forked from OSchip/llvm-project
5806 lines
224 KiB
C++
5806 lines
224 KiB
C++
//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that ARM uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm-isel"
|
|
#include "ARM.h"
|
|
#include "ARMAddressingModes.h"
|
|
#include "ARMCallingConv.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMISelLowering.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMPerfectShuffle.h"
|
|
#include "ARMRegisterInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARMTargetObjectFile.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/Instruction.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/MC/MCSectionMachO.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/ADT/VectorExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <sstream>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
// This option should go away when tail calls fully work.
|
|
static cl::opt<bool>
|
|
EnableARMTailCalls("arm-tail-calls", cl::Hidden,
|
|
cl::desc("Generate tail calls (TEMPORARY OPTION)."),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
EnableARMLongCalls("arm-long-calls", cl::Hidden,
|
|
cl::desc("Generate calls via indirect call instructions"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
ARMInterworking("arm-interworking", cl::Hidden,
|
|
cl::desc("Enable / disable ARM interworking (for debugging only)"),
|
|
cl::init(true));
|
|
|
|
void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
|
|
EVT PromotedBitwiseVT) {
|
|
if (VT != PromotedLdStVT) {
|
|
setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
|
|
PromotedLdStVT.getSimpleVT());
|
|
|
|
setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
|
|
PromotedLdStVT.getSimpleVT());
|
|
}
|
|
|
|
EVT ElemTy = VT.getVectorElementType();
|
|
if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
|
|
setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
|
|
if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
|
|
if (ElemTy != MVT::i32) {
|
|
setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
|
|
}
|
|
setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
|
|
if (VT.isInteger()) {
|
|
setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
|
|
}
|
|
setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
|
|
|
|
// Promote all bit-wise operations.
|
|
if (VT.isInteger() && VT != PromotedBitwiseVT) {
|
|
setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType (ISD::AND, VT.getSimpleVT(),
|
|
PromotedBitwiseVT.getSimpleVT());
|
|
setOperationAction(ISD::OR, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType (ISD::OR, VT.getSimpleVT(),
|
|
PromotedBitwiseVT.getSimpleVT());
|
|
setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
|
|
PromotedBitwiseVT.getSimpleVT());
|
|
}
|
|
|
|
// Neon does not support vector divide/remainder operations.
|
|
setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
|
|
}
|
|
|
|
void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
|
|
addRegisterClass(VT, ARM::DPRRegisterClass);
|
|
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
|
|
}
|
|
|
|
void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
|
|
addRegisterClass(VT, ARM::QPRRegisterClass);
|
|
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
|
|
}
|
|
|
|
static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
|
|
if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
|
|
return new TargetLoweringObjectFileMachO();
|
|
|
|
return new ARMElfTargetObjectFile();
|
|
}
|
|
|
|
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
|
|
: TargetLowering(TM, createTLOF(TM)) {
|
|
Subtarget = &TM.getSubtarget<ARMSubtarget>();
|
|
RegInfo = TM.getRegisterInfo();
|
|
Itins = TM.getInstrItineraryData();
|
|
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// Uses VFP for Thumb libfuncs if available.
|
|
if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
|
|
// Single-precision floating-point arithmetic.
|
|
setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
|
|
setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
|
|
setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
|
|
setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
|
|
|
|
// Double-precision floating-point arithmetic.
|
|
setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
|
|
setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
|
|
setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
|
|
setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
|
|
|
|
// Single-precision comparisons.
|
|
setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
|
|
setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
|
|
setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
|
|
setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
|
|
setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
|
|
setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
|
|
setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
|
|
setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
|
|
|
|
setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
|
|
|
|
// Double-precision comparisons.
|
|
setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
|
|
setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
|
|
setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
|
|
setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
|
|
setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
|
|
setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
|
|
setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
|
|
setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
|
|
|
|
setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
|
|
|
|
// Floating-point to integer conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
|
|
|
|
// Conversions between floating types.
|
|
setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
|
|
setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
|
|
|
|
// Integer to floating-point conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
|
|
// e.g., __floatunsidf vs. __floatunssidfvfp.
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
|
|
}
|
|
}
|
|
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, 0);
|
|
setLibcallName(RTLIB::SRL_I128, 0);
|
|
setLibcallName(RTLIB::SRA_I128, 0);
|
|
|
|
if (Subtarget->isAAPCS_ABI()) {
|
|
// Double-precision floating-point arithmetic helper functions
|
|
// RTABI chapter 4.1.2, Table 2
|
|
setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
|
|
setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
|
|
setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
|
|
setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
|
|
setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
|
|
|
|
// Double-precision floating-point comparison helper functions
|
|
// RTABI chapter 4.1.2, Table 3
|
|
setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
|
|
setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
|
|
setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
|
|
setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
|
|
setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
|
|
setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
|
|
setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
|
|
setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
|
|
setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
|
|
setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
|
|
setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
|
|
|
|
// Single-precision floating-point arithmetic helper functions
|
|
// RTABI chapter 4.1.2, Table 4
|
|
setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
|
|
setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
|
|
setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
|
|
setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
|
|
setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
|
|
|
|
// Single-precision floating-point comparison helper functions
|
|
// RTABI chapter 4.1.2, Table 5
|
|
setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
|
|
setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
|
|
setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
|
|
setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
|
|
setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
|
|
setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
|
|
setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
|
|
setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
|
|
setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
|
|
setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
|
|
setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
|
|
|
|
// Floating-point to integer conversions.
|
|
// RTABI chapter 4.1.2, Table 6
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
|
|
|
|
// Conversions between floating types.
|
|
// RTABI chapter 4.1.2, Table 7
|
|
setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
|
|
setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
|
|
setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
|
|
|
|
// Integer to floating-point conversions.
|
|
// RTABI chapter 4.1.2, Table 8
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
|
|
setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
|
|
setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
|
|
setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
|
|
setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
|
|
|
|
// Long long helper functions
|
|
// RTABI chapter 4.2, Table 9
|
|
setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
|
|
setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
|
|
setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
|
|
setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
|
|
setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
|
|
setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
|
|
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
|
|
|
|
// Integer division functions
|
|
// RTABI chapter 4.3.1
|
|
setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
|
|
setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
|
|
setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
|
|
setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
|
|
setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
|
|
setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
|
|
setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
|
|
}
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
|
|
else
|
|
addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
|
|
addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
|
|
if (!Subtarget->isFPOnlySP())
|
|
addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
}
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
addDRTypeForNEON(MVT::v2f32);
|
|
addDRTypeForNEON(MVT::v8i8);
|
|
addDRTypeForNEON(MVT::v4i16);
|
|
addDRTypeForNEON(MVT::v2i32);
|
|
addDRTypeForNEON(MVT::v1i64);
|
|
|
|
addQRTypeForNEON(MVT::v4f32);
|
|
addQRTypeForNEON(MVT::v2f64);
|
|
addQRTypeForNEON(MVT::v16i8);
|
|
addQRTypeForNEON(MVT::v8i16);
|
|
addQRTypeForNEON(MVT::v4i32);
|
|
addQRTypeForNEON(MVT::v2i64);
|
|
|
|
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
|
|
// neither Neon nor VFP support any arithmetic operations on it.
|
|
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
|
|
|
|
setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
|
|
|
|
// Neon does not support some operations on v1i64 and v2i64 types.
|
|
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
|
|
// Custom handling for some quad-vector types to detect VMULL.
