llvm-project/polly/lib/Transform/ZoneAlgo.cpp

767 lines
28 KiB
C++

//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Derive information about array elements between statements ("Zones").
//
// The algorithms here work on the scatter space - the image space of the
// schedule returned by Scop::getSchedule(). We call an element in that space a
// "timepoint". Timepoints are lexicographically ordered such that we can
// defined ranges in the scatter space. We use two flavors of such ranges:
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
// space and is directly stored as isl_set.
//
// Zones are used to describe the space between timepoints as open sets, i.e.
// they do not contain the extrema. Using isl rational sets to express these
// would be overkill. We also cannot store them as the integer timepoints they
// contain; the (nonempty) zone between 1 and 2 would be empty and
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
// Instead, we store the "half-open" integer extrema, including the lower bound,
// but excluding the upper bound. Examples:
//
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
// integer points 1 and 2, but not 0 or 3)
//
// * { [1] } represents the zone ]0,1[
//
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
//
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
// speaking the integer points never belong to the zone. However, depending an
// the interpretation, one might want to include them. Part of the
// interpretation may not be known when the zone is constructed.
//
// Reads are assumed to always take place before writes, hence we can think of
// reads taking place at the beginning of a timepoint and writes at the end.
//
// Let's assume that the zone represents the lifetime of a variable. That is,
// the zone begins with a write that defines the value during its lifetime and
// ends with the last read of that value. In the following we consider whether a
// read/write at the beginning/ending of the lifetime zone should be within the
// zone or outside of it.
//
// * A read at the timepoint that starts the live-range loads the previous
// value. Hence, exclude the timepoint starting the zone.
//
// * A write at the timepoint that starts the live-range is not defined whether
// it occurs before or after the write that starts the lifetime. We do not
// allow this situation to occur. Hence, we include the timepoint starting the
// zone to determine whether they are conflicting.
//
// * A read at the timepoint that ends the live-range reads the same variable.
// We include the timepoint at the end of the zone to include that read into
// the live-range. Doing otherwise would mean that the two reads access
// different values, which would mean that the value they read are both alive
// at the same time but occupy the same variable.
//
// * A write at the timepoint that ends the live-range starts a new live-range.
// It must not be included in the live-range of the previous definition.
//
// All combinations of reads and writes at the endpoints are possible, but most
// of the time only the write->read (for instance, a live-range from definition
// to last use) and read->write (for instance, an unused range from last use to
// overwrite) and combinations are interesting (half-open ranges). write->write
// zones might be useful as well in some context to represent
// output-dependencies.
//
// @see convertZoneToTimepoints
//
//
// The code makes use of maps and sets in many different spaces. To not loose
// track in which space a set or map is expected to be in, variables holding an
// isl reference are usually annotated in the comments. They roughly follow isl
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
// meaning as follows:
//
// * Space[] - An unspecified tuple. Used for function parameters such that the
// function caller can use it for anything they like.
//
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
// isl_id_get_name: Stmt_<NameOfBasicBlock>
// isl_id_get_user: Pointer to ScopStmt
//
// * Element[] - An array element as in the range part of
// MemoryAccess::getAccessRelation()
// isl_id_get_name: MemRef_<NameOfArrayVariable>
// isl_id_get_user: Pointer to ScopArrayInfo
//
// * Scatter[] - Scatter space or space of timepoints
// Has no tuple id
//
// * Zone[] - Range between timepoints as described above
// Has no tuple id
//
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
//
// A ValInst[] itself can be structured as one of:
//
// * [] - An unknown value.
// Always zero dimensions
// Has no tuple id
//
// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
// runtime content does not depend on the timepoint.
// Always zero dimensions
// isl_id_get_name: Val_<NameOfValue>
// isl_id_get_user: A pointer to an llvm::Value
//
// * SCEV[...] - A synthesizable llvm::SCEV Expression.
// In contrast to a Value[] is has at least one dimension per
// SCEVAddRecExpr in the SCEV.
//
// * [Domain[] -> Value[]] - An llvm::Value that may change during the
// Scop's execution.
// The tuple itself has no id, but it wraps a map space holding a
// statement instance which defines the llvm::Value as the map's domain
// and llvm::Value itself as range.
//
// @see makeValInst()
//
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
// statement instance to a timepoint, aka a schedule. There is only one scatter
// space, but most of the time multiple statements are processed in one set.
