forked from OSchip/llvm-project
986 lines
36 KiB
C++
986 lines
36 KiB
C++
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
///
|
|
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
|
|
/// code. When passed an MCAsmStreamer it prints assembly and when passed
|
|
/// an MCObjectStreamer it outputs binary code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPUAsmPrinter.h"
|
|
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
|
|
#include "InstPrinter/AMDGPUInstPrinter.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDKernelCodeT.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "R600Defines.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "R600RegisterInfo.h"
|
|
#include "SIDefines.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "AMDGPURuntimeMetadata.h"
|
|
|
|
using namespace ::AMDGPU;
|
|
using namespace llvm;
|
|
|
|
// TODO: This should get the default rounding mode from the kernel. We just set
|
|
// the default here, but this could change if the OpenCL rounding mode pragmas
|
|
// are used.
|
|
//
|
|
// The denormal mode here should match what is reported by the OpenCL runtime
|
|
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
|
|
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
|
|
//
|
|
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
|
|
// precision, and leaves single precision to flush all and does not report
|
|
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
|
|
// CL_FP_DENORM for both.
|
|
//
|
|
// FIXME: It seems some instructions do not support single precision denormals
|
|
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
|
|
// and sin_f32, cos_f32 on most parts).
|
|
|
|
// We want to use these instructions, and using fp32 denormals also causes
|
|
// instructions to run at the double precision rate for the device so it's
|
|
// probably best to just report no single precision denormals.
|
|
static uint32_t getFPMode(const MachineFunction &F) {
|
|
const SISubtarget& ST = F.getSubtarget<SISubtarget>();
|
|
// TODO: Is there any real use for the flush in only / flush out only modes?
|
|
|
|
uint32_t FP32Denormals =
|
|
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
|
|
|
|
uint32_t FP64Denormals =
|
|
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
|
|
|
|
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
|
|
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
|
|
FP_DENORM_MODE_SP(FP32Denormals) |
|
|
FP_DENORM_MODE_DP(FP64Denormals);
|
|
}
|
|
|
|
static AsmPrinter *
|
|
createAMDGPUAsmPrinterPass(TargetMachine &tm,
|
|
std::unique_ptr<MCStreamer> &&Streamer) {
|
|
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
|
|
}
|
|
|
|
extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
|
|
TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
|
|
TargetRegistry::RegisterAsmPrinter(TheGCNTarget, createAMDGPUAsmPrinterPass);
|
|
}
|
|
|
|
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
|
|
std::unique_ptr<MCStreamer> Streamer)
|
|
: AsmPrinter(TM, std::move(Streamer)) {}
|
|
|
|
const char *AMDGPUAsmPrinter::getPassName() const {
|
|
return "AMDGPU Assembly Printer";
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
|
|
if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
|
|
return;
|
|
|
|
// Need to construct an MCSubtargetInfo here in case we have no functions
|
|
// in the module.
|
|
std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
|
|
TM.getTargetTriple().str(), TM.getTargetCPU(),
|
|
TM.getTargetFeatureString()));
|
|
|
|
AMDGPUTargetStreamer *TS =
|
|
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
|
|
TS->EmitDirectiveHSACodeObjectVersion(2, 1);
|
|
|
|
AMDGPU::IsaVersion ISA = AMDGPU::getIsaVersion(STI->getFeatureBits());
|
|
TS->EmitDirectiveHSACodeObjectISA(ISA.Major, ISA.Minor, ISA.Stepping,
|
|
"AMD", "AMDGPU");
|
|
emitStartOfRuntimeMetadata(M);
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
|
|
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
|
|
SIProgramInfo KernelInfo;
|
|
if (STM.isAmdHsaOS()) {
|
|
getSIProgramInfo(KernelInfo, *MF);
|
|
EmitAmdKernelCodeT(*MF, KernelInfo);
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
|
|
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
|
|
if (MFI->isKernel() && STM.isAmdHsaOS()) {
|
|
AMDGPUTargetStreamer *TS =
|
|
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
TS->EmitAMDGPUSymbolType(CurrentFnSym->getName(),
|
|
ELF::STT_AMDGPU_HSA_KERNEL);
|
|
}
|
|
|
|
AsmPrinter::EmitFunctionEntryLabel();
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
|
|
// Group segment variables aren't emitted in HSA.
|
|
if (AMDGPU::isGroupSegment(GV))
|
|
return;
|
|
|
|
AsmPrinter::EmitGlobalVariable(GV);
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
|
|
|
|
// The starting address of all shader programs must be 256 bytes aligned.
