llvm-project/polly/lib/Support/SCEVValidator.cpp

739 lines
22 KiB
C++

#include "polly/Support/SCEVValidator.h"
#include "polly/ScopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scev-validator"
namespace SCEVType {
/// The type of a SCEV
///
/// To check for the validity of a SCEV we assign to each SCEV a type. The
/// possible types are INT, PARAM, IV and INVALID. The order of the types is
/// important. The subexpressions of SCEV with a type X can only have a type
/// that is smaller or equal than X.
enum TYPE {
// An integer value.
INT,
// An expression that is constant during the execution of the Scop,
// but that may depend on parameters unknown at compile time.
PARAM,
// An expression that may change during the execution of the SCoP.
IV,
// An invalid expression.
INVALID
};
} // namespace SCEVType
/// The result the validator returns for a SCEV expression.
class ValidatorResult {
/// The type of the expression
SCEVType::TYPE Type;
/// The set of Parameters in the expression.
ParameterSetTy Parameters;
public:
/// The copy constructor
ValidatorResult(const ValidatorResult &Source) {
Type = Source.Type;
Parameters = Source.Parameters;
}
/// Construct a result with a certain type and no parameters.
ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
}
/// Construct a result with a certain type and a single parameter.
ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
Parameters.insert(Expr);
}
/// Get the type of the ValidatorResult.
SCEVType::TYPE getType() { return Type; }
/// Is the analyzed SCEV constant during the execution of the SCoP.
bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
/// Is the analyzed SCEV valid.
bool isValid() { return Type != SCEVType::INVALID; }
/// Is the analyzed SCEV of Type IV.
bool isIV() { return Type == SCEVType::IV; }
/// Is the analyzed SCEV of Type INT.
bool isINT() { return Type == SCEVType::INT; }
/// Is the analyzed SCEV of Type PARAM.
bool isPARAM() { return Type == SCEVType::PARAM; }
/// Get the parameters of this validator result.
const ParameterSetTy &getParameters() { return Parameters; }
/// Add the parameters of Source to this result.
void addParamsFrom(const ValidatorResult &Source) {
Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
}
/// Merge a result.
///
/// This means to merge the parameters and to set the Type to the most
/// specific Type that matches both.
void merge(const ValidatorResult &ToMerge) {
Type = std::max(Type, ToMerge.Type);
addParamsFrom(ToMerge);
}
void print(raw_ostream &OS) {
switch (Type) {
case SCEVType::INT:
OS << "SCEVType::INT";
break;
case SCEVType::PARAM:
OS << "SCEVType::PARAM";
break;
case SCEVType::IV:
OS << "SCEVType::IV";
break;
case SCEVType::INVALID:
OS << "SCEVType::INVALID";
break;
}
}
};
raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
VR.print(OS);
return OS;
}
bool polly::isConstCall(llvm::CallInst *Call) {
if (Call->mayReadOrWriteMemory())
return false;
for (auto &Operand : Call->arg_operands())
if (!isa<ConstantInt>(&Operand))
return false;
return true;
}
/// Check if a SCEV is valid in a SCoP.
struct SCEVValidator
: public SCEVVisitor<SCEVValidator, class ValidatorResult> {
private:
const Region *R;
Loop *Scope;
ScalarEvolution &SE;
InvariantLoadsSetTy *ILS;
public:
SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
InvariantLoadsSetTy *ILS)
: R(R), Scope(Scope), SE(SE), ILS(ILS) {}
class ValidatorResult visitConstant(const SCEVConstant *Constant) {
return ValidatorResult(SCEVType::INT);
}
class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
const SCEV *Operand) {
ValidatorResult Op = visit(Operand);
auto Type = Op.getType();
// If unsigned operations are allowed return the operand, otherwise
// check if we can model the expression without unsigned assumptions.
if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
return Op;
if (Type == SCEVType::IV)
return ValidatorResult(SCEVType::INVALID);
return ValidatorResult(SCEVType::PARAM, Expr);
}
class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
}
class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
}
class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
return visit(Expr->getOperand());
}
class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
Return.merge(Op);
// Early exit.