// This is why most of the time isl_union_map has to be used.
//
// The basic algorithm works as follows:
// At first we verify that the SCoP is compatible with this technique. For
// instance, two writes cannot write to the same location at the same statement
// instance because we cannot determine within the polyhedral model which one
// comes first. Once this was verified, we compute zones at which an array
// element is unused. This computation can fail if it takes too long. Then the
// main algorithm is executed. Because every store potentially trails an unused
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
// MemoryKind::PHI) that we can map to the array element overwritten by the
// store, preferably one that is used by the store or at least the ScopStmt.
// When it does not conflict with the lifetime of the values in the array
// element, the map is applied and the unused zone updated as it is now used. We
// continue to try to map scalars to the array element until there are no more
// candidates to map. The algorithm is greedy in the sense that the first scalar
// not conflicting will be mapped. Other scalars processed later that could have
// fit the same unused zone will be rejected. As such the result depends on the
// processing order.
//
//===----------------------------------------------------------------------===//
#include "polly/ZoneAlgo.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#define DEBUG_TYPE "polly-zone"
using namespace polly;
using namespace llvm;
static isl::union_map computeReachingDefinition(isl::union_map Schedule,
isl::union_map Writes,
bool InclDef, bool InclRedef) {
return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
}
/// Compute the reaching definition of a scalar.
///
/// Compared to computeReachingDefinition, there is just one element which is
/// accessed and therefore only a set if instances that accesses that element is
/// required.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclDef Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
isl::union_set Writes,
bool InclDef,
bool InclRedef) {
// { DomainWrite[] -> Element[] }
isl::union_map Defs = isl::union_map::from_domain(Writes);
// { [Element[] -> Scatter[]] -> DomainWrite[] }
auto ReachDefs =
computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
// { Scatter[] -> DomainWrite[] }
return ReachDefs.curry().range().unwrap();
}
/// Compute the reaching definition of a scalar.
///
/// This overload accepts only a single writing statement as an isl_map,
/// consequently the result also is only a single isl_map.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclDef Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
isl::set Writes, bool InclDef,
bool InclRedef) {
isl::space DomainSpace = Writes.get_space();
isl::space ScatterSpace = getScatterSpace(Schedule);
// { Scatter[] -> DomainWrite[] }
isl::union_map UMap = computeScalarReachingDefinition(
Schedule, isl::union_set(Writes), InclDef, InclRedef);
isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomainSpace);
return singleton(UMap, ResultSpace);
}
isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
return give(isl_union_map_from_domain(Domain.take()));
}
/// Create a domain-to-unknown value mapping.
///
/// @see makeUnknownForDomain(isl::union_set)
///
/// @param Domain { Domain[] }
///
/// @return { Domain[] -> ValInst[] }
static isl::map makeUnknownForDomain(isl::set Domain) {
return give(isl_map_from_domain(Domain.take()));
}
/// Return whether @p Map maps to an unknown value.
///
/// @param { [] -> ValInst[] }
static bool isMapToUnknown(const isl::map &Map) {
isl::space Space = Map.get_space().range();
return Space.has_tuple_id(isl::dim::set).is_false() &&
Space.is_wrapping().is_false() && Space.dim(isl::dim::set) == 0;
}
isl::union_map polly::filterKnownValInst(const isl::union_map &UMap) {
isl::union_map Result = isl::union_map::empty(UMap.get_space());
isl::stat Success = UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
if (!isMapToUnknown(Map))
Result = Result.add_map(Map);
return isl::stat::ok;
});
if (Success != isl::stat::ok)
return {};
return Result;
}
static std::string printInstruction(Instruction *Instr,
bool IsForDebug = false) {
std::string Result;
raw_string_ostream OS(Result);
Instr->print(OS, IsForDebug);
OS.flush();
size_t i = 0;
while (i < Result.size() && Result[i] == ' ')
i += 1;
return Result.substr(i);
}
ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
: PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Schedule(S->getSchedule()) {
auto Domains = S->getDomains();
Schedule =
give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
ScatterSpace = getScatterSpace(Schedule);
}
/// Check if all stores in @p Stmt store the very same value.