|
|
MF.setAlignment(8);
|
|
|
|
SetupMachineFunction(MF);
|
|
|
|
MCContext &Context = getObjFileLowering().getContext();
|
|
MCSectionELF *ConfigSection =
|
|
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
|
|
OutStreamer->SwitchSection(ConfigSection);
|
|
|
|
const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
|
|
SIProgramInfo KernelInfo;
|
|
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
|
|
getSIProgramInfo(KernelInfo, MF);
|
|
if (!STM.isAmdHsaOS()) {
|
|
EmitProgramInfoSI(MF, KernelInfo);
|
|
}
|
|
} else {
|
|
EmitProgramInfoR600(MF);
|
|
}
|
|
|
|
DisasmLines.clear();
|
|
HexLines.clear();
|
|
DisasmLineMaxLen = 0;
|
|
|
|
EmitFunctionBody();
|
|
|
|
if (isVerbose()) {
|
|
MCSectionELF *CommentSection =
|
|
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
|
|
OutStreamer->SwitchSection(CommentSection);
|
|
|
|
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
|
|
OutStreamer->emitRawComment(" Kernel info:", false);
|
|
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
|
|
false);
|
|
OutStreamer->emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
|
|
false);
|
|
OutStreamer->emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
|
|
false);
|
|
OutStreamer->emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
|
|
false);
|
|
OutStreamer->emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
|
|
false);
|
|
OutStreamer->emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
|
|
false);
|
|
OutStreamer->emitRawComment(" LDSByteSize: " + Twine(KernelInfo.LDSSize) +
|
|
" bytes/workgroup (compile time only)", false);
|
|
|
|
OutStreamer->emitRawComment(" ReservedVGPRFirst: " + Twine(KernelInfo.ReservedVGPRFirst),
|
|
false);
|
|
OutStreamer->emitRawComment(" ReservedVGPRCount: " + Twine(KernelInfo.ReservedVGPRCount),
|
|
false);
|
|
|
|
if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
|
|
OutStreamer->emitRawComment(" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
|
|
Twine(KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
|
|
OutStreamer->emitRawComment(" DebuggerPrivateSegmentBufferSGPR: s" +
|
|
Twine(KernelInfo.DebuggerPrivateSegmentBufferSGPR), false);
|
|
}
|
|
|
|
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:USER_SGPR: " +
|
|
Twine(G_00B84C_USER_SGPR(KernelInfo.ComputePGMRSrc2)),
|
|
false);
|
|
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
|
|
Twine(G_00B84C_TGID_X_EN(KernelInfo.ComputePGMRSrc2)),
|
|
false);
|
|
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
|
|
Twine(G_00B84C_TGID_Y_EN(KernelInfo.ComputePGMRSrc2)),
|
|
false);
|
|
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
|
|
Twine(G_00B84C_TGID_Z_EN(KernelInfo.ComputePGMRSrc2)),
|
|
false);
|
|
OutStreamer->emitRawComment(" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
|
|
Twine(G_00B84C_TIDIG_COMP_CNT(KernelInfo.ComputePGMRSrc2)),
|
|
false);
|
|
|
|
} else {
|
|
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
OutStreamer->emitRawComment(
|
|
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize)));
|
|
}
|
|
}
|
|
|
|
if (STM.dumpCode()) {
|
|
|
|
OutStreamer->SwitchSection(
|
|
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
|
|
|
|
for (size_t i = 0; i < DisasmLines.size(); ++i) {
|
|
std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
|
|
Comment += " ; " + HexLines[i] + "\n";
|
|
|
|
OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
|
|
OutStreamer->EmitBytes(StringRef(Comment));
|
|
}
|
|
}
|
|
|
|
emitRuntimeMetadata(*MF.getFunction());
|
|
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
|
|
unsigned MaxGPR = 0;
|
|
bool killPixel = false;
|
|
const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
|
|
const R600RegisterInfo *RI = STM.getRegisterInfo();
|
|
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() == AMDGPU::KILLGT)
|
|
killPixel = true;
|
|
unsigned numOperands = MI.getNumOperands();
|
|
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
|
|
const MachineOperand &MO = MI.getOperand(op_idx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;
|
|
|
|
// Register with value > 127 aren't GPR
|
|
if (HWReg > 127)
|
|
continue;
|
|
MaxGPR = std::max(MaxGPR, HWReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned RsrcReg;
|
|
if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
|
|
// Evergreen / Northern Islands
|
|
switch (MF.getFunction()->getCallingConv()) {
|
|
default: // Fall through
|
|
case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
|
|
case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
|
|
case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
|
|
case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
|
|
}
|
|
} else {
|
|
// R600 / R700
|
|
switch (MF.getFunction()->getCallingConv()) {
|
|
default: // Fall through
|
|
case CallingConv::AMDGPU_GS: // Fall through
|
|
case CallingConv::AMDGPU_CS: // Fall through
|
|
case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
|
|
case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
|
|
}
|
|
}
|
|
|
|
OutStreamer->EmitIntValue(RsrcReg, 4);
|
|
OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
|
|
S_STACK_SIZE(MFI->CFStackSize), 4);
|
|
OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
|
|
OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
|
|
|
|
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
|
|
OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
|
|
OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4);
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
|
|
const MachineFunction &MF) const {
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
uint64_t CodeSize = 0;
|
|
unsigned MaxSGPR = 0;
|
|
unsigned MaxVGPR = 0;
|
|
bool VCCUsed = false;
|
|
bool FlatUsed = false;
|
|
const SIRegisterInfo *RI = STM.getRegisterInfo();
|
|
const SIInstrInfo *TII = STM.getInstrInfo();
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
// TODO: CodeSize should account for multiple functions.
