1 = N->getOperand(1);
// RHS is const.
if (Shl_1.getOpcode() == ISD::Constant) {
if (Shl_0.getOpcode() == ISD::MUL) {
SDValue Mul_0 = Shl_0.getOperand(0); // Val
SDValue Mul_1 = Shl_0.getOperand(1); // Const
// RHS of mul is const.
if (Mul_1.getOpcode() == ISD::Constant) {
int32_t ShlConst =
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
int32_t MulConst =
cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
int32_t ValConst = MulConst << ShlConst;
SDValue Val = CurDAG->getTargetConstant(ValConst,
MVT::i32);
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
MVT::i32, Mul_0, Val);
ReplaceUses(N, Result);
return Result;
}
}
} else if (Shl_0.getOpcode() == ISD::SUB) {
SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
SDValue Sub_1 = Shl_0.getOperand(1); // Val
if (Sub_0.getOpcode() == ISD::Constant) {
int32_t SubConst =
cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
if (SubConst == 0) {
if (Sub_1.getOpcode() == ISD::SHL) {
SDValue Shl2_0 = Sub_1.getOperand(0); // Val
SDValue Shl2_1 = Sub_1.getOperand(1); // Const
if (Shl2_1.getOpcode() == ISD::Constant) {
int32_t ShlConst =
cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
int32_t Shl2Const =
cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
int32_t ValConst = 1 << (ShlConst+Shl2Const);
SDValue Val = CurDAG->getTargetConstant(-ValConst, MVT::i32);
if (ConstantSDNode *CN =
dyn_cast<ConstantSDNode>(Val.getNode()))
if (isInt<9>(CN->getSExtValue())) {
SDNode* Result =
CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
Shl2_0, Val);
ReplaceUses(N, Result);
return Result;
}
}
}
}
}
}
}
}
return SelectCode(N);
}
//
// If there is an zero_extend followed an intrinsic in DAG (this means - the
// result of the intrinsic is predicate); convert the zero_extend to
// transfer instruction.
//
// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
// converted into a MUX as predicate registers defined as 1 bit in the
// compiler. Architecture defines them as 8-bit registers.
// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
//
SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
SDLoc dl(N);
SDNode *IsIntrinsic = N->getOperand(0).getNode();
if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
unsigned ID =
cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
if (doesIntrinsicReturnPredicate(ID)) {
// Now we need to differentiate target data types.
if (N->getValueType(0) == MVT::i64) {
// Convert the zero_extend to Rs = Pd followed by COMBINE_rr(0,Rs).
SDValue TargetConst0 = CurDAG->getTargetConstant(0, MVT::i32);
SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
MVT::i32,
TargetConst0);
SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
MVT::i64, MVT::Other,
SDValue(Result_2, 0),
SDValue(Result_1, 0));
ReplaceUses(N, Result_3);
return Result_3;
}
if (N->getValueType(0) == MVT::i32) {
// Convert the zero_extend to Rs = Pd
SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
MVT::i32,
SDValue(IsIntrinsic, 0));
ReplaceUses(N, RsPd);
return RsPd;
}
llvm_unreachable("Unexpected value type");
}
}
return SelectCode(N);
}
//
// Checking for intrinsics which have predicate registers as operand(s)
// and lowering to the actual intrinsic.
//
SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
unsigned Bits;
switch (IID) {
case Intrinsic::hexagon_S2_vsplatrb:
Bits = 8;
break;
case Intrinsic::hexagon_S2_vsplatrh:
Bits = 16;
break;
default:
return SelectCode(N);
}
SDValue const &V = N->getOperand(1);
SDValue U;
if (isValueExtension(V, Bits, U)) {
SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
N->getOperand(0), U);
return SelectCode(R.getNode());
}
return SelectCode(N);
}
//
// Map floating point constant values.
//
SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
SDLoc dl(N);
ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
APFloat APF = CN->getValueAPF();
if (N->getValueType(0) == MVT::f32) {
return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
CurDAG->getTargetConstantFP(APF.convertToFloat(), MVT::f32));
}
else if (N->getValueType(0) == MVT::f64) {
return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
CurDAG->getTargetConstantFP(APF.convertToDouble(), MVT::f64));
}
return SelectCode(N);
}
//
// Map predicate true (encoded as -1 in LLVM) to a XOR.
//
SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) == MVT::i1) {
SDNode* Result;
int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
if (Val == -1) {
// Create the IntReg = 1 node.