if (!Return.isValid())
break;
}
return Return;
}
class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
bool HasMultipleParams = false;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (Op.isINT())
continue;
if (Op.isPARAM() && Return.isPARAM()) {
HasMultipleParams = true;
continue;
}
if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
DEBUG(dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
<< "\tExpr: " << *Expr << "\n"
<< "\tPrevious expression type: " << Return << "\n"
<< "\tNext operand (" << Op
<< "): " << *Expr->getOperand(i) << "\n");
return ValidatorResult(SCEVType::INVALID);
}
Return.merge(Op);
}
if (HasMultipleParams && Return.isValid())
return ValidatorResult(SCEVType::PARAM, Expr);
return Return;
}
class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
if (!Expr->isAffine()) {
DEBUG(dbgs() << "INVALID: AddRec is not affine");
return ValidatorResult(SCEVType::INVALID);
}
ValidatorResult Start = visit(Expr->getStart());
ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
if (!Start.isValid())
return Start;
if (!Recurrence.isValid())
return Recurrence;
auto *L = Expr->getLoop();
if (R->contains(L) && (!Scope || !L->contains(Scope))) {
DEBUG(dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
"non-affine subregion or has a non-synthesizable exit "
"value.");
return ValidatorResult(SCEVType::INVALID);
}
if (R->contains(L)) {
if (Recurrence.isINT()) {
ValidatorResult Result(SCEVType::IV);
Result.addParamsFrom(Start);
return Result;
}
DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
"recurrence part");
return ValidatorResult(SCEVType::INVALID);
}
assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
// Directly generate ValidatorResult for Expr if 'start' is zero.
if (Expr->getStart()->isZero())
return ValidatorResult(SCEVType::PARAM, Expr);
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
// if 'start' is not zero.
const SCEV *ZeroStartExpr = SE.getAddRecExpr(
SE.getConstant(Expr->getStart()->getType(), 0),
Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
ValidatorResult ZeroStartResult =
ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
ZeroStartResult.addParamsFrom(Start);
return ZeroStartResult;
}
class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isValid())
return Op;
Return.merge(Op);
}
return Return;
}
class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
// We do not support unsigned max operations. If 'Expr' is constant during
// Scop execution we treat this as a parameter, otherwise we bail out.
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isConstant()) {
DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
return ValidatorResult(SCEVType::INVALID);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
if (R->contains(I)) {
DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
"within the region\n");
return ValidatorResult(SCEVType::INVALID);
}
return ValidatorResult(SCEVType::PARAM, S);
}
ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) {
assert(I->getOpcode() == Instruction::Call && "Call instruction expected");
if (R->contains(I)) {
auto Call = cast<CallInst>(I);
if (!isConstCall(Call))
return ValidatorResult(SCEVType::INVALID, S);
}
return ValidatorResult(SCEVType::PARAM, S);
}
ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
if (R->contains(I) && ILS) {
ILS->insert(cast<LoadInst>(I));
return ValidatorResult(SCEVType::PARAM, S);
}
return visitGenericInst(I, S);
}
ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
const SCEV *DivExpr,
Instruction *SDiv = nullptr) {
// First check if we might be able to model the division, thus if the
// divisor is constant. If so, check the dividend, otherwise check if
// the whole division can be seen as a parameter.
if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
return visit(Dividend);
// For signed divisions use the SDiv instruction to check for a parameter
// division, for unsigned divisions check the operands.