|
|
|
|
// TODO: Should we count size of debug info?
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
|
|
CodeSize += TII->getInstSizeInBytes(MI);
|
|
|
|
unsigned numOperands = MI.getNumOperands();
|
|
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
|
|
const MachineOperand &MO = MI.getOperand(op_idx);
|
|
unsigned width = 0;
|
|
bool isSGPR = false;
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
unsigned reg = MO.getReg();
|
|
switch (reg) {
|
|
case AMDGPU::EXEC:
|
|
case AMDGPU::EXEC_LO:
|
|
case AMDGPU::EXEC_HI:
|
|
case AMDGPU::SCC:
|
|
case AMDGPU::M0:
|
|
continue;
|
|
|
|
case AMDGPU::VCC:
|
|
case AMDGPU::VCC_LO:
|
|
case AMDGPU::VCC_HI:
|
|
VCCUsed = true;
|
|
continue;
|
|
|
|
case AMDGPU::FLAT_SCR:
|
|
case AMDGPU::FLAT_SCR_LO:
|
|
case AMDGPU::FLAT_SCR_HI:
|
|
FlatUsed = true;
|
|
continue;
|
|
|
|
case AMDGPU::TBA:
|
|
case AMDGPU::TBA_LO:
|
|
case AMDGPU::TBA_HI:
|
|
case AMDGPU::TMA:
|
|
case AMDGPU::TMA_LO:
|
|
case AMDGPU::TMA_HI:
|
|
llvm_unreachable("trap handler registers should not be used");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (AMDGPU::SReg_32RegClass.contains(reg)) {
|
|
assert(!AMDGPU::TTMP_32RegClass.contains(reg) &&
|
|
"trap handler registers should not be used");
|
|
isSGPR = true;
|
|
width = 1;
|
|
} else if (AMDGPU::VGPR_32RegClass.contains(reg)) {
|
|
isSGPR = false;
|
|
width = 1;
|
|
} else if (AMDGPU::SReg_64RegClass.contains(reg)) {
|
|
assert(!AMDGPU::TTMP_64RegClass.contains(reg) &&
|
|
"trap handler registers should not be used");
|
|
isSGPR = true;
|
|
width = 2;
|
|
} else if (AMDGPU::VReg_64RegClass.contains(reg)) {
|
|
isSGPR = false;
|
|
width = 2;
|
|
} else if (AMDGPU::VReg_96RegClass.contains(reg)) {
|
|
isSGPR = false;
|
|
width = 3;
|
|
} else if (AMDGPU::SReg_128RegClass.contains(reg)) {
|
|
isSGPR = true;
|
|
width = 4;
|
|
} else if (AMDGPU::VReg_128RegClass.contains(reg)) {
|
|
isSGPR = false;
|
|
width = 4;
|
|
} else if (AMDGPU::SReg_256RegClass.contains(reg)) {
|
|
isSGPR = true;
|
|
width = 8;
|
|
} else if (AMDGPU::VReg_256RegClass.contains(reg)) {
|
|
isSGPR = false;
|
|
width = 8;
|
|
} else if (AMDGPU::SReg_512RegClass.contains(reg)) {
|
|
isSGPR = true;
|
|
width = 16;
|
|
} else if (AMDGPU::VReg_512RegClass.contains(reg)) {
|
|
isSGPR = false;
|
|
width = 16;
|
|
} else {
|
|
llvm_unreachable("Unknown register class");
|
|
}
|
|
unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
|
|
unsigned maxUsed = hwReg + width - 1;
|
|
if (isSGPR) {
|
|
MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
|
|
} else {
|
|
MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned ExtraSGPRs = 0;
|
|
|
|
if (VCCUsed)
|
|
ExtraSGPRs = 2;
|
|
|
|
if (STM.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
|
|
if (FlatUsed)
|
|
ExtraSGPRs = 4;
|
|
} else {
|
|
if (STM.isXNACKEnabled())
|
|
ExtraSGPRs = 4;
|
|
|
|
if (FlatUsed)
|
|
ExtraSGPRs = 6;
|
|
}
|
|
|
|
MaxSGPR += ExtraSGPRs;
|
|
|
|
// Record first reserved register and reserved register count fields, and
|
|
// update max register counts if "amdgpu-debugger-reserve-regs" attribute was
|
|
// specified.