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
setTargetDAGCombine(ISD::SELECT_CC);
|
|
setTargetDAGCombine(ISD::BUILD_VECTOR);
|
|
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
|
|
}
|
|
|
|
computeRegisterProperties();
|
|
|
|
// ARM does not have f32 extending load.
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
|
|
// ARM does not have i1 sign extending load.
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// ARM supports all 4 flavors of integer indexed load / store.
|
|
if (!Subtarget->isThumb1Only()) {
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, MVT::i1, Legal);
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i1, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
}
|
|
}
|
|
|
|
// i64 operation support.
|
|
if (Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Expand);
|
|
setOperationAction(ISD::MULHS, MVT::i32, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
} else {
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Expand);
|
|
if (!Subtarget->hasV6Ops())
|
|
setOperationAction(ISD::MULHS, MVT::i32, Expand);
|
|
}
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i64, Custom);
|
|
|
|
// ARM does not have ROTL.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
// Only ARMv6 has BSWAP.
|
|
if (!Subtarget->hasV6Ops())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
// These are expanded into libcalls.
|
|
if (!Subtarget->hasDivide()) {
|
|
// v7M has a hardware divider
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
}
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
|
|
// FIXME: Shouldn't need this, since no register is used, but the legalizer
|
|
// doesn't yet know how to not do that for SjLj.
|
|
setExceptionSelectorRegister(ARM::R0);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
|
|
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
|
|
// the default expansion.
|
|
if (Subtarget->hasDataBarrier() ||
|
|
(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
|
|
// membarrier needs custom lowering; the rest are legal and handled
|
|
// normally.
|
|
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
|
|
} else {
|
|
// Set them all for expansion, which will force libcalls.
|
|
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
|
|
// Since the libcalls include locking, fold in the fences
|
|
setShouldFoldAtomicFences(true);
|
|
}
|
|
// 64-bit versions are always libcalls (for now)
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
|
|
|
|
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
|
|
if (!Subtarget->hasV6Ops()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
}
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
|
|
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
|
|
// iff target supports vfp2.
|
|
setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
|
}
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
if (Subtarget->isTargetDarwin()) {
|
|
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
|
|
// We don't support sin/cos/fmod/copysign/pow
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
}
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
|
|
// Various VFP goodness
|
|
if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
|
|
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
|
|
if (Subtarget->hasVFP2()) {
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
}
|
|
// Special handling for half-precision FP.
|
|
if (!Subtarget->hasFP16()) {
|
|
setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
|
|
}
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::MUL);
|
|
|
|
if (Subtarget->hasV6T2Ops())
|
|
setTargetDAGCombine(ISD::OR);
|
|
|
|
setStackPointerRegisterToSaveRestore(ARM::SP);
|
|
|
|
if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
else
|
|
setSchedulingPreference(Sched::Hybrid);
|
|
|
|
maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
|
|
|
|
// On ARM arguments smaller than 4 bytes are extended, so all arguments
|
|
// are at least 4 bytes aligned.
|
|
setMinStackArgumentAlignment(4);
|
|
|
|
benefitFromCodePlacementOpt = true;
|
|
}
|
|
|
|
std::pair<const TargetRegisterClass*, uint8_t>
|
|
ARMTargetLowering::findRepresentativeClass(EVT VT) const{
|
|
const TargetRegisterClass *RRC = 0;
|
|
uint8_t Cost = 1;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return TargetLowering::findRepresentativeClass(VT);
|
|
// Use DPR as representative register class for all floating point
|
|
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
|
|
// the cost is 1 for both f32 and f64.
|
|
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
|
|
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
|
|
RRC = ARM::DPRRegisterClass;
|
|
break;
|
|
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
|
|
case MVT::v4f32: case MVT::v2f64:
|
|
RRC = ARM::DPRRegisterClass;
|
|
Cost = 2;
|
|
break;
|
|
case MVT::v4i64:
|
|
RRC = ARM::DPRRegisterClass;
|
|
Cost = 4;
|
|
break;
|
|
case MVT::v8i64:
|
|
RRC = ARM::DPRRegisterClass;
|
|
Cost = 8;
|
|
break;
|
|
}
|
|
return std::make_pair(RRC, Cost);
|
|
}
|
|
|
|
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return 0;
|
|
case ARMISD::Wrapper: return "ARMISD::Wrapper";
|
|
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
|
|
case ARMISD::CALL: return "ARMISD::CALL";
|
|
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
|
|
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
|
|
case ARMISD::tCALL: return "ARMISD::tCALL";
|
|
case ARMISD::BRCOND: return "ARMISD::BRCOND";
|
|
case ARMISD::BR_JT: return "ARMISD::BR_JT";
|
|
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
|
|
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
|
|
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
|
|
case ARMISD::CMP: return "ARMISD::CMP";
|
|
case ARMISD::CMPZ: return "ARMISD::CMPZ";
|
|
case ARMISD::CMPFP: return "ARMISD::CMPFP";
|
|
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
|
|
case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
|
|
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
|
|
case ARMISD::CMOV: return "ARMISD::CMOV";
|
|
case ARMISD::CNEG: return "ARMISD::CNEG";
|
|
|
|
case ARMISD::RBIT: return "ARMISD::RBIT";
|
|
|
|
case ARMISD::FTOSI: return "ARMISD::FTOSI";
|
|
case ARMISD::FTOUI: return "ARMISD::FTOUI";
|
|
case ARMISD::SITOF: return "ARMISD::SITOF";
|
|
case ARMISD::UITOF: return "ARMISD::UITOF";
|
|
|
|
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
|
|
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
|
|
case ARMISD::RRX: return "ARMISD::RRX";
|
|
|
|
case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
|
|
case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
|
|
|
|
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
|
|
case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
|
|
case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
|
|
|
|
case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
|
|
|
|
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
|
|
|
|
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
|
|
|
|
case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
|
|
case ARMISD::SYNCBARRIER: return "ARMISD::SYNCBARRIER";
|
|
|
|
case ARMISD::VCEQ: return "ARMISD::VCEQ";
|
|
case ARMISD::VCGE: return "ARMISD::VCGE";
|
|
case ARMISD::VCGEU: return "ARMISD::VCGEU";
|
|
case ARMISD::VCGT: return "ARMISD::VCGT";
|
|
case ARMISD::VCGTU: return "ARMISD::VCGTU";
|
|
case ARMISD::VTST: return "ARMISD::VTST";
|
|
|
|
case ARMISD::VSHL: return "ARMISD::VSHL";
|
|
case ARMISD::VSHRs: return "ARMISD::VSHRs";
|
|
case ARMISD::VSHRu: return "ARMISD::VSHRu";
|
|
case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
|
|
case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
|
|
case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
|
|
case ARMISD::VSHRN: return "ARMISD::VSHRN";
|
|
case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
|
|
case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
|
|
case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
|
|
case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
|
|
case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
|
|
case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
|
|
case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
|
|
case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
|
|
case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
|
|
case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
|
|
case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
|
|
case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
|
|
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
|
|
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
|
|
case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
|
|
case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
|
|
case ARMISD::VDUP: return "ARMISD::VDUP";
|
|
case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
|
|
case ARMISD::VEXT: return "ARMISD::VEXT";
|
|
case ARMISD::VREV64: return "ARMISD::VREV64";
|
|
case ARMISD::VREV32: return "ARMISD::VREV32";
|
|
case ARMISD::VREV16: return "ARMISD::VREV16";
|
|
case ARMISD::VZIP: return "ARMISD::VZIP";
|
|
case ARMISD::VUZP: return "ARMISD::VUZP";
|
|
case ARMISD::VTRN: return "ARMISD::VTRN";
|
|
case ARMISD::VMULLs: return "ARMISD::VMULLs";
|
|
case ARMISD::VMULLu: return "ARMISD::VMULLu";
|
|
case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
|
|
case ARMISD::FMAX: return "ARMISD::FMAX";
|
|
case ARMISD::FMIN: return "ARMISD::FMIN";
|
|
case ARMISD::BFI: return "ARMISD::BFI";
|
|
}
|
|
}
|
|
|
|
/// getRegClassFor - Return the register class that should be used for the
|
|
/// specified value type.