SDNode* IntRegTFR =
CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32,
CurDAG->getTargetConstant(0, MVT::i32));
// Pd = IntReg
SDNode* Pd = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::i1,
SDValue(IntRegTFR, 0));
// not(Pd)
SDNode* NotPd = CurDAG->getMachineNode(Hexagon::C2_not, dl, MVT::i1,
SDValue(Pd, 0));
// xor(not(Pd))
Result = CurDAG->getMachineNode(Hexagon::C2_xor, dl, MVT::i1,
SDValue(Pd, 0), SDValue(NotPd, 0));
// We have just built:
// Rs = Pd
// Pd = xor(not(Pd), Pd)
ReplaceUses(N, Result);
return Result;
}
}
return SelectCode(N);
}
//
// Map add followed by a asr -> asr +=.
//
SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
SDLoc dl(N);
if (N->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
// Identify nodes of the form: add(asr(...)).
SDNode* Src1 = N->getOperand(0).getNode();
if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
|| Src1->getValueType(0) != MVT::i32) {
return SelectCode(N);
}
// Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
// Rd and Rd' are assigned to the same register
SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
N->getOperand(1),
Src1->getOperand(0),
Src1->getOperand(1));
ReplaceUses(N, Result);
return Result;
}
SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return nullptr; // Already selected.
}
switch (N->getOpcode()) {
case ISD::Constant:
return SelectConstant(N);
case ISD::ConstantFP:
return SelectConstantFP(N);
case ISD::ADD:
return SelectAdd(N);
case ISD::SHL:
return SelectSHL(N);
case ISD::LOAD:
return SelectLoad(N);
case ISD::STORE:
return SelectStore(N);
case ISD::SELECT:
return SelectSelect(N);
case ISD::TRUNCATE:
return SelectTruncate(N);
case ISD::MUL:
return SelectMul(N);
case ISD::ZERO_EXTEND:
return SelectZeroExtend(N);
case ISD::INTRINSIC_WO_CHAIN:
return SelectIntrinsicWOChain(N);
}
return SelectCode(N);
}
//
// Hexagon_TODO: Five functions for ADDRri?! Surely there must be a better way
// to define these instructions.
//
bool HexagonDAGToDAGISel::SelectADDRri(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
bool HexagonDAGToDAGISel::SelectADDRriS11_0(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_0_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_0_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectADDRriS11_1(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_1_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_1_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectADDRriS11_2(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_2_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_2_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectADDRriU6_0(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsU6_0_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsU6_0_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectADDRriU6_1(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsU6_1_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsU6_1_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectADDRriU6_2(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsU6_2_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsU6_2_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectMEMriS11_2(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() != ISD::ADD) {
return(SelectADDRriS11_2(Addr, Base, Offset));
}
return SelectADDRriS11_2(Addr, Base, Offset);
}
bool HexagonDAGToDAGISel::SelectADDRriS11_3(SDValue& Addr, SDValue &Base,
SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_3_Offset(Offset.getNode()));
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return (IsS11_3_Offset(Offset.getNode()));
}
bool HexagonDAGToDAGISel::SelectADDRrr(SDValue &Addr, SDValue &R1,
SDValue &R2) {
if (Addr.getOpcode() == ISD::FrameIndex) return false;
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (Addr.getOpcode() == ISD::ADD) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
if (isInt<13>(CN->getSExtValue()))
return false; // Let the reg+imm pattern catch this!
R1 = Addr.getOperand(0);
R2 = Addr.getOperand(1);
return true;
}
R1 = Addr;
return true;
}
// Handle generic address case. It is accessed from inlined asm =m constraints,
// which could have any kind of pointer.
bool HexagonDAGToDAGISel::SelectAddr(SDNode *Op, SDValue Addr,
SDValue &Base, SDValue &Offset) {
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // Direct calls.
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32);
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
if (Addr.getOpcode() == ISD::ADD) {
Base = Addr.getOperand(0);
Offset = Addr.getOperand(1);
return true;
}
Base = Addr;
Offset = CurDAG->getTargetConstant(0, MVT::i32);
return true;
}
bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
std::vector<SDValue> &OutOps) {
SDValue Op0, Op1;
switch (ConstraintCode) {
case 'o': // Offsetable.
case 'v': // Not offsetable.
default: return true;
case 'm': // Memory.
if (!SelectAddr(Op.getNode(), Op, Op0, Op1))
return true;
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
bool HexagonDAGToDAGISel::isConstExtProfitable(SDNode *N) const {
unsigned UseCount = 0;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
UseCount++;
}
return (UseCount <= 1);
}
//===--------------------------------------------------------------------===//
// Return 'true' if use count of the global address is below threshold.