|
|
if (STM.debuggerReserveRegs()) {
|
|
ProgInfo.ReservedVGPRFirst = MaxVGPR + 1;
|
|
ProgInfo.ReservedVGPRCount = MFI->getDebuggerReservedVGPRCount();
|
|
MaxVGPR += MFI->getDebuggerReservedVGPRCount();
|
|
}
|
|
|
|
// Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
|
|
// DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
|
|
// attribute was specified.
|
|
if (STM.debuggerEmitPrologue()) {
|
|
ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
|
|
RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
|
|
ProgInfo.DebuggerPrivateSegmentBufferSGPR =
|
|
RI->getHWRegIndex(MFI->getScratchRSrcReg());
|
|
}
|
|
|
|
// We found the maximum register index. They start at 0, so add one to get the
|
|
// number of registers.
|
|
ProgInfo.NumVGPR = MaxVGPR + 1;
|
|
ProgInfo.NumSGPR = MaxSGPR + 1;
|
|
|
|
if (STM.hasSGPRInitBug()) {
|
|
if (ProgInfo.NumSGPR > SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG) {
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(),
|
|
"SGPRs with SGPR init bug",
|
|
ProgInfo.NumSGPR, DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
ProgInfo.NumSGPR = SISubtarget::FIXED_SGPR_COUNT_FOR_INIT_BUG;
|
|
}
|
|
|
|
if (MFI->NumUserSGPRs > STM.getMaxNumUserSGPRs()) {
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs",
|
|
MFI->NumUserSGPRs, DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory",
|
|
MFI->getLDSSize(), DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
ProgInfo.VGPRBlocks = (ProgInfo.NumVGPR - 1) / 4;
|
|
ProgInfo.SGPRBlocks = (ProgInfo.NumSGPR - 1) / 8;
|
|
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
|
|
// register.
|
|
ProgInfo.FloatMode = getFPMode(MF);
|
|
|
|
ProgInfo.IEEEMode = 0;
|
|
|
|
// Make clamp modifier on NaN input returns 0.
|
|
ProgInfo.DX10Clamp = 1;
|
|
|
|
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
ProgInfo.ScratchSize = FrameInfo.getStackSize();
|
|
|
|
ProgInfo.FlatUsed = FlatUsed;
|
|
ProgInfo.VCCUsed = VCCUsed;
|
|
ProgInfo.CodeLen = CodeSize;
|
|
|
|
unsigned LDSAlignShift;
|
|
if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
|
|
// LDS is allocated in 64 dword blocks.
|
|
LDSAlignShift = 8;
|
|
} else {
|
|
// LDS is allocated in 128 dword blocks.
|
|
LDSAlignShift = 9;
|
|
}
|
|
|
|
unsigned LDSSpillSize = MFI->LDSWaveSpillSize *
|
|
MFI->getMaximumWorkGroupSize(MF);
|
|
|
|
ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
|
|
ProgInfo.LDSBlocks =
|
|
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
|
|
|
|
// Scratch is allocated in 256 dword blocks.
|
|
unsigned ScratchAlignShift = 10;
|
|
// We need to program the hardware with the amount of scratch memory that
|
|
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
|
|
// scratch memory used per thread.