|
|
TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
|
|
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
|
|
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
|
|
// load / store 4 to 8 consecutive D registers.
|
|
if (Subtarget->hasNEON()) {
|
|
if (VT == MVT::v4i64)
|
|
return ARM::QQPRRegisterClass;
|
|
else if (VT == MVT::v8i64)
|
|
return ARM::QQQQPRRegisterClass;
|
|
}
|
|
return TargetLowering::getRegClassFor(VT);
|
|
}
|
|
|
|
// Create a fast isel object.
|
|
FastISel *
|
|
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
|
|
return ARM::createFastISel(funcInfo);
|
|
}
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
|
|
return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
|
|
}
|
|
|
|
/// getMaximalGlobalOffset - Returns the maximal possible offset which can
|
|
/// be used for loads / stores from the global.
|
|
unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
|
|
return (Subtarget->isThumb1Only() ? 127 : 4095);
|
|
}
|
|
|
|
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
|
|
unsigned NumVals = N->getNumValues();
|
|
if (!NumVals)
|
|
return Sched::RegPressure;
|
|
|
|
for (unsigned i = 0; i != NumVals; ++i) {
|
|
EVT VT = N->getValueType(i);
|
|
if (VT.isFloatingPoint() || VT.isVector())
|
|
return Sched::Latency;
|
|
}
|
|
|
|
if (!N->isMachineOpcode())
|
|
return Sched::RegPressure;
|
|
|
|
// Load are scheduled for latency even if there instruction itinerary
|
|
// is not available.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
if (TID.mayLoad())
|
|
return Sched::Latency;
|
|
|
|
if (!Itins->isEmpty() && Itins->getStageLatency(TID.getSchedClass()) > 2)
|
|
return Sched::Latency;
|
|
return Sched::RegPressure;
|
|
}
|
|
|
|
unsigned
|
|
ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
|
|
MachineFunction &MF) const {
|
|
switch (RC->getID()) {
|
|
default:
|
|
return 0;
|
|
case ARM::tGPRRegClassID:
|
|
return RegInfo->hasFP(MF) ? 4 : 5;
|
|
case ARM::GPRRegClassID: {
|
|
unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
|
|
return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
|
|
}
|
|
case ARM::SPRRegClassID: // Currently not used as 'rep' register class.
|
|
case ARM::DPRRegClassID:
|
|
return 32 - 10;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
|
|
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown condition code!");
|
|
case ISD::SETNE: return ARMCC::NE;
|
|
case ISD::SETEQ: return ARMCC::EQ;
|
|
case ISD::SETGT: return ARMCC::GT;
|
|
case ISD::SETGE: return ARMCC::GE;
|
|
case ISD::SETLT: return ARMCC::LT;
|
|
case ISD::SETLE: return ARMCC::LE;
|
|
case ISD::SETUGT: return ARMCC::HI;
|
|
case ISD::SETUGE: return ARMCC::HS;
|
|
case ISD::SETULT: return ARMCC::LO;
|
|
case ISD::SETULE: return ARMCC::LS;
|
|
}
|
|
}
|
|
|
|
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
|
|
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
|
|
ARMCC::CondCodes &CondCode2) {
|
|
CondCode2 = ARMCC::AL;
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: CondCode = ARMCC::GT; break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: CondCode = ARMCC::GE; break;
|
|
case ISD::SETOLT: CondCode = ARMCC::MI; break;
|
|
case ISD::SETOLE: CondCode = ARMCC::LS; break;
|
|
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
|
|
case ISD::SETO: CondCode = ARMCC::VC; break;
|
|
case ISD::SETUO: CondCode = ARMCC::VS; break;
|
|
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
|
|
case ISD::SETUGT: CondCode = ARMCC::HI; break;
|
|
case ISD::SETUGE: CondCode = ARMCC::PL; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT: CondCode = ARMCC::LT; break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE: CondCode = ARMCC::LE; break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE: CondCode = ARMCC::NE; break;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMGenCallingConv.inc"
|
|
|
|
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
|
|
/// given CallingConvention value.
|
|
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
|
|
bool Return,
|
|
bool isVarArg) const {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::Fast:
|
|
if (Subtarget->hasVFP2() && !isVarArg) {
|
|
if (!Subtarget->isAAPCS_ABI())
|
|
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
|
|
// For AAPCS ABI targets, just use VFP variant of the calling convention.
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
}
|
|
// Fallthrough
|
|
case CallingConv::C: {
|
|
// Use target triple & subtarget features to do actual dispatch.
|
|
if (!Subtarget->isAAPCS_ABI())
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
|
|
else if (Subtarget->hasVFP2() &&
|
|
FloatABIType == FloatABI::Hard && !isVarArg)
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
|
|
}
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
case CallingConv::ARM_AAPCS:
|
|
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
|
|
case CallingConv::ARM_APCS:
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
|
|
}
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue
|
|
ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
|
|
RVLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins,
|
|
CCAssignFnForNode(CallConv, /* Return*/ true,
|
|
isVarArg));
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign VA = RVLocs[i];
|
|
|
|
SDValue Val;
|
|
if (VA.needsCustom()) {
|
|
// Handle f64 or half of a v2f64.
|
|
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
|
|
InFlag);
|
|
Chain = Lo.getValue(1);
|
|
InFlag = Lo.getValue(2);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
|
|
InFlag);
|
|
Chain = Hi.getValue(1);
|
|
InFlag = Hi.getValue(2);
|
|
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
|
|
DAG.getConstant(0, MVT::i32));
|
|
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
|
|
Chain = Lo.getValue(1);
|
|
InFlag = Lo.getValue(2);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
|
|
Chain = Hi.getValue(1);
|
|
InFlag = Hi.getValue(2);
|
|
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
|
|
DAG.getConstant(1, MVT::i32));
|
|
}
|
|
} else {
|
|
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
|
|
InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
|
|
/// by "Src" to address "Dst" of size "Size". Alignment information is
|
|
/// specified by the specific parameter attribute. The copy will be passed as
|
|
/// a byval function parameter.
|
|
/// Sometimes what we are copying is the end of a larger object, the part that
|
|
/// does not fit in registers.