if (SDiv)
return visitGenericInst(SDiv, DivExpr);
ValidatorResult LHS = visit(Dividend);
ValidatorResult RHS = visit(Divisor);
if (LHS.isConstant() && RHS.isConstant())
return ValidatorResult(SCEVType::PARAM, DivExpr);
DEBUG(dbgs() << "INVALID: unsigned division of non-constant expressions");
return ValidatorResult(SCEVType::INVALID);
}
ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
if (!PollyAllowUnsignedOperations)
return ValidatorResult(SCEVType::INVALID);
auto *Dividend = Expr->getLHS();
auto *Divisor = Expr->getRHS();
return visitDivision(Dividend, Divisor, Expr);
}
ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
assert(SDiv->getOpcode() == Instruction::SDiv &&
"Assumed SDiv instruction!");
auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
return visitDivision(Dividend, Divisor, Expr, SDiv);
}
ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
assert(SRem->getOpcode() == Instruction::SRem &&
"Assumed SRem instruction!");
auto *Divisor = SRem->getOperand(1);
auto *CI = dyn_cast<ConstantInt>(Divisor);
if (!CI || CI->isZeroValue())
return visitGenericInst(SRem, S);
auto *Dividend = SRem->getOperand(0);
auto *DividendSCEV = SE.getSCEV(Dividend);
return visit(DividendSCEV);
}
ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
return ValidatorResult(SCEVType::INVALID);
}
if (isa<UndefValue>(V)) {
DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
return ValidatorResult(SCEVType::INVALID);
}
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
switch (I->getOpcode()) {
case Instruction::IntToPtr:
return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
case Instruction::PtrToInt:
return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
case Instruction::Load:
return visitLoadInstruction(I, Expr);
case Instruction::SDiv:
return visitSDivInstruction(I, Expr);
case Instruction::SRem:
return visitSRemInstruction(I, Expr);
case Instruction::Call:
return visitCallInstruction(I, Expr);
default:
return visitGenericInst(I, Expr);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
};
class SCEVHasIVParams {
bool HasIVParams = false;
public:
SCEVHasIVParams() {}
bool follow(const SCEV *S) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
if (!Unknown)
return true;
CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
if (!Call)
return true;
if (isConstCall(Call)) {
HasIVParams = true;
return false;
}
return true;
}
bool isDone() { return HasIVParams; }
bool hasIVParams() { return HasIVParams; }
};
/// Check whether a SCEV refers to an SSA name defined inside a region.
class SCEVInRegionDependences {
const Region *R;
Loop *Scope;
const InvariantLoadsSetTy &ILS;
bool AllowLoops;
bool HasInRegionDeps = false;
public:
SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
const InvariantLoadsSetTy &ILS)
: R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}
bool follow(const SCEV *S) {
if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
if (Call && isConstCall(Call))
return false;
if (Inst) {
// When we invariant load hoist a load, we first make sure that there
// can be no dependences created by it in the Scop region. So, we should
// not consider scalar dependences to `LoadInst`s that are invariant
// load hoisted.
//
// If this check is not present, then we create data dependences which
// are strictly not necessary by tracking the invariant load as a
// scalar.
LoadInst *LI = dyn_cast<LoadInst>(Inst);
if (LI && ILS.count(LI) > 0)
return false;
}
// Return true when Inst is defined inside the region R.
if (!Inst || !R->contains(Inst))
return true;
HasInRegionDeps = true;
return false;
}
if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
if (AllowLoops)
return true;
auto *L = AddRec->getLoop();
if (R->contains(L) && !L->contains(Scope)) {
HasInRegionDeps = true;
return false;
}
}
return true;
}
bool isDone() { return false; }
bool hasDependences() { return HasInRegionDeps; }
};
namespace polly {
/// Find all loops referenced in SCEVAddRecExprs.
class SCEVFindLoops {
SetVector<const Loop *> &Loops;
public:
SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
bool follow(const SCEV *S) {
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
Loops.insert(AddRec->getLoop());
return true;
}
bool isDone() { return false; }
};
void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
SCEVFindLoops FindLoops(Loops);
SCEVTraversal<SCEVFindLoops> ST(FindLoops);
ST.visitAll(Expr);
}
/// Find all values referenced in SCEVUnknowns.