|
|
ProgInfo.ScratchBlocks =
|
|
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
|
|
1ULL << ScratchAlignShift) >>
|
|
ScratchAlignShift;
|
|
|
|
ProgInfo.ComputePGMRSrc1 =
|
|
S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
|
|
S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
|
|
S_00B848_PRIORITY(ProgInfo.Priority) |
|
|
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
|
|
S_00B848_PRIV(ProgInfo.Priv) |
|
|
S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
|
|
S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
|
|
S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
|
|
|
|
// 0 = X, 1 = XY, 2 = XYZ
|
|
unsigned TIDIGCompCnt = 0;
|
|
if (MFI->hasWorkItemIDZ())
|
|
TIDIGCompCnt = 2;
|
|
else if (MFI->hasWorkItemIDY())
|
|
TIDIGCompCnt = 1;
|
|
|
|
ProgInfo.ComputePGMRSrc2 =
|
|
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
|
|
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
|
|
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
|
|
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
|
|
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
|
|
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
|
|
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
|
|
S_00B84C_EXCP_EN_MSB(0) |
|
|
S_00B84C_LDS_SIZE(ProgInfo.LDSBlocks) |
|
|
S_00B84C_EXCP_EN(0);
|
|
}
|
|
|
|
static unsigned getRsrcReg(CallingConv::ID CallConv) {
|
|
switch (CallConv) {
|
|
default: // Fall through
|
|
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
|
|
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
|
|
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
|
|
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
|
|
const SIProgramInfo &KernelInfo) {
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv());
|
|
|
|
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
|
|
OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
|
|
|
|
OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc1, 4);
|
|
|
|
OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
|
|
OutStreamer->EmitIntValue(KernelInfo.ComputePGMRSrc2, 4);
|
|
|
|
OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
|
|
OutStreamer->EmitIntValue(S_00B860_WAVESIZE(KernelInfo.ScratchBlocks), 4);
|
|
|
|
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
|
|
// 0" comment but I don't see a corresponding field in the register spec.
|
|
} else {
|
|
OutStreamer->EmitIntValue(RsrcReg, 4);
|
|
OutStreamer->EmitIntValue(S_00B028_VGPRS(KernelInfo.VGPRBlocks) |
|
|
S_00B028_SGPRS(KernelInfo.SGPRBlocks), 4);
|
|
if (STM.isVGPRSpillingEnabled(*MF.getFunction())) {
|
|
OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
|
|
OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(KernelInfo.ScratchBlocks), 4);
|
|
}
|
|
}
|
|
|
|
if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) {
|
|
OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
|
|
OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(KernelInfo.LDSBlocks), 4);
|
|
OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
|
|
OutStreamer->EmitIntValue(MFI->PSInputEna, 4);
|
|
OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
|
|
OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
|
|
}
|
|
|
|
OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
|
|
OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
|
|
OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
|
|
OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
|
|
}
|
|
|
|
// This is supposed to be log2(Size)
|
|
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMD_ELEMENT_4_BYTES;
|
|
case 8:
|
|
return AMD_ELEMENT_8_BYTES;
|
|
case 16:
|
|
return AMD_ELEMENT_16_BYTES;
|
|
default:
|
|
llvm_unreachable("invalid private_element_size");
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitAmdKernelCodeT(const MachineFunction &MF,
|
|
const SIProgramInfo &KernelInfo) const {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
amd_kernel_code_t header;
|
|
|
|
AMDGPU::initDefaultAMDKernelCodeT(header, STM.getFeatureBits());
|
|
|
|
header.compute_pgm_resource_registers =
|
|
KernelInfo.ComputePGMRSrc1 |
|
|
(KernelInfo.ComputePGMRSrc2 << 32);
|
|
header.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