|
|
static SDValue
|
|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
|
|
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
|
|
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
|
|
/*isVolatile=*/false, /*AlwaysInline=*/false,
|
|
MachinePointerInfo(0), MachinePointerInfo(0));
|
|
}
|
|
|
|
/// LowerMemOpCallTo - Store the argument to the stack.
|
|
SDValue
|
|
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
|
|
SDValue StackPtr, SDValue Arg,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
if (Flags.isByVal())
|
|
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
|
|
|
|
return DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo::getStack(LocMemOffset),
|
|
false, false, 0);
|
|
}
|
|
|
|
void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
|
|
SDValue Chain, SDValue &Arg,
|
|
RegsToPassVector &RegsToPass,
|
|
CCValAssign &VA, CCValAssign &NextVA,
|
|
SDValue &StackPtr,
|
|
SmallVector<SDValue, 8> &MemOpChains,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
|
|
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Arg);
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
|
|
|
|
if (NextVA.isRegLoc())
|
|
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
|
|
else {
|
|
assert(NextVA.isMemLoc());
|
|
if (StackPtr.getNode() == 0)
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
|
|
dl, DAG, NextVA,
|
|
Flags));
|
|
}
|
|
}
|
|
|
|
/// LowerCall - Lowering a call into a callseq_start <-
|
|
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
|
|
/// nodes.
|
|
SDValue
|
|
ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
bool &isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
|
|
bool IsSibCall = false;
|
|
// Temporarily disable tail calls so things don't break.
|
|
if (!EnableARMTailCalls)
|
|
isTailCall = false;
|
|
if (isTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
|
|
isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
|
|
Outs, OutVals, Ins, DAG);
|
|
// We don't support GuaranteedTailCallOpt for ARM, only automatically
|
|
// detected sibcalls.
|
|
if (isTailCall) {
|
|
++NumTailCalls;
|
|
IsSibCall = true;
|
|
}
|
|
}
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallOperands(Outs,
|
|
CCAssignFnForNode(CallConv, /* Return*/ false,
|
|
isVarArg));
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
// For tail calls, memory operands are available in our caller's stack.
|
|
if (IsSibCall)
|
|
NumBytes = 0;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
if (!IsSibCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
|
|
|
|
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
|
|
|
|
RegsToPassVector RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads. In the case
|
|
// of tail call optimization, arguments are handled later.
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
|
|
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
|
|
|
|
VA = ArgLocs[++i]; // skip ahead to next loc
|
|
if (VA.isRegLoc()) {
|
|
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
|
|
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
} else {
|
|
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
|
|
StackPtr, MemOpChains, Flags);
|
|
}
|
|
} else if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else if (!IsSibCall) {
|
|
assert(VA.isMemLoc());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
// Tail call byval lowering might overwrite argument registers so in case of
|
|
// tail call optimization the copies to registers are lowered later.
|
|
if (!isTailCall)
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// For tail calls lower the arguments to the 'real' stack slot.
|
|
if (isTailCall) {
|
|
// Force all the incoming stack arguments to be loaded from the stack
|
|
// before any new outgoing arguments are stored to the stack, because the
|
|
// outgoing stack slots may alias the incoming argument stack slots, and
|
|
// the alias isn't otherwise explicit. This is slightly more conservative
|
|
// than necessary, because it means that each store effectively depends
|
|
// on every argument instead of just those arguments it would clobber.
|
|
|
|
// Do not flag preceeding copytoreg stuff together with the following stuff.
|
|
InFlag = SDValue();
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
InFlag =SDValue();
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
bool isDirect = false;
|
|
bool isARMFunc = false;
|
|
bool isLocalARMFunc = false;
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
if (EnableARMLongCalls) {
|
|
assert (getTargetMachine().getRelocationModel() == Reloc::Static
|
|
&& "long-calls with non-static relocation model!");
|
|
// Handle a global address or an external symbol. If it's not one of
|
|
// those, the target's already in a register, so we don't need to do
|
|
// anything extra.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
// Create a constant pool entry for the callee address
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
|
|
ARMPCLabelIndex,
|
|
ARMCP::CPValue, 0);
|
|
// Get the address of the callee into a register
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
|
|
// Create a constant pool entry for the callee address
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
|
|
Sym, ARMPCLabelIndex, 0);
|
|
// Get the address of the callee into a register
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
}
|
|
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
isDirect = true;
|
|
bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
|
|
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
|
|
getTargetMachine().getRelocationModel() != Reloc::Static;
|
|
isARMFunc = !Subtarget->isThumb() || isStub;
|
|
// ARM call to a local ARM function is predicable.
|
|
isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
|
|
// tBX takes a register source operand.
|
|
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
|
|
ARMPCLabelIndex,
|
|
ARMCP::CPValue, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
|
|
getPointerTy(), Callee, PICLabel);
|
|
} else {
|
|
// On ELF targets for PIC code, direct calls should go through the PLT
|
|
unsigned OpFlags = 0;
|
|
if (Subtarget->isTargetELF() &&
|
|
getTargetMachine().getRelocationModel() == Reloc::PIC_)
|
|
OpFlags = ARMII::MO_PLT;
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
isDirect = true;
|
|
bool isStub = Subtarget->isTargetDarwin() &&
|
|
getTargetMachine().getRelocationModel() != Reloc::Static;
|
|
isARMFunc = !Subtarget->isThumb() || isStub;
|
|
// tBX takes a register source operand.
|
|
const char *Sym = S->getSymbol();
|
|
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
|
|
Sym, ARMPCLabelIndex, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
|
|
getPointerTy(), Callee, PICLabel);
|
|
} else {
|
|
unsigned OpFlags = 0;
|
|
// On ELF targets for PIC code, direct calls should go through the PLT
|
|
if (Subtarget->isTargetELF() &&
|
|
getTargetMachine().getRelocationModel() == Reloc::PIC_)
|
|
OpFlags = ARMII::MO_PLT;
|
|
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
|
|
}
|
|
}
|
|
|
|
// FIXME: handle tail calls differently.
|
|
unsigned CallOpc;
|
|
if (Subtarget->isThumb()) {
|
|
if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else
|
|
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
|
|
} else {
|
|
CallOpc = (isDirect || Subtarget->hasV5TOps())
|
|
? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
|
|
: ARMISD::CALL_NOLINK;
|
|
}
|
|
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
|
|
if (isTailCall)
|
|
return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
|
|
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
|
|
dl, DAG, InVals);
|
|
}
|
|
|
|
/// MatchingStackOffset - Return true if the given stack call argument is
|
|
/// already available in the same position (relatively) of the caller's
|
|
/// incoming argument stack.
|
|
static
|
|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
|
|
MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
|
|
const ARMInstrInfo *TII) {
|
|
unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
|
|
int FI = INT_MAX;
|
|
if (Arg.getOpcode() == ISD::CopyFromReg) {
|
|
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
|
|
if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
|
|
return false;
|
|
MachineInstr *Def = MRI->getVRegDef(VR);
|
|
if (!Def)
|
|
return false;
|
|
if (!Flags.isByVal()) {
|
|
if (!TII->isLoadFromStackSlot(Def, FI))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
|
|
if (Flags.isByVal())
|
|
// ByVal argument is passed in as a pointer but it's now being
|
|
// dereferenced. e.g.
