Go to file
Slava Zakharin f8a9f43ef7 [flang][runtime] Enable real/complex kind 10 and 16 variants of dot_product.
HasCppTypeFor<> used to evaluate to false always, so kind 10 and 16
variants of dot_product were not instantiated even though the host
supported 80- and 128-bit real and complex data types.
In addition, HAS_FLOAT128 was not enabling complex kind=16 variant
of dot_product. This is fixed now.

Note that the change for HasCppTypeFor<> may also affect other
functions such as matmul, i.e. kind 10 and 16 variants of them
may become available now (depending on the build host).

Differential Revision: https://reviews.llvm.org/D133051
2022-08-31 15:17:17 -07:00
.github workflows/llvm-project-tests: Workaround an issue with lldb builds on Windows 2022-08-20 00:15:18 -07:00
bolt Use StringRef::contains (NFC) 2022-08-28 23:29:02 -07:00
clang [Frontend] Restore Preprocessor::getPredefines() 2022-08-31 23:16:49 +03:00
clang-tools-extra [clang-tidy] Fix modernize-use-emplace to support alias cases 2022-08-31 10:21:10 +01:00
cmake Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
compiler-rt [msan] Use Debug Info to point to affected fields 2022-08-31 13:12:17 -07:00
cross-project-tests [debuginfo-tests] Un-XFAIL no passing unused-merged-value.c test 2022-08-25 16:43:40 +01:00
flang [flang][runtime] Enable real/complex kind 10 and 16 variants of dot_product. 2022-08-31 15:17:17 -07:00
libc [libc] Add arm-32 syscall implementation. 2022-08-31 18:10:40 +00:00
libclc [libclc] Quote addition of CLC/LLAsm flags 2022-08-31 11:10:24 +02:00
libcxx [NFC][libc++] char_traits code cleanups. 2022-08-31 22:18:10 +02:00
libcxxabi [runtimes] Don't link against compiler-rt when we don't find it 2022-08-24 10:33:10 -04:00
libunwind [libunwind] Fixed a number of typos 2022-08-20 18:09:03 -07:00
lld [lld][WebAssembly] Rename SymbolTable::getSymbols to match ELF backend. NFC 2022-08-31 14:33:45 -07:00
lldb [lldb] Make the rumtimes target a test dependency 2022-08-31 14:25:07 -07:00
llvm [RISCV] Slightly simplify coode in combineVWADD_W_VL_VWSUB_W_VL and combineMUL_VLToVWMUL_VL. NFC 2022-08-31 15:02:03 -07:00
llvm-libgcc [cmake] Slight fix ups to make robust to the full range of GNUInstallDirs 2022-07-26 14:48:49 +00:00
mlir [mlir][sparse] Introduce new sparse_tensor.storage_get/set to access memory that stores the handle of a sparse tensor 2022-08-31 22:15:15 +00:00
openmp [Libomptarget] Remove old workaround for GCC 5,6 from libomptarget 2022-08-30 19:13:48 -05:00
polly Use std::gcd (NFC) 2022-08-28 10:41:53 -07:00
pstl Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
runtimes Revert "[runtimes] Use a response file for runtimes test suites" 2022-08-29 11:25:29 -07:00
third-party Revert "[cmake] Use `CMAKE_INSTALL_LIBDIR` too" 2022-08-18 22:46:32 -04:00
utils [llvm][ADT] Overload output stream operator `<<` for `StringMapEntry` and `StringMap`. 2022-08-31 17:37:58 +00:00
.arcconfig
.arclint
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy Add -misc-const-correctness to .clang-tidy 2022-08-08 13:00:52 -07:00
.git-blame-ignore-revs Add __config formatting to .git-blame-ignore-revs 2022-06-14 09:52:49 -04:00
.gitignore [llvm] Ignore .rej files in .gitignore 2022-04-28 08:44:51 -07:00
.mailmap [mailmap] Add entry for myself 2022-08-08 16:29:06 +08:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
LICENSE.TXT [docs] Add LICENSE.txt to the root of the mono-repo 2022-08-24 09:35:00 +02:00
README.md Fix grammar and punctuation across several docs; NFC 2022-04-07 07:11:11 -04:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from here.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake.

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.