|
|
|
|
|
|
AMD_HSA_BITS_SET(header.code_properties,
|
|
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
|
|
getElementByteSizeValue(STM.getMaxPrivateElementSize()));
|
|
|
|
if (MFI->hasPrivateSegmentBuffer()) {
|
|
header.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
|
|
}
|
|
|
|
if (MFI->hasDispatchPtr())
|
|
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
|
|
if (MFI->hasQueuePtr())
|
|
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
|
|
|
|
if (MFI->hasKernargSegmentPtr())
|
|
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
|
|
|
|
if (MFI->hasDispatchID())
|
|
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
|
|
|
|
if (MFI->hasFlatScratchInit())
|
|
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
|
|
|
|
// TODO: Private segment size
|
|
|
|
if (MFI->hasGridWorkgroupCountX()) {
|
|
header.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
|
|
}
|
|
|
|
if (MFI->hasGridWorkgroupCountY()) {
|
|
header.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
|
|
}
|
|
|
|
if (MFI->hasGridWorkgroupCountZ()) {
|
|
header.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
|
|
}
|
|
|
|
if (MFI->hasDispatchPtr())
|
|
header.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
|
|
if (STM.debuggerSupported())
|
|
header.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
|
|
|
|
if (STM.isXNACKEnabled())
|
|
header.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
|
|
|
|
// FIXME: Should use getKernArgSize
|
|
header.kernarg_segment_byte_size = MFI->getABIArgOffset();
|
|
header.wavefront_sgpr_count = KernelInfo.NumSGPR;
|
|
header.workitem_vgpr_count = KernelInfo.NumVGPR;
|
|
header.workitem_private_segment_byte_size = KernelInfo.ScratchSize;
|
|
header.workgroup_group_segment_byte_size = KernelInfo.LDSSize;
|
|
header.reserved_vgpr_first = KernelInfo.ReservedVGPRFirst;
|
|
header.reserved_vgpr_count = KernelInfo.ReservedVGPRCount;
|
|
|
|
if (STM.debuggerEmitPrologue()) {
|
|
header.debug_wavefront_private_segment_offset_sgpr =
|
|
KernelInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
|
|
header.debug_private_segment_buffer_sgpr =
|
|
KernelInfo.DebuggerPrivateSegmentBufferSGPR;
|
|
}
|
|
|
|
AMDGPUTargetStreamer *TS =
|
|
static_cast<AMDGPUTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
|
|
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
|
|
TS->EmitAMDKernelCodeT(header);
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
unsigned AsmVariant,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0)
|
|
return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
|
|
case 'r':
|
|
break;
|
|
}
|
|
}
|
|
|
|
AMDGPUInstPrinter::printRegOperand(MI->getOperand(OpNo).getReg(), O,
|
|
*TM.getSubtargetImpl(*MF->getFunction())->getRegisterInfo());
|
|
return false;
|
|
}
|
|
|
|
// Emit a key and an integer value for runtime metadata.
|
|
static void emitRuntimeMDIntValue(MCStreamer &Streamer,
|
|
RuntimeMD::Key K, uint64_t V,
|
|
unsigned Size) {
|
|
Streamer.EmitIntValue(K, 1);
|
|
Streamer.EmitIntValue(V, Size);
|
|
}
|
|
|
|
// Emit a key and a string value for runtime metadata.
|
|
static void emitRuntimeMDStringValue(MCStreamer &Streamer,
|
|
RuntimeMD::Key K, StringRef S) {
|
|
Streamer.EmitIntValue(K, 1);
|
|
Streamer.EmitIntValue(S.size(), 4);
|
|
Streamer.EmitBytes(S);
|
|
}
|
|
|
|
// Emit a key and three integer values for runtime metadata.
|
|
// The three integer values are obtained from MDNode \p Node;
|
|
static void emitRuntimeMDThreeIntValues(MCStreamer &Streamer,
|
|
RuntimeMD::Key K, MDNode *Node,
|
|
unsigned Size) {
|
|
assert(Node->getNumOperands() == 3);
|
|
|
|
Streamer.EmitIntValue(K, 1);
|
|
for (const MDOperand &Op : Node->operands()) {
|
|
const ConstantInt *CI = mdconst::extract<ConstantInt>(Op);
|
|
Streamer.EmitIntValue(CI->getZExtValue(), Size);
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitStartOfRuntimeMetadata(const Module &M) {
|
|
OutStreamer->SwitchSection(getObjFileLowering().getContext()
|
|
.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
|
|
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyMDVersion,
|
|
RuntimeMD::MDVersion << 8 | RuntimeMD::MDRevision, 2);