|
|
// define @foo(%struct.X* %A) {
|
|
// tail call @bar(%struct.X* byval %A)
|
|
// }
|
|
return false;
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
|
|
if (!FINode)
|
|
return false;
|
|
FI = FINode->getIndex();
|
|
} else
|
|
return false;
|
|
|
|
assert(FI != INT_MAX);
|
|
if (!MFI->isFixedObjectIndex(FI))
|
|
return false;
|
|
return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
const Function *CallerF = DAG.getMachineFunction().getFunction();
|
|
CallingConv::ID CallerCC = CallerF->getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
|
|
// Look for obvious safe cases to perform tail call optimization that do not
|
|
// require ABI changes. This is what gcc calls sibcall.
|
|
|
|
// Do not sibcall optimize vararg calls unless the call site is not passing
|
|
// any arguments.
|
|
if (isVarArg && !Outs.empty())
|
|
return false;
|
|
|
|
// Also avoid sibcall optimization if either caller or callee uses struct
|
|
// return semantics.
|
|
if (isCalleeStructRet || isCallerStructRet)
|
|
return false;
|
|
|
|
// FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
|
|
// emitEpilogue is not ready for them.
|
|
// Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
|
|
// LR. This means if we need to reload LR, it takes an extra instructions,
|
|
// which outweighs the value of the tail call; but here we don't know yet
|
|
// whether LR is going to be used. Probably the right approach is to
|
|
// generate the tail call here and turn it back into CALL/RET in
|
|
// emitEpilogue if LR is used.
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
// For the moment, we can only do this to functions defined in this
|
|
// compilation, or to indirect calls. A Thumb B to an ARM function,
|
|
// or vice versa, is not easily fixed up in the linker unlike BL.
|
|
// (We could do this by loading the address of the callee into a register;
|
|
// that is an extra instruction over the direct call and burns a register
|
|
// as well, so is not likely to be a win.)
|
|
|
|
// It might be safe to remove this restriction on non-Darwin.
|
|
|
|
// Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
|
|
// but we need to make sure there are enough registers; the only valid
|
|
// registers are the 4 used for parameters. We don't currently do this
|
|
// case.
|
|
if (isa<ExternalSymbolSDNode>(Callee))
|
|
return false;
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
if (GV->isDeclaration() || GV->isWeakForLinker())
|
|
return false;
|
|
}
|
|
|
|
// If the calling conventions do not match, then we'd better make sure the
|
|
// results are returned in the same way as what the caller expects.
|
|
if (!CCMatch) {
|
|
SmallVector<CCValAssign, 16> RVLocs1;
|
|
CCState CCInfo1(CalleeCC, false, getTargetMachine(),
|
|
RVLocs1, *DAG.getContext());
|
|
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs2;
|
|
CCState CCInfo2(CallerCC, false, getTargetMachine(),
|
|
RVLocs2, *DAG.getContext());
|
|
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
|
|
|
|
if (RVLocs1.size() != RVLocs2.size())
|
|
return false;
|
|
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
|
|
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
|
|
return false;
|
|
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
|
|
return false;
|
|
if (RVLocs1[i].isRegLoc()) {
|
|
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
|
|
return false;
|
|
} else {
|
|
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the callee takes no arguments then go on to check the results of the
|
|
// call.
|
|
if (!Outs.empty()) {
|
|
// Check if stack adjustment is needed. For now, do not do this if any
|
|
// argument is passed on the stack.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
|
|
ArgLocs, *DAG.getContext());
|
|
CCInfo.AnalyzeCallOperands(Outs,
|
|
CCAssignFnForNode(CalleeCC, false, isVarArg));
|
|
if (CCInfo.getNextStackOffset()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Check if the arguments are already laid out in the right way as
|
|
// the caller's fixed stack objects.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const MachineRegisterInfo *MRI = &MF.getRegInfo();
|
|
const ARMInstrInfo *TII =
|
|
((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
EVT RegVT = VA.getLocVT();
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
if (VA.needsCustom()) {
|
|
// f64 and vector types are split into multiple registers or
|
|
// register/stack-slot combinations. The types will not match
|
|
// the registers; give up on memory f64 refs until we figure
|
|
// out what to do about this.
|
|
if (!VA.isRegLoc())
|
|
return false;
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
if (RegVT == MVT::v2f64) {
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
}
|
|
} else if (!VA.isRegLoc()) {
|
|
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
|
|
MFI, MRI, TII))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
DebugLoc dl, SelectionDAG &DAG) const {
|
|
|
|
// CCValAssign - represent the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slots.
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
// Analyze outgoing return values.
|
|
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
|
|
isVarArg));
|
|
|
|
// If this is the first return lowered for this function, add
|
|
// the regs to the liveout set for the function.
|
|
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
|
if (RVLocs[i].isRegLoc())
|
|
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
|
|
}
|
|
|
|
SDValue Flag;
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, realRVLocIdx = 0;
|
|
i != RVLocs.size();
|
|
++i, ++realRVLocIdx) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Arg = OutVals[realRVLocIdx];
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
// Extract the first half and return it in two registers.
|
|
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Half);
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
|
|
Flag = Chain.getValue(1);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
HalfGPRs.getValue(1), Flag);
|
|
Flag = Chain.getValue(1);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
|
|
// Extract the 2nd half and fall through to handle it as an f64 value.
|
|
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(1, MVT::i32));
|
|
}
|
|
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
|
|
// available.
|
|
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
|
|
Flag = Chain.getValue(1);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
|
|
Flag);
|
|
} else
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
|
|
|
|
// Guarantee that all emitted copies are
|
|
// stuck together, avoiding something bad.
|
|
Flag = Chain.getValue(1);
|
|
}
|
|
|
|
SDValue result;
|
|
if (Flag.getNode())
|
|
result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
|
|
else // Return Void
|
|
result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
|
|
|
|
return result;
|
|
}
|
|
|
|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
|
|
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOVi.
|
|
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
|
|
EVT PtrVT = Op.getValueType();
|
|
// FIXME there is no actual debug info here
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
SDValue Res;
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
|
|
CP->getAlignment());
|
|
else
|
|
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
|
|
CP->getAlignment());
|
|
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
|
|
}
|
|
|
|
unsigned ARMTargetLowering::getJumpTableEncoding() const {
|
|
return MachineJumpTableInfo::EK_Inline;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = 0;
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
EVT PtrVT = getPointerTy();
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
SDValue CPAddr;
|
|
if (RelocM == Reloc::Static) {
|
|
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
|
|
} else {
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
|
|
ARMCP::CPBlockAddress,
|
|
PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
}
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
if (RelocM == Reloc::Static)
|
|
return Result;
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) const {
|
|
DebugLoc dl = GA->getDebugLoc();
|
|
EVT PtrVT = getPointerTy();
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj, "tlsgd", true);
|
|
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
|
|
Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue Chain = Argument.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
|
|
|
|
// call __tls_get_addr.
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
|
|
Args.push_back(Entry);
|
|
// FIXME: is there useful debug info available here?
|
|
std::pair<SDValue, SDValue> CallResult =
|
|
LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
|
|
false, false, false, false,
|
|
0, CallingConv::C, false, /*isReturnValueUsed=*/true,
|
|
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
|
|
return CallResult.first;
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "initial exec" or
|
|
// "local exec" model.