///
/// This covers a special situation occurring in Polybench's
/// covariance/correlation (which is typical for algorithms that cover symmetric
/// matrices):
///
/// for (int i = 0; i < n; i += 1)
/// for (int j = 0; j <= i; j += 1) {
/// double x = ...;
/// C[i][j] = x;
/// C[j][i] = x;
/// }
///
/// For i == j, the same value is written twice to the same element.Double
/// writes to the same element are not allowed in DeLICM because its algorithm
/// does not see which of the writes is effective.But if its the same value
/// anyway, it doesn't matter.
///
/// LLVM passes, however, cannot simplify this because the write is necessary
/// for i != j (unless it would add a condition for one of the writes to occur
/// only if i != j).
///
/// TODO: In the future we may want to extent this to make the checks
/// specific to different memory locations.
static bool onlySameValueWrites(ScopStmt *Stmt) {
Value *V = nullptr;
for (auto *MA : *Stmt) {
if (!MA->isLatestArrayKind() || !MA->isMustWrite() ||
!MA->isOriginalArrayKind())
continue;
if (!V) {
V = MA->getAccessValue();
continue;
}
if (V != MA->getAccessValue())
return false;
}
return true;
}
bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) {
auto Stores = makeEmptyUnionMap();
auto Loads = makeEmptyUnionMap();
// This assumes that the MemoryKind::Array MemoryAccesses are iterated in
// order.
for (auto *MA : *Stmt) {
if (!MA->isLatestArrayKind())
continue;
auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
if (MA->isRead()) {
// Reject load after store to same location.
if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(PassName, "LoadAfterStore",
MA->getAccessInstruction());
R << "load after store of same element in same statement";
R << " (previous stores: " << Stores;
R << ", loading: " << AccRel << ")";
S->getFunction().getContext().diagnose(R);
return false;
}
Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
continue;
}
if (!isa<StoreInst>(MA->getAccessInstruction())) {
DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
OptimizationRemarkMissed R(PassName, "UnusualStore",
MA->getAccessInstruction());
R << "encountered write that is not a StoreInst: "
<< printInstruction(MA->getAccessInstruction());
S->getFunction().getContext().diagnose(R);
return false;
}
// In region statements the order is less clear, eg. the load and store
// might be in a boxed loop.
if (Stmt->isRegionStmt() &&
!isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(PassName, "StoreInSubregion",
MA->getAccessInstruction());
R << "store is in a non-affine subregion";
S->getFunction().getContext().diagnose(R);
return false;
}
// Do not allow more than one store to the same location.
if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep()) &&
!onlySameValueWrites(Stmt)) {
OptimizationRemarkMissed R(PassName, "StoreAfterStore",
MA->getAccessInstruction());
R << "store after store of same element in same statement";
R << " (previous stores: " << Stores;
R << ", storing: " << AccRel << ")";
S->getFunction().getContext().diagnose(R);
return false;
}
Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
}
return true;
}
void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
assert(MA->isLatestArrayKind());
assert(MA->isRead());
ScopStmt *Stmt = MA->getStatement();
// { DomainRead[] -> Element[] }
auto AccRel = getAccessRelationFor(MA);
AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
if (LoadInst *Load = dyn_cast_or_null<LoadInst>(MA->getAccessInstruction())) {
// { DomainRead[] -> ValInst[] }
isl::map LoadValInst = makeValInst(
Load, Stmt, LI->getLoopFor(Load->getParent()), Stmt->isBlockStmt());
// { DomainRead[] -> [Element[] -> DomainRead[]] }
isl::map IncludeElement =
give(isl_map_curry(isl_map_domain_map(AccRel.take())));
// { [Element[] -> DomainRead[]] -> ValInst[] }
isl::map EltLoadValInst =
give(isl_map_apply_domain(LoadValInst.take(), IncludeElement.take()));
AllReadValInst = give(
isl_union_map_add_map(AllReadValInst.take(), EltLoadValInst.take()));
}
}
void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
assert(MA->isLatestArrayKind());
assert(MA->isWrite());
auto *Stmt = MA->getStatement();
// { Domain[] -> Element[] }
auto AccRel = getAccessRelationFor(MA);
if (MA->isMustWrite())
AllMustWrites =
give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
if (MA->isMayWrite())
AllMayWrites =
give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
// { Domain[] -> ValInst[] }
auto WriteValInstance =
makeValInst(MA->getAccessValue(), Stmt,
LI->getLoopFor(MA->getAccessInstruction()->getParent()),
MA->isMustWrite());
// { Domain[] -> [Element[] -> Domain[]] }
auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
// { [Element[] -> DomainWrite[]] -> ValInst[] }
auto EltWriteValInst = give(
isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
