llvm-project/llvm/lib/Target/AMDGPU/R600InstrInfo.h

317 lines
13 KiB
C++

//===-- R600InstrInfo.h - R600 Instruction Info Interface -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Interface definition for R600InstrInfo
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_R600INSTRINFO_H
#define LLVM_LIB_TARGET_AMDGPU_R600INSTRINFO_H
#include "AMDGPUInstrInfo.h"
#include "R600RegisterInfo.h"
namespace llvm {
class AMDGPUTargetMachine;
class DFAPacketizer;
class MachineFunction;
class MachineInstr;
class MachineInstrBuilder;
class R600Subtarget;
class R600InstrInfo final : public AMDGPUInstrInfo {
private:
const R600RegisterInfo RI;
const R600Subtarget &ST;
std::vector<std::pair<int, unsigned>>
ExtractSrcs(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PV,
unsigned &ConstCount) const;
MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg,
unsigned AddrChan) const;
MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg,
unsigned AddrChan) const;
public:
enum BankSwizzle {
ALU_VEC_012_SCL_210 = 0,
ALU_VEC_021_SCL_122,
ALU_VEC_120_SCL_212,
ALU_VEC_102_SCL_221,
ALU_VEC_201,
ALU_VEC_210
};
explicit R600InstrInfo(const R600Subtarget &);
const R600RegisterInfo &getRegisterInfo() const {
return RI;
}
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const DebugLoc &DL, unsigned DestReg, unsigned SrcReg,
bool KillSrc) const override;
bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const override;
bool isReductionOp(unsigned opcode) const;
bool isCubeOp(unsigned opcode) const;
/// \returns true if this \p Opcode represents an ALU instruction.
bool isALUInstr(unsigned Opcode) const;
bool hasInstrModifiers(unsigned Opcode) const;
bool isLDSInstr(unsigned Opcode) const;
bool isLDSRetInstr(unsigned Opcode) const;
/// \returns true if this \p Opcode represents an ALU instruction or an
/// instruction that will be lowered in ExpandSpecialInstrs Pass.
bool canBeConsideredALU(const MachineInstr &MI) const;
bool isTransOnly(unsigned Opcode) const;
bool isTransOnly(const MachineInstr &MI) const;
bool isVectorOnly(unsigned Opcode) const;
bool isVectorOnly(const MachineInstr &MI) const;
bool isExport(unsigned Opcode) const;
bool usesVertexCache(unsigned Opcode) const;
bool usesVertexCache(const MachineInstr &MI) const;
bool usesTextureCache(unsigned Opcode) const;
bool usesTextureCache(const MachineInstr &MI) const;
bool mustBeLastInClause(unsigned Opcode) const;
bool usesAddressRegister(MachineInstr &MI) const;
bool definesAddressRegister(MachineInstr &MI) const;
bool readsLDSSrcReg(const MachineInstr &MI) const;
/// \returns The operand Index for the Sel operand given an index to one
/// of the instruction's src operands.
int getSelIdx(unsigned Opcode, unsigned SrcIdx) const;
/// \returns a pair for each src of an ALU instructions.
/// The first member of a pair is the register id.
/// If register is ALU_CONST, second member is SEL.
/// If register is ALU_LITERAL, second member is IMM.
/// Otherwise, second member value is undefined.
SmallVector<std::pair<MachineOperand *, int64_t>, 3>
getSrcs(MachineInstr &MI) const;
unsigned isLegalUpTo(
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
const std::vector<R600InstrInfo::BankSwizzle> &Swz,
const std::vector<std::pair<int, unsigned> > &TransSrcs,
R600InstrInfo::BankSwizzle TransSwz) const;
bool FindSwizzleForVectorSlot(
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
const std::vector<std::pair<int, unsigned> > &TransSrcs,
R600InstrInfo::BankSwizzle TransSwz) const;
/// Given the order VEC_012 < VEC_021 < VEC_120 < VEC_102 < VEC_201 < VEC_210
/// returns true and the first (in lexical order) BankSwizzle affectation
/// starting from the one already provided in the Instruction Group MIs that
/// fits Read Port limitations in BS if available. Otherwise returns false
/// and undefined content in BS.
/// isLastAluTrans should be set if the last Alu of MIs will be executed on
/// Trans ALU. In this case, ValidTSwizzle returns the BankSwizzle value to
/// apply to the last instruction.