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) const {
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
DebugLoc dl = GA->getDebugLoc();
|
|
SDValue Offset;
|
|
SDValue Chain = DAG.getEntryNode();
|
|
EVT PtrVT = getPointerTy();
|
|
// Get the Thread Pointer
|
|
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
|
|
|
|
if (GV->isDeclaration()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
// Initial exec model.
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj, "gottpoff", true);
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
Chain = Offset.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
|
|
|
|
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
} else {
|
|
// local exec model
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
}
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
// TODO: implement the "local dynamic" model
|
|
assert(Subtarget->isTargetELF() &&
|
|
"TLS not implemented for non-ELF targets");
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
// If the relocation model is PIC, use the "General Dynamic" TLS Model,
|
|
// otherwise use the "Local Exec" TLS Model
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
|
|
return LowerToTLSGeneralDynamicModel(GA, DAG);
|
|
else
|
|
return LowerToTLSExecModels(GA, DAG);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
if (RelocM == Reloc::PIC_) {
|
|
bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
|
|
CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue Chain = Result.getValue(1);
|
|
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
|
|
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
|
|
if (!UseGOTOFF)
|
|
Result = DAG.getLoad(PtrVT, dl, Chain, Result,
|
|
MachinePointerInfo::getGOT(), false, false, 0);
|
|
return Result;
|
|
} else {
|
|
// If we have T2 ops, we can materialize the address directly via movt/movw
|
|
// pair. This is always cheaper.
|
|
if (Subtarget->useMovt()) {
|
|
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
|
|
} else {
|
|
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = 0;
|
|
EVT PtrVT = getPointerTy();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
SDValue CPAddr;
|
|
if (RelocM == Reloc::Static)
|
|
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
|
|
else {
|
|
ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
}
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
|
|
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue Chain = Result.getValue(1);
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
|
|
Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
|
|
false, false, 0);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetELF() &&
|
|
"GLOBAL OFFSET TABLE not implemented for non-ELF targets");
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
EVT PtrVT = getPointerTy();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
|
|
"_GLOBAL_OFFSET_TABLE_",
|
|
ARMPCLabelIndex, PCAdj);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Val = DAG.getConstant(0, MVT::i32);
|
|
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
|
|
Op.getOperand(1), Val);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
|
|
Op.getOperand(1), DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) const {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
case Intrinsic::arm_thread_pointer: {
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
|
|
}
|
|
case Intrinsic::eh_sjlj_lsda: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
|
|
EVT PtrVT = getPointerTy();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
SDValue CPAddr;
|
|
unsigned PCAdj = (RelocM != Reloc::PIC_)
|
|
? 0 : (Subtarget->isThumb() ? 4 : 8);
|
|
ARMConstantPoolValue *CPV =
|
|
new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
|
|
ARMCP::CPLSDA, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result =
|
|
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, 0);
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
|
|
static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Op5 = Op.getOperand(5);
|
|
unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
|
|
// Some subtargets which have dmb and dsb instructions can handle barriers
|
|
// directly. Some ARMv6 cpus can support them with the help of mcr
|
|
// instruction. Thumb1 and pre-v6 ARM mode use a libcall instead and should
|
|
// never get here.
|
|
unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
|
|
if (Subtarget->hasDataBarrier())
|
|
return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
|
|
else {
|
|
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
|
|
"Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
|
|
return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
|
|
SDValue &Root, SelectionDAG &DAG,
|
|
DebugLoc dl) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
TargetRegisterClass *RC;
|
|
if (AFI->isThumb1OnlyFunction())
|
|
RC = ARM::tGPRRegisterClass;
|
|
else
|
|
RC = ARM::GPRRegisterClass;
|
|
|
|
// Transform the arguments stored in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
|
|
|
|
SDValue ArgValue2;
|
|
if (NextVA.isMemLoc()) {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
|
|
|
|
// Create load node to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
} else {
|
|
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
|
|
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
|
|
}
|
|
|
|
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeFormalArguments(Ins,
|
|
CCAssignFnForNode(CallConv, /* Return*/ false,
|
|
isVarArg));
|
|
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
// Arguments stored in registers.
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
|
|
SDValue ArgValue;
|
|
if (VA.needsCustom()) {
|
|
// f64 and vector types are split up into multiple registers or
|
|
// combinations of registers and stack slots.
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
|
|
Chain, DAG, dl);
|
|
VA = ArgLocs[++i]; // skip ahead to next loc
|
|
SDValue ArgValue2;
|
|
if (VA.isMemLoc()) {
|
|
int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0);
|
|
} else {
|
|
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
|
|
Chain, DAG, dl);
|
|
}
|
|
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
|
|
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
|
|
ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
|
|
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
|
|
ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
|
|
} else
|
|
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
|
|
|
|
} else {
|
|
TargetRegisterClass *RC;
|
|
|
|
if (RegVT == MVT::f32)
|
|
RC = ARM::SPRRegisterClass;
|
|
else if (RegVT == MVT::f64)
|
|
RC = ARM::DPRRegisterClass;
|
|
else if (RegVT == MVT::v2f64)
|
|
RC = ARM::QPRRegisterClass;
|
|
else if (RegVT == MVT::i32)
|
|
RC = (AFI->isThumb1OnlyFunction() ?
|
|
ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
|
|
else
|
|
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
|
|
|
|
// Transform the arguments in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
}
|
|
|
|
// If this is an 8 or 16-bit value, it is really passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
|
|
} else { // VA.isRegLoc()
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
|
|
|
|
unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
|
|
int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, 0));
|
|
}
|
|
}
|
|
|
|
// varargs
|
|
if (isVarArg) {
|
|
static const unsigned GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
unsigned NumGPRs = CCInfo.getFirstUnallocated
|
|
(GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
|
|
|
|
unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
|
|
unsigned VARegSize = (4 - NumGPRs) * 4;
|
|
unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
|
|
unsigned ArgOffset = CCInfo.getNextStackOffset();
|
|
if (VARegSaveSize) {
|
|
// If this function is vararg, store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing
|
|
// the result of va_next.
|
|
AFI->setVarArgsRegSaveSize(VARegSaveSize);
|
|
AFI->setVarArgsFrameIndex(
|
|
MFI->CreateFixedObject(VARegSaveSize,
|
|
ArgOffset + VARegSaveSize - VARegSize,
|
|
false));
|
|
SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
|
|
getPointerTy());
|
|
|
|
SmallVector<SDValue, 4> MemOps;
|
|
for (; NumGPRs < 4; ++NumGPRs) {
|
|
TargetRegisterClass *RC;
|
|
if (AFI->isThumb1OnlyFunction())
|
|
RC = ARM::tGPRRegisterClass;
|
|
else
|
|
RC = ARM::GPRRegisterClass;
|
|
|
|
unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
|
|
SDValue Store =
|
|
DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
|
|
DAG.getConstant(4, getPointerTy()));
|
|
}
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOps[0], MemOps.size());
|
|
} else
|
|
// This will point to the next argument passed via stack.
|
|
AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// isFloatingPointZero - Return true if this is +0.0.
|
|
static bool isFloatingPointZero(SDValue Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->getValueAPF().isPosZero();
|
|
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
|
|
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
|
return CFP->getValueAPF().isPosZero();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
|
|
/// the given operands.