AllWriteValInst = give(
isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
}
isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
return give(isl_union_set_empty(ParamSpace.copy()));
}
isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
return give(isl_union_map_empty(ParamSpace.copy()));
}
bool ZoneAlgorithm::isCompatibleScop() {
for (auto &Stmt : *S) {
if (!isCompatibleStmt(&Stmt))
return false;
}
return true;
}
isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
Stmt->getDomainSpace().release(), ScatterSpace.copy()));
return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
}
isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
return getScatterFor(MA->getStatement());
}
isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
}
isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
auto ResultSpace = give(isl_space_map_from_domain_and_range(
isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
auto UDomain = give(isl_union_set_from_set(Domain.copy()));
auto UResult = getScatterFor(std::move(UDomain));
auto Result = singleton(std::move(UResult), std::move(ResultSpace));
assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
Domain.keep()) == isl_bool_true);
return Result;
}
isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
return Stmt->getDomain().remove_redundancies();
}
isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
return getDomainFor(MA->getStatement());
}
isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
auto Domain = getDomainFor(MA);
auto AccRel = MA->getLatestAccessRelation();
return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
}
isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
auto &Result = ScalarReachDefZone[Stmt];
if (Result)
return Result;
auto Domain = getDomainFor(Stmt);
Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
simplify(Result);
return Result;
}
isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
auto StmtResult = getScalarReachingDefinition(Stmt);
return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
}
isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
return ::makeUnknownForDomain(getDomainFor(Stmt));
}
isl::id ZoneAlgorithm::makeValueId(Value *V) {
if (!V)
return nullptr;
auto &Id = ValueIds[V];
if (Id.is_null()) {
auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
std::string(), UseInstructionNames);
Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
}
return Id;
}
isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
makeValueId(V).take()));
}
isl::set ZoneAlgorithm::makeValueSet(Value *V) {
auto Space = makeValueSpace(V);
return give(isl_set_universe(Space.take()));
}
isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
bool IsCertain) {
// If the definition/write is conditional, the value at the location could
// be either the written value or the old value. Since we cannot know which
// one, consider the value to be unknown.
if (!IsCertain)
return makeUnknownForDomain(UserStmt);
auto DomainUse = getDomainFor(UserStmt);
auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
switch (VUse.getKind()) {
case VirtualUse::Constant:
case VirtualUse::Block:
case VirtualUse::Hoisted:
case VirtualUse::ReadOnly: {
// The definition does not depend on the statement which uses it.
auto ValSet = makeValueSet(Val);
return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
}
case VirtualUse::Synthesizable: {
auto *ScevExpr = VUse.getScevExpr();
auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
// Construct the SCEV space.
// TODO: Add only the induction variables referenced in SCEVAddRecExpr
// expressions, not just all of them.
auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
const_cast<SCEV *>(ScevExpr)));
auto ScevSpace =
give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
ScevSpace = give(
isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
// { DomainUse[] -> ScevExpr[] }
auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
UseDomainSpace.copy(), ScevSpace.copy())));
return ValInst;
}
case VirtualUse::Intra: {
// Definition and use is in the same statement. We do not need to compute
// a reaching definition.
// { llvm::Value }
auto ValSet = makeValueSet(Val);
// { UserDomain[] -> llvm::Value }
auto ValInstSet =
give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
// { UserDomain[] -> [UserDomain[] - >llvm::Value] }
auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
simplify(Result);
return Result;
}
case VirtualUse::Inter: {
// The value is defined in a different statement.
auto *Inst = cast<Instruction>(Val);
auto *ValStmt = S->getStmtFor(Inst);
// If the llvm::Value is defined in a removed Stmt, we cannot derive its
// domain. We could use an arbitrary statement, but this could result in
// different ValInst[] for the same llvm::Value.