|
|
if (auto MD = M.getNamedMetadata("opencl.ocl.version")) {
|
|
if (MD->getNumOperands() != 0) {
|
|
auto Node = MD->getOperand(0);
|
|
if (Node->getNumOperands() > 1) {
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguage,
|
|
RuntimeMD::OpenCL_C, 1);
|
|
uint16_t Major = mdconst::extract<ConstantInt>(Node->getOperand(0))
|
|
->getZExtValue();
|
|
uint16_t Minor = mdconst::extract<ConstantInt>(Node->getOperand(1))
|
|
->getZExtValue();
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyLanguageVersion,
|
|
Major * 100 + Minor * 10, 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::string getOCLTypeName(Type *Ty, bool Signed) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::HalfTyID:
|
|
return "half";
|
|
case Type::FloatTyID:
|
|
return "float";
|
|
case Type::DoubleTyID:
|
|
return "double";
|
|
case Type::IntegerTyID: {
|
|
if (!Signed)
|
|
return (Twine('u') + getOCLTypeName(Ty, true)).str();
|
|
unsigned BW = Ty->getIntegerBitWidth();
|
|
switch (BW) {
|
|
case 8:
|
|
return "char";
|
|
case 16:
|
|
return "short";
|
|
case 32:
|
|
return "int";
|
|
case 64:
|
|
return "long";
|
|
default:
|
|
return (Twine('i') + Twine(BW)).str();
|
|
}
|
|
}
|
|
case Type::VectorTyID: {
|
|
VectorType *VecTy = cast<VectorType>(Ty);
|
|
Type *EleTy = VecTy->getElementType();
|
|
unsigned Size = VecTy->getVectorNumElements();
|
|
return (Twine(getOCLTypeName(EleTy, Signed)) + Twine(Size)).str();
|
|
}
|
|
default:
|
|
llvm_unreachable("invalid type");
|
|
}
|
|
}
|
|
|
|
static RuntimeMD::KernelArg::ValueType getRuntimeMDValueType(
|
|
Type *Ty, StringRef TypeName) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::HalfTyID:
|
|
return RuntimeMD::KernelArg::F16;
|
|
case Type::FloatTyID:
|
|
return RuntimeMD::KernelArg::F32;
|
|
case Type::DoubleTyID:
|
|
return RuntimeMD::KernelArg::F64;
|
|
case Type::IntegerTyID: {
|
|
bool Signed = !TypeName.startswith("u");
|
|
switch (Ty->getIntegerBitWidth()) {
|
|
case 8:
|
|
return Signed ? RuntimeMD::KernelArg::I8 : RuntimeMD::KernelArg::U8;
|
|
case 16:
|
|
return Signed ? RuntimeMD::KernelArg::I16 : RuntimeMD::KernelArg::U16;
|
|
case 32:
|
|
return Signed ? RuntimeMD::KernelArg::I32 : RuntimeMD::KernelArg::U32;
|
|
case 64:
|
|
return Signed ? RuntimeMD::KernelArg::I64 : RuntimeMD::KernelArg::U64;
|
|
default:
|
|
// Runtime does not recognize other integer types. Report as struct type.
|
|
return RuntimeMD::KernelArg::Struct;
|
|
}
|
|
}
|
|
case Type::VectorTyID:
|
|
return getRuntimeMDValueType(Ty->getVectorElementType(), TypeName);
|
|
case Type::PointerTyID:
|
|
return getRuntimeMDValueType(Ty->getPointerElementType(), TypeName);
|
|
default:
|
|
return RuntimeMD::KernelArg::Struct;
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::emitRuntimeMetadata(const Function &F) {
|
|
if (!F.getMetadata("kernel_arg_type"))
|
|
return;
|
|
|
|
MCContext &Context = getObjFileLowering().getContext();
|
|
OutStreamer->SwitchSection(
|
|
Context.getELFSection(RuntimeMD::SectionName, ELF::SHT_PROGBITS, 0));
|
|
OutStreamer->EmitIntValue(RuntimeMD::KeyKernelBegin, 1);
|
|
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyKernelName, F.getName());
|
|
|
|
for (auto &Arg : F.args()) {
|
|
// Emit KeyArgBegin.
|
|
unsigned I = Arg.getArgNo();
|
|
OutStreamer->EmitIntValue(RuntimeMD::KeyArgBegin, 1);
|
|
|
|
// Emit KeyArgSize and KeyArgAlign.
|
|
Type *T = Arg.getType();
|
|
const DataLayout &DL = F.getParent()->getDataLayout();
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgSize,
|
|
DL.getTypeAllocSize(T), 4);
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAlign,
|
|
DL.getABITypeAlignment(T), 4);
|
|
|
|
// Emit KeyArgTypeName.
|
|
auto TypeName = dyn_cast<MDString>(F.getMetadata(
|
|
"kernel_arg_type")->getOperand(I))->getString();
|
|
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyArgTypeName, TypeName);
|
|
|
|
// Emit KeyArgName.
|
|
if (auto ArgNameMD = F.getMetadata("kernel_arg_name")) {
|
|
auto ArgName = cast<MDString>(ArgNameMD->getOperand(I))->getString();
|
|
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyArgName, ArgName);
|
|
}
|
|
|
|
// Emit KeyArgIsVolatile, KeyArgIsRestrict, KeyArgIsConst and KeyArgIsPipe.