|
|
SDValue
|
|
ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &ARMcc, SelectionDAG &DAG,
|
|
DebugLoc dl) const {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
unsigned C = RHSC->getZExtValue();
|
|
if (!isLegalICmpImmediate(C)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
RHS = DAG.getConstant(C-1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if (C != 0 && isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
RHS = DAG.getConstant(C-1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
RHS = DAG.getConstant(C+1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
RHS = DAG.getConstant(C+1, MVT::i32);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMISD::NodeType CompareType;
|
|
switch (CondCode) {
|
|
default:
|
|
CompareType = ARMISD::CMP;
|
|
break;
|
|
case ARMCC::EQ:
|
|
case ARMCC::NE:
|
|
// Uses only Z Flag
|
|
CompareType = ARMISD::CMPZ;
|
|
break;
|
|
}
|
|
ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
|
|
}
|
|
|
|
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
|
|
SDValue
|
|
ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
|
|
DebugLoc dl) const {
|
|
SDValue Cmp;
|
|
if (!isFloatingPointZero(RHS))
|
|
Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
|
|
else
|
|
Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
|
|
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue SelectTrue = Op.getOperand(1);
|
|
SDValue SelectFalse = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
// Convert:
|
|
//
|
|
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
|
|
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
|
|
//
|
|
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
|
|
const ConstantSDNode *CMOVTrue =
|
|
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
|
|
const ConstantSDNode *CMOVFalse =
|
|
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
|
|
if (CMOVTrue && CMOVFalse) {
|
|
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
|
|
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
|
|
|
|
SDValue True;
|
|
SDValue False;
|
|
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
|
|
True = SelectTrue;
|
|
False = SelectFalse;
|
|
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
|
|
True = SelectFalse;
|
|
False = SelectTrue;
|
|
}
|
|
|
|
if (True.getNode() && False.getNode()) {
|
|
EVT VT = Cond.getValueType();
|
|
SDValue ARMcc = Cond.getOperand(2);
|
|
SDValue CCR = Cond.getOperand(3);
|
|
SDValue Cmp = Cond.getOperand(4);
|
|
return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
return DAG.getSelectCC(dl, Cond,
|
|
DAG.getConstant(0, Cond.getValueType()),
|
|
SelectTrue, SelectFalse, ISD::SETNE);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue TrueVal = Op.getOperand(2);
|
|
SDValue FalseVal = Op.getOperand(3);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMcc;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
FPCCToARMCC(CC, CondCode, CondCode2);
|
|
|
|
SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
|
|
ARMcc, CCR, Cmp);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
|
|
// FIXME: Needs another CMP because flag can have but one use.
|
|
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
|
|
Result = DAG.getNode(ARMISD::CMOV, dl, VT,
|
|
Result, TrueVal, ARMcc2, CCR, Cmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
|
|
/// to morph to an integer compare sequence.
|
|
static bool canChangeToInt(SDValue Op, bool &SeenZero,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDNode *N = Op.getNode();
|
|
if (!N->hasOneUse())
|
|
// Otherwise it requires moving the value from fp to integer registers.
|
|
return false;
|
|
if (!N->getNumValues())
|
|
return false;
|
|
EVT VT = Op.getValueType();
|
|
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
|
|
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
|
|
// vmrs are very slow, e.g. cortex-a8.
|
|
return false;
|
|
|
|
if (isFloatingPointZero(Op)) {
|
|
SeenZero = true;
|
|
return true;
|
|
}
|
|
return ISD::isNormalLoad(N);
|
|
}
|
|
|
|
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
|
|
if (isFloatingPointZero(Op))
|
|
return DAG.getConstant(0, MVT::i32);
|
|
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
|
|
return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
|
|
Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->getAlignment());
|
|
|
|
llvm_unreachable("Unknown VFP cmp argument!");
|
|
}
|
|
|
|
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
|
|
SDValue &RetVal1, SDValue &RetVal2) {
|
|
if (isFloatingPointZero(Op)) {
|
|
RetVal1 = DAG.getConstant(0, MVT::i32);
|
|
RetVal2 = DAG.getConstant(0, MVT::i32);
|
|
return;
|
|
}
|
|
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
|
|
Ld->getChain(), Ptr,
|
|
Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->getAlignment());
|
|
|
|
EVT PtrType = Ptr.getValueType();
|
|
unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
|
|
SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
|
|
PtrType, Ptr, DAG.getConstant(4, PtrType));
|
|
RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
|
|
Ld->getChain(), NewPtr,
|
|
Ld->getPointerInfo().getWithOffset(4),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
NewAlign);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown VFP cmp argument!");
|
|
}
|
|
|
|
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
|
|
/// f32 and even f64 comparisons to integer ones.
|
|
SDValue
|
|
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
bool SeenZero = false;
|
|
if (canChangeToInt(LHS, SeenZero, Subtarget) &&
|
|
canChangeToInt(RHS, SeenZero, Subtarget) &&
|
|
// If one of the operand is zero, it's safe to ignore the NaN case since
|
|
// we only care about equality comparisons.
|
|
(SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
|
|
// If unsafe fp math optimization is enabled and there are no othter uses of
|
|
// the CMP operands, and the condition code is EQ oe NE, we can optimize it
|
|
// to an integer comparison.
|
|
if (CC == ISD::SETOEQ)
|
|
CC = ISD::SETEQ;
|
|
else if (CC == ISD::SETUNE)
|
|
CC = ISD::SETNE;
|
|
|
|
SDValue ARMcc;
|
|
if (LHS.getValueType() == MVT::f32) {
|
|
LHS = bitcastf32Toi32(LHS, DAG);
|
|
RHS = bitcastf32Toi32(RHS, DAG);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
|
|
Chain, Dest, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
SDValue LHS1, LHS2;
|
|
SDValue RHS1, RHS2;
|
|
expandf64Toi32(LHS, DAG, LHS1, LHS2);
|
|
expandf64Toi32(RHS, DAG, RHS1, RHS2);
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
|
|
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
|
|
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMcc;
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
|
|
Chain, Dest, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
|
|
|
|
if (UnsafeFPMath &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
|
|
CC == ISD::SETNE || CC == ISD::SETUNE)) {
|
|
SDValue Result = OptimizeVFPBrcond(Op, DAG);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
FPCCToARMCC(CC, CondCode, CondCode2);
|
|
|
|
SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
|
|
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
|
|
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
ARMcc = DAG.getConstant(CondCode2, MVT::i32);
|
|
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
|
|
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Table = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
EVT PTy = getPointerTy();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
|
|
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
|
|
SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
|
|
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
|
|
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
|
|
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
|
|
if (Subtarget->isThumb2()) {
|
|
// Thumb2 uses a two-level jump. That is, it jumps into the jump table
|
|
// which does another jump to the destination. This also makes it easier
|
|
// to translate it to TBB / TBH later.
|
|
// FIXME: This might not work if the function is extremely large.