if (!ValStmt)
return ::makeUnknownForDomain(DomainUse);
// { DomainDef[] }
auto DomainDef = getDomainFor(ValStmt);
// { Scatter[] -> DomainDef[] }
auto ReachDef = getScalarReachingDefinition(DomainDef);
// { DomainUse[] -> Scatter[] }
auto UserSched = getScatterFor(DomainUse);
// { DomainUse[] -> DomainDef[] }
auto UsedInstance =
give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
// { llvm::Value }
auto ValSet = makeValueSet(Val);
// { DomainUse[] -> llvm::Value[] }
auto ValInstSet =
give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
// { DomainUse[] -> [DomainDef[] -> llvm::Value] }
auto Result =
give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
simplify(Result);
return Result;
}
}
llvm_unreachable("Unhandled use type");
}
void ZoneAlgorithm::computeCommon() {
AllReads = makeEmptyUnionMap();
AllMayWrites = makeEmptyUnionMap();
AllMustWrites = makeEmptyUnionMap();
AllWriteValInst = makeEmptyUnionMap();
AllReadValInst = makeEmptyUnionMap();
for (auto &Stmt : *S) {
for (auto *MA : Stmt) {
if (!MA->isLatestArrayKind())
continue;
if (MA->isRead())
addArrayReadAccess(MA);
if (MA->isWrite())
addArrayWriteAccess(MA);
}
}
// { DomainWrite[] -> Element[] }
AllWrites =
give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
// { [Element[] -> Zone[]] -> DomainWrite[] }
WriteReachDefZone =
computeReachingDefinition(Schedule, AllWrites, false, true);
simplify(WriteReachDefZone);
}
void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
OS.indent(Indent) << "After accesses {\n";
for (auto &Stmt : *S) {
OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
for (auto *MA : Stmt)
MA->print(OS);
}
OS.indent(Indent) << "}\n";
}
isl::union_map ZoneAlgorithm::computeKnownFromMustWrites() const {
// { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
isl::union_map EltReachdDef = distributeDomain(WriteReachDefZone.curry());
// { [Element[] -> DomainWrite[]] -> ValInst[] }
isl::union_map AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
// { [Element[] -> Zone[]] -> ValInst[] }
return EltReachdDef.apply_range(AllKnownWriteValInst);
}
isl::union_map ZoneAlgorithm::computeKnownFromLoad() const {
// { Element[] }
isl::union_set AllAccessedElts = AllReads.range().unite(AllWrites.range());
// { Element[] -> Scatter[] }
isl::union_map EltZoneUniverse = isl::union_map::from_domain_and_range(
AllAccessedElts, isl::set::universe(ScatterSpace));
// This assumes there are no "holes" in
// isl_union_map_domain(WriteReachDefZone); alternatively, compute the zone
// before the first write or that are not written at all.
// { Element[] -> Scatter[] }
isl::union_set NonReachDef =
EltZoneUniverse.wrap().subtract(WriteReachDefZone.domain());
// { [Element[] -> Zone[]] -> ReachDefId[] }
isl::union_map DefZone =
WriteReachDefZone.unite(isl::union_map::from_domain(NonReachDef));
// { [Element[] -> Scatter[]] -> Element[] }
isl::union_map EltZoneElt = EltZoneUniverse.domain_map();
// { [Element[] -> Zone[]] -> [Element[] -> ReachDefId[]] }
isl::union_map DefZoneEltDefId = EltZoneElt.range_product(DefZone);
// { Element[] -> [Zone[] -> ReachDefId[]] }
isl::union_map EltDefZone = DefZone.curry();
// { [Element[] -> Zone[] -> [Element[] -> ReachDefId[]] }
isl::union_map EltZoneEltDefid = distributeDomain(EltDefZone);
// { [Element[] -> Scatter[]] -> DomainRead[] }
isl::union_map Reads = AllReads.range_product(Schedule).reverse();
// { [Element[] -> Scatter[]] -> [Element[] -> DomainRead[]] }
isl::union_map ReadsElt = EltZoneElt.range_product(Reads);
// { [Element[] -> Scatter[]] -> ValInst[] }
isl::union_map ScatterKnown = ReadsElt.apply_range(AllReadValInst);
// { [Element[] -> ReachDefId[]] -> ValInst[] }
isl::union_map DefidKnown =
DefZoneEltDefId.apply_domain(ScatterKnown).reverse();
// { [Element[] -> Zone[]] -> ValInst[] }
return DefZoneEltDefId.apply_range(DefidKnown);
}
isl::union_map ZoneAlgorithm::computeKnown(bool FromWrite,
bool FromRead) const {
isl::union_map Result = makeEmptyUnionMap();
if (FromWrite)
Result = Result.unite(computeKnownFromMustWrites());
if (FromRead)
Result = Result.unite(computeKnownFromLoad());
simplify(Result);
return Result;
}