|
|
auto TypeQual = cast<MDString>(F.getMetadata(
|
|
"kernel_arg_type_qual")->getOperand(I))->getString();
|
|
SmallVector<StringRef, 1> SplitQ;
|
|
TypeQual.split(SplitQ, " ", -1, false /* Drop empty entry */);
|
|
|
|
for (StringRef KeyName : SplitQ) {
|
|
auto Key = StringSwitch<RuntimeMD::Key>(KeyName)
|
|
.Case("volatile", RuntimeMD::KeyArgIsVolatile)
|
|
.Case("restrict", RuntimeMD::KeyArgIsRestrict)
|
|
.Case("const", RuntimeMD::KeyArgIsConst)
|
|
.Case("pipe", RuntimeMD::KeyArgIsPipe)
|
|
.Default(RuntimeMD::KeyNull);
|
|
OutStreamer->EmitIntValue(Key, 1);
|
|
}
|
|
|
|
// Emit KeyArgTypeKind.
|
|
auto BaseTypeName = cast<MDString>(
|
|
F.getMetadata("kernel_arg_base_type")->getOperand(I))->getString();
|
|
auto TypeKind = StringSwitch<RuntimeMD::KernelArg::TypeKind>(BaseTypeName)
|
|
.Case("sampler_t", RuntimeMD::KernelArg::Sampler)
|
|
.Case("queue_t", RuntimeMD::KernelArg::Queue)
|
|
.Cases("image1d_t", "image1d_array_t", "image1d_buffer_t",
|
|
"image2d_t" , "image2d_array_t", RuntimeMD::KernelArg::Image)
|
|
.Cases("image2d_depth_t", "image2d_array_depth_t",
|
|
"image2d_msaa_t", "image2d_array_msaa_t",
|
|
"image2d_msaa_depth_t", RuntimeMD::KernelArg::Image)
|
|
.Cases("image2d_array_msaa_depth_t", "image3d_t",
|
|
RuntimeMD::KernelArg::Image)
|
|
.Default(isa<PointerType>(T) ? RuntimeMD::KernelArg::Pointer :
|
|
RuntimeMD::KernelArg::Value);
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgTypeKind, TypeKind, 1);
|
|
|
|
// Emit KeyArgValueType.
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgValueType,
|
|
getRuntimeMDValueType(T, BaseTypeName), 2);
|
|
|
|
// Emit KeyArgAccQual.
|
|
auto AccQual = cast<MDString>(F.getMetadata(
|
|
"kernel_arg_access_qual")->getOperand(I))->getString();
|
|
auto AQ = StringSwitch<RuntimeMD::KernelArg::AccessQualifer>(AccQual)
|
|
.Case("read_only", RuntimeMD::KernelArg::ReadOnly)
|
|
.Case("write_only", RuntimeMD::KernelArg::WriteOnly)
|
|
.Case("read_write", RuntimeMD::KernelArg::ReadWrite)
|
|
.Default(RuntimeMD::KernelArg::None);
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAccQual, AQ, 1);
|
|
|
|
// Emit KeyArgAddrQual.
|
|
if (auto *PT = dyn_cast<PointerType>(T)) {
|
|
emitRuntimeMDIntValue(*OutStreamer, RuntimeMD::KeyArgAddrQual,
|
|
PT->getAddressSpace(), 1);
|
|
}
|
|
|
|
// Emit KeyArgEnd
|
|
OutStreamer->EmitIntValue(RuntimeMD::KeyArgEnd, 1);
|
|
}
|
|
|
|
// Emit KeyReqdWorkGroupSize, KeyWorkGroupSizeHint, and KeyVecTypeHint.
|
|
if (auto RWGS = F.getMetadata("reqd_work_group_size")) {
|
|
emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyReqdWorkGroupSize,
|
|
RWGS, 4);
|
|
}
|
|
|
|
if (auto WGSH = F.getMetadata("work_group_size_hint")) {
|
|
emitRuntimeMDThreeIntValues(*OutStreamer, RuntimeMD::KeyWorkGroupSizeHint,
|
|
WGSH, 4);
|
|
}
|
|
|
|
if (auto VTH = F.getMetadata("vec_type_hint")) {
|
|
auto TypeName = getOCLTypeName(cast<ValueAsMetadata>(
|
|
VTH->getOperand(0))->getType(), mdconst::extract<ConstantInt>(
|
|
VTH->getOperand(1))->getZExtValue());
|
|
emitRuntimeMDStringValue(*OutStreamer, RuntimeMD::KeyVecTypeHint, TypeName);
|
|
}
|
|
|
|
// Emit KeyKernelEnd
|
|
OutStreamer->EmitIntValue(RuntimeMD::KeyKernelEnd, 1);
|
|
}
|