|
|
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
|
|
Addr, Op.getOperand(2), JTI, UId);
|
|
}
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
|
|
Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(),
|
|
false, false, 0);
|
|
Chain = Addr.getValue(1);
|
|
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
|
|
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
|
|
} else {
|
|
Addr = DAG.getLoad(PTy, dl, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(), false, false, 0);
|
|
Chain = Addr.getValue(1);
|
|
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned Opc;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
assert(0 && "Invalid opcode!");
|
|
case ISD::FP_TO_SINT:
|
|
Opc = ARMISD::FTOSI;
|
|
break;
|
|
case ISD::FP_TO_UINT:
|
|
Opc = ARMISD::FTOUI;
|
|
break;
|
|
}
|
|
Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
|
|
}
|
|
|
|
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned Opc;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
assert(0 && "Invalid opcode!");
|
|
case ISD::SINT_TO_FP:
|
|
Opc = ARMISD::SITOF;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
Opc = ARMISD::UITOF;
|
|
break;
|
|
}
|
|
|
|
Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(Opc, dl, VT, Op);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
// Implement fcopysign with a fabs and a conditional fneg.
|
|
SDValue Tmp0 = Op.getOperand(0);
|
|
SDValue Tmp1 = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
EVT SrcVT = Tmp1.getValueType();
|
|
SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
|
|
SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
|
|
SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
|
|
SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(4, MVT::i32);
|
|
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, 0);
|
|
}
|
|
|
|
// Return LR, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
|
|
? ARM::R7 : ARM::R11;
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo(),
|
|
false, false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
|
|
/// expand a bit convert where either the source or destination type is i64 to
|
|
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
|
|
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
|
|
/// vectors), since the legalizer won't know what to do with that.
|
|
static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
DebugLoc dl = N->getDebugLoc();
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// This function is only supposed to be called for i64 types, either as the
|
|
// source or destination of the bit convert.
|
|
EVT SrcVT = Op.getValueType();
|
|
EVT DstVT = N->getValueType(0);
|
|
assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
|
|
"ExpandBIT_CONVERT called for non-i64 type");
|
|
|
|
// Turn i64->f64 into VMOVDRR.
|
|
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
|
|
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
|
|
}
|
|
|
|
// Turn f64->i64 into VMOVRRD.
|
|
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
|
|
SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// getZeroVector - Returns a vector of specified type with all zero elements.
|
|
/// Zero vectors are used to represent vector negation and in those cases
|
|
/// will be implemented with the NEON VNEG instruction. However, VNEG does
|
|
/// not support i64 elements, so sometimes the zero vectors will need to be
|
|
/// explicitly constructed. Regardless, use a canonical VMOV to create the
|
|
/// zero vector.
|
|
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
// The canonical modified immediate encoding of a zero vector is....0!
|
|
SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
|
|
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
|
|
}
|
|
|
|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
|
|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, MVT::i32), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
|
|
ARMcc, DAG, dl);
|
|
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
|
|
CCR, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
|
|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, MVT::i32), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
|
|
ARMcc, DAG, dl);
|
|
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
|
|
CCR, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// The rounding mode is in bits 23:22 of the FPSCR.
|
|
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
|
|
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
|
|
// so that the shift + and get folded into a bitfield extract.
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
|
|
DAG.getConstant(Intrinsic::arm_get_fpscr,
|
|
MVT::i32));
|
|
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
|
|
DAG.getConstant(1U << 22, MVT::i32));
|
|
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
|
|
DAG.getConstant(22, MVT::i32));
|
|
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
|
|
DAG.getConstant(3, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
if (!ST->hasV6T2Ops())
|
|
return SDValue();
|
|
|
|
SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
|
|
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
|
|
}
|
|
|
|
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
// Lower vector shifts on NEON to use VSHL.
|
|
if (VT.isVector()) {
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
|
|
// Left shifts translate directly to the vshiftu intrinsic.
|
|
if (N->getOpcode() == ISD::SHL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
|
|
N->getOperand(0), N->getOperand(1));
|
|
|
|
assert((N->getOpcode() == ISD::SRA ||
|
|
N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
|
|
|
|
// NEON uses the same intrinsics for both left and right shifts. For
|
|
// right shifts, the shift amounts are negative, so negate the vector of
|
|
// shift amounts.
|
|
EVT ShiftVT = N->getOperand(1).getValueType();
|
|
SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
|
|
getZeroVector(ShiftVT, DAG, dl),
|
|
N->getOperand(1));
|
|
Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
|
|
Intrinsic::arm_neon_vshifts :
|
|
Intrinsic::arm_neon_vshiftu);
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(vshiftInt, MVT::i32),
|
|
N->getOperand(0), NegatedCount);
|
|
}
|
|
|
|
// We can get here for a node like i32 = ISD::SHL i32, i64
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
|
|
"Unknown shift to lower!");
|
|
|
|
// We only lower SRA, SRL of 1 here, all others use generic lowering.
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)) ||
|
|
cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
|
|
return SDValue();
|
|
|
|
// If we are in thumb mode, we don't have RRX.
|
|
if (ST->isThumb1Only()) return SDValue();
|
|
|
|
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
|
|
// captures the result into a carry flag.
|
|
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
|
|
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
|
|
|
|
// The low part is an ARMISD::RRX operand, which shifts the carry in.
|
|
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
|
|
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
|
|
}
|
|
|
|
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue TmpOp0, TmpOp1;
|
|
bool Invert = false;
|
|
bool Swap = false;
|
|
unsigned Opc = 0;
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue CC = Op.getOperand(2);
|
|
EVT VT = Op.getValueType();
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
|
|
if (Op.getOperand(1).getValueType().isFloatingPoint()) {
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Illegal FP comparison"); break;
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: Invert = true; // Fallthrough
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT: Swap = true; // Fallthrough
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: Opc = ARMISD::VCGT; break;
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE: Swap = true; // Fallthrough
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: Opc = ARMISD::VCGE; break;
|
|
case ISD::SETUGE: Swap = true; // Fallthrough
|
|
case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
|
|
case ISD::SETUGT: Swap = true; // Fallthrough
|
|
case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
|
|
case ISD::SETUEQ: Invert = true; // Fallthrough
|
|
case ISD::SETONE:
|
|
// Expand this to (OLT | OGT).
|
|
TmpOp0 = Op0;
|
|
TmpOp1 = Op1;
|
|
Opc = ISD::OR;
|
|
Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
|
|
Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
|
|
break;
|
|
case ISD::SETUO: Invert = true; // Fallthrough
|
|
case ISD::SETO:
|
|
// Expand this to (OLT | OGE).
|
|
TmpOp0 = Op0;
|
|
TmpOp1 = Op1;
|
|
Opc = ISD::OR;
|
|
Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
|
|
Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
|
|
break;
|
|
}
|
|
} else {
|
|
// Integer comparisons.
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Illegal integer comparison"); break;
|
|
case ISD::SETNE: Invert = true;
|
|
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
|
|
case ISD::SETLT: Swap = true;
|
|
case ISD::SETGT: Opc = ARMISD::VCGT; break;
|
|
case ISD::SETLE: Swap = true;
|
|
case ISD::SETGE: Opc = ARMISD::VCGE; break;
|
|
case ISD::SETULT: Swap = true;
|
|
case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
|
|
case ISD::SETULE: Swap = true;
|
|
case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
|
|
}
|
|
|
|
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
|
|
if (Opc == ARMISD::VCEQ) {
|
|
|
|
SDValue AndOp;
|
|
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
|
|
AndOp = Op0;