class SCEVFindValues {
ScalarEvolution &SE;
SetVector<Value *> &Values;
public:
SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
: SE(SE), Values(Values) {}
bool follow(const SCEV *S) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
if (!Unknown)
return true;
Values.insert(Unknown->getValue());
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
Inst->getOpcode() != Instruction::SDiv))
return false;
auto *Dividend = SE.getSCEV(Inst->getOperand(1));
if (!isa<SCEVConstant>(Dividend))
return false;
auto *Divisor = SE.getSCEV(Inst->getOperand(0));
SCEVFindValues FindValues(SE, Values);
SCEVTraversal<SCEVFindValues> ST(FindValues);
ST.visitAll(Dividend);
ST.visitAll(Divisor);
return false;
}
bool isDone() { return false; }
};
void findValues(const SCEV *Expr, ScalarEvolution &SE,
SetVector<Value *> &Values) {
SCEVFindValues FindValues(SE, Values);
SCEVTraversal<SCEVFindValues> ST(FindValues);
ST.visitAll(Expr);
}
bool hasIVParams(const SCEV *Expr) {
SCEVHasIVParams HasIVParams;
SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
ST.visitAll(Expr);
return HasIVParams.hasIVParams();
}
bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
llvm::Loop *Scope, bool AllowLoops,
const InvariantLoadsSetTy &ILS) {
SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
ST.visitAll(Expr);
return InRegionDeps.hasDependences();
}
bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
if (isa<SCEVCouldNotCompute>(Expr))
return false;
SCEVValidator Validator(R, Scope, SE, ILS);
DEBUG({
dbgs() << "\n";
dbgs() << "Expr: " << *Expr << "\n";
dbgs() << "Region: " << R->getNameStr() << "\n";
dbgs() << " -> ";
});
ValidatorResult Result = Validator.visit(Expr);
DEBUG({
if (Result.isValid())
dbgs() << "VALID\n";
dbgs() << "\n";
});
return Result.isValid();
}
static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
ScalarEvolution &SE, ParameterSetTy &Params) {
auto *E = SE.getSCEV(V);
if (isa<SCEVCouldNotCompute>(E))
return false;
SCEVValidator Validator(R, Scope, SE, nullptr);
ValidatorResult Result = Validator.visit(E);
if (!Result.isValid())
return false;
auto ResultParams = Result.getParameters();
Params.insert(ResultParams.begin(), ResultParams.end());
return true;
}
bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
ScalarEvolution &SE, ParameterSetTy &Params,
bool OrExpr) {
if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
true) &&
isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
} else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
auto Opcode = BinOp->getOpcode();
if (Opcode == Instruction::And || Opcode == Instruction::Or)
return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
false) &&
isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
false);
/* Fall through */
}
if (!OrExpr)
return false;
return isAffineExpr(V, R, Scope, SE, Params);
}
ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
const SCEV *Expr, ScalarEvolution &SE) {
if (isa<SCEVCouldNotCompute>(Expr))
return ParameterSetTy();
InvariantLoadsSetTy ILS;
SCEVValidator Validator(R, Scope, SE, &ILS);
ValidatorResult Result = Validator.visit(Expr);
assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
return Result.getParameters();
}
std::pair<const SCEVConstant *, const SCEV *>
extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
if (auto *Constant = dyn_cast<SCEVConstant>(S))
return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
if (AddRec) {
auto *StartExpr = AddRec->getStart();
if (StartExpr->isZero()) {
auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
auto *LeftOverAddRec =
SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
AddRec->getNoWrapFlags());
return std::make_pair(StepPair.first, LeftOverAddRec);
}
return std::make_pair(ConstPart, S);
}
if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
SmallVector<const SCEV *, 4> LeftOvers;
auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
auto *Factor = Op0Pair.first;
if (SE.isKnownNegative(Factor)) {
Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
} else {
LeftOvers.push_back(Op0Pair.second);
}
for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
// TODO: Use something smarter than equality here, e.g., gcd.
if (Factor == OpUPair.first)
LeftOvers.push_back(OpUPair.second);
else if (Factor == SE.getNegativeSCEV(OpUPair.first))
LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
else
return std::make_pair(ConstPart, S);
}
auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
return std::make_pair(Factor, NewAdd);
}
auto *Mul = dyn_cast<SCEVMulExpr>(S);
if (!Mul)
return std::make_pair(ConstPart, S);
SmallVector<const SCEV *, 4> LeftOvers;
for (auto *Op : Mul->operands())
if (isa<SCEVConstant>(Op))
ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
else
LeftOvers.push_back(Op);
return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
}
} // namespace polly