//===--------------------------------------------------------------------===//
bool HexagonDAGToDAGISel::hasNumUsesBelowThresGA(SDNode *N) const {
assert(N->getOpcode() == ISD::TargetGlobalAddress &&
"Expecting a target global address");
// Always try to fold the address.
if (TM.getOptLevel() == CodeGenOpt::Aggressive)
return true;
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
DenseMap<const GlobalValue *, unsigned>::const_iterator GI =
GlobalAddressUseCountMap.find(GA->getGlobal());
if (GI == GlobalAddressUseCountMap.end())
return false;
return GI->second <= MaxNumOfUsesForConstExtenders;
}
//===--------------------------------------------------------------------===//
// Return true if the non-GP-relative global address can be folded.
//===--------------------------------------------------------------------===//
inline bool HexagonDAGToDAGISel::foldGlobalAddress(SDValue &N, SDValue &R) {
return foldGlobalAddressImpl(N, R, false);
}
//===--------------------------------------------------------------------===//
// Return true if the GP-relative global address can be folded.
//===--------------------------------------------------------------------===//
inline bool HexagonDAGToDAGISel::foldGlobalAddressGP(SDValue &N, SDValue &R) {
return foldGlobalAddressImpl(N, R, true);
}
//===--------------------------------------------------------------------===//
// Fold offset of the global address if number of uses are below threshold.
//===--------------------------------------------------------------------===//
bool HexagonDAGToDAGISel::foldGlobalAddressImpl(SDValue &N, SDValue &R,
bool ShouldLookForGP) {
if (N.getOpcode() == ISD::ADD) {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
if ((ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32_GP)) ||
(!ShouldLookForGP && (N0.getOpcode() == HexagonISD::CONST32))) {
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1);
GlobalAddressSDNode *GA =
dyn_cast<GlobalAddressSDNode>(N0.getOperand(0));
if (Const && GA &&
(GA->getOpcode() == ISD::TargetGlobalAddress)) {
if ((N0.getOpcode() == HexagonISD::CONST32) &&
!hasNumUsesBelowThresGA(GA))
return false;
R = CurDAG->getTargetGlobalAddress(GA->getGlobal(),
SDLoc(Const),
N.getValueType(),
GA->getOffset() +
(uint64_t)Const->getSExtValue());
return true;
}
}
}
return false;
}
bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
if (N.getOpcode() != ISD::FrameIndex)
return false;
FrameIndexSDNode *FX = cast<FrameIndexSDNode>(N);
R = CurDAG->getTargetFrameIndex(FX->getIndex(), MVT::i32);
return true;
}
bool HexagonDAGToDAGISel::isValueExtension(SDValue const &Val,
unsigned FromBits, SDValue &Src) {
unsigned Opc = Val.getOpcode();
switch (Opc) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND: {
SDValue const &Op0 = Val.getOperand(0);
EVT T = Op0.getValueType();
if (T.isInteger() && T.getSizeInBits() == FromBits) {
Src = Op0;
return true;
}
break;
}
case ISD::SIGN_EXTEND_INREG:
case ISD::AssertSext:
case ISD::AssertZext:
if (Val.getOperand(0).getValueType().isInteger()) {
VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
if (T->getVT().getSizeInBits() == FromBits) {
Src = Val.getOperand(0);
return true;
}
}
break;
case ISD::AND: {
// Check if this is an AND with "FromBits" of lower bits set to 1.
uint64_t FromMask = (1 << FromBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if (C->getZExtValue() == FromMask) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if (C->getZExtValue() == FromMask) {
Src = Val.getOperand(0);
return true;
}
}
break;
}
case ISD::OR:
case ISD::XOR: {
// OR/XOR with the lower "FromBits" bits set to 0.
uint64_t FromMask = (1 << FromBits) - 1;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
if ((C->getZExtValue() & FromMask) == 0) {
Src = Val.getOperand(1);
return true;
}
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
if ((C->getZExtValue() & FromMask) == 0) {
Src = Val.getOperand(0);
return true;
}
}
}
default:
break;
}
return false;
}