/// PV holds GPR to PV registers in the Instruction Group MIs.
bool fitsReadPortLimitations(const std::vector<MachineInstr *> &MIs,
const DenseMap<unsigned, unsigned> &PV,
std::vector<BankSwizzle> &BS,
bool isLastAluTrans) const;
/// An instruction group can only access 2 channel pair (either [XY] or [ZW])
/// from KCache bank on R700+. This function check if MI set in input meet
/// this limitations
bool fitsConstReadLimitations(const std::vector<MachineInstr *> &) const;
/// Same but using const index set instead of MI set.
bool fitsConstReadLimitations(const std::vector<unsigned>&) const;
/// \brief Vector instructions are instructions that must fill all
/// instruction slots within an instruction group.
bool isVector(const MachineInstr &MI) const;
bool isMov(unsigned Opcode) const;
DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &) const override;
bool ReverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const override;
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const override;
unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL) const override;
unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
bool isPredicated(const MachineInstr &MI) const override;
bool isPredicable(MachineInstr &MI) const override;
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
BranchProbability Probability) const override;
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCyles,
unsigned ExtraPredCycles,
BranchProbability Probability) const override ;
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles, unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles, unsigned ExtraFCycles,
BranchProbability Probability) const override;
bool DefinesPredicate(MachineInstr &MI,
std::vector<MachineOperand> &Pred) const override;
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const override;
bool PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Pred) const override;
unsigned int getPredicationCost(const MachineInstr &) const override;
unsigned int getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost = nullptr) const override;
bool expandPostRAPseudo(MachineInstr &MI) const override;
/// \brief Reserve the registers that may be accesed using indirect addressing.
void reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const;
/// Calculate the "Indirect Address" for the given \p RegIndex and
/// \p Channel
///
/// We model indirect addressing using a virtual address space that can be
/// accesed with loads and stores. The "Indirect Address" is the memory
/// address in this virtual address space that maps to the given \p RegIndex
/// and \p Channel.
unsigned calculateIndirectAddress(unsigned RegIndex, unsigned Channel) const;
/// \returns The register class to be used for loading and storing values
/// from an "Indirect Address" .
const TargetRegisterClass *getIndirectAddrRegClass() const;
/// \returns the smallest register index that will be accessed by an indirect
/// read or write or -1 if indirect addressing is not used by this program.
int getIndirectIndexBegin(const MachineFunction &MF) const;
/// \returns the largest register index that will be accessed by an indirect
/// read or write or -1 if indirect addressing is not used by this program.
int getIndirectIndexEnd(const MachineFunction &MF) const;
/// \brief Build instruction(s) for an indirect register write.
///
/// \returns The instruction that performs the indirect register write
MachineInstrBuilder buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const;
/// \brief Build instruction(s) for an indirect register read.
///
/// \returns The instruction that performs the indirect register read
MachineInstrBuilder buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const;
unsigned getMaxAlusPerClause() const;
/// buildDefaultInstruction - This function returns a MachineInstr with all
/// the instruction modifiers initialized to their default values. You can
/// use this function to avoid manually specifying each instruction modifier
/// operand when building a new instruction.
///
/// \returns a MachineInstr with all the instruction modifiers initialized
/// to their default values.
MachineInstrBuilder buildDefaultInstruction(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned Opcode,
unsigned DstReg,
unsigned Src0Reg,
unsigned Src1Reg = 0) const;
MachineInstr *buildSlotOfVectorInstruction(MachineBasicBlock &MBB,
MachineInstr *MI,
unsigned Slot,
unsigned DstReg) const;
MachineInstr *buildMovImm(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
unsigned DstReg,
uint64_t Imm) const;
MachineInstr *buildMovInstr(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned DstReg, unsigned SrcReg) const;
/// \brief Get the index of Op in the MachineInstr.
///
/// \returns -1 if the Instruction does not contain the specified \p Op.
int getOperandIdx(const MachineInstr &MI, unsigned Op) const;
/// \brief Get the index of \p Op for the given Opcode.
///
/// \returns -1 if the Instruction does not contain the specified \p Op.
int getOperandIdx(unsigned Opcode, unsigned Op) const;
/// \brief Helper function for setting instruction flag values.
void setImmOperand(MachineInstr &MI, unsigned Op, int64_t Imm) const;
///\brief Add one of the MO_FLAG* flags to the specified \p Operand.
void addFlag(MachineInstr &MI, unsigned Operand, unsigned Flag) const;
///\brief Determine if the specified \p Flag is set on this \p Operand.
bool isFlagSet(const MachineInstr &MI, unsigned Operand, unsigned Flag) const;
/// \param SrcIdx The register source to set the flag on (e.g src0, src1, src2)
/// \param Flag The flag being set.
///
/// \returns the operand containing the flags for this instruction.
MachineOperand &getFlagOp(MachineInstr &MI, unsigned SrcIdx = 0,
unsigned Flag = 0) const;
/// \brief Clear the specified flag on the instruction.
void clearFlag(MachineInstr &MI, unsigned Operand, unsigned Flag) const;
// Helper functions that check the opcode for status information
bool isRegisterStore(const MachineInstr &MI) const;
bool isRegisterLoad(const MachineInstr &MI) const;
};
namespace AMDGPU {
int getLDSNoRetOp(uint16_t Opcode);
} //End namespace AMDGPU
} // End llvm namespace
#endif