llvm-project/polly/test/ScopInfo/phi_scalar_simple_1.ll

121 lines
5.8 KiB
LLVM

; RUN: opt %loadPolly -polly-scops -analyze < %s | FileCheck %s
;
; The assumed context should be empty since the <nsw> flags on the IV
; increments already guarantee that there is no wrap in the loop trip
; count.
;
; int jd(int *restrict A, int x, int N) {
; for (int i = 1; i < N; i++)
; for (int j = 3; j < N; j++)
; x += A[i];
; return x;
; }
; CHECK: Assumed Context:
; CHECK-NEXT: [N] -> { : }
;
; CHECK: Statements {
; CHECK-NEXT: Stmt_for_cond
; CHECK-NEXT: Domain :=
; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] : 0 <= i0 < N; Stmt_for_cond[0] : N <= 0 };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] -> [i0, 0, 0, 0] : i0 < N; Stmt_for_cond[0] -> [0, 0, 0, 0] : N <= 0 };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] -> MemRef_x_addr_0__phi[] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_cond[i0] -> MemRef_x_addr_0[] };
; CHECK-NEXT: Stmt_for_body
; CHECK-NEXT: Domain :=
; CHECK-NEXT: [N] -> { Stmt_for_body[i0] : 0 <= i0 <= -2 + N };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: [N] -> { Stmt_for_body[i0] -> [i0, 1, 0, 0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_body[i0] -> MemRef_x_addr_0[] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_body[i0] -> MemRef_x_addr_1__phi[] };
; CHECK-NEXT: Stmt_for_cond1
; CHECK-NEXT: Domain :=
; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] : 0 <= i0 <= -2 + N and 0 <= i1 <= -3 + N };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> [i0, 2, i1, 0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> MemRef_x_addr_1__phi[] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> MemRef_x_addr_1[] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_cond1[i0, i1] -> MemRef_x_addr_1_lcssa__phi[] };
; CHECK-NEXT: Stmt_for_inc
; CHECK-NEXT: Domain :=
; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] : 0 <= i0 <= -2 + N and 0 <= i1 <= -4 + N };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> [i0, 2, i1, 1] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> MemRef_x_addr_1__phi[] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> MemRef_A[1 + i0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_inc[i0, i1] -> MemRef_x_addr_1[] };
; CHECK-NEXT: Stmt_for_end
; CHECK-NEXT: Domain :=
; CHECK-NEXT: [N] -> { Stmt_for_end[i0] : N >= 3 and 0 <= i0 <= -2 + N };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: [N] -> { Stmt_for_end[i0] -> [i0, 3, 0, 0] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_end[i0] -> MemRef_x_addr_1_lcssa[] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_end[i0] -> MemRef_x_addr_1_lcssa__phi[] };
; CHECK-NEXT: Stmt_for_inc4
; CHECK-NEXT: Domain :=
; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] : N >= 3 and 0 <= i0 <= -2 + N };
; CHECK-NEXT: Schedule :=
; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] -> [i0, 4, 0, 0] };
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] -> MemRef_x_addr_1_lcssa[] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 1]
; CHECK-NEXT: [N] -> { Stmt_for_inc4[i0] -> MemRef_x_addr_0__phi[] };
; CHECK-NEXT: }
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
define i32 @jd(i32* noalias %A, i32 %x, i32 %N) {
entry:
%tmp = sext i32 %N to i64
br label %for.cond
for.cond: ; preds = %for.inc4, %entry
%indvars.iv = phi i64 [ %indvars.iv.next, %for.inc4 ], [ 1, %entry ]
%x.addr.0 = phi i32 [ %x, %entry ], [ %x.addr.1.lcssa, %for.inc4 ]
%cmp = icmp slt i64 %indvars.iv, %tmp
br i1 %cmp, label %for.body, label %for.end6
for.body: ; preds = %for.cond
br label %for.cond1
for.cond1: ; preds = %for.inc, %for.body
%x.addr.1 = phi i32 [ %x.addr.0, %for.body ], [ %add, %for.inc ]
%j.0 = phi i32 [ 3, %for.body ], [ %inc, %for.inc ]
%exitcond = icmp ne i32 %j.0, %N
br i1 %exitcond, label %for.body3, label %for.end
for.body3: ; preds = %for.cond1
br label %for.inc
for.inc: ; preds = %for.body3
%arrayidx = getelementptr inbounds i32, i32* %A, i64 %indvars.iv
%tmp1 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %x.addr.1, %tmp1
%inc = add nsw i32 %j.0, 1
br label %for.cond1
for.end: ; preds = %for.cond1
%x.addr.1.lcssa = phi i32 [ %x.addr.1, %for.cond1 ]
br label %for.inc4
for.inc4: ; preds = %for.end
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
br label %for.cond
for.end6: ; preds = %for.cond
ret i32 %x.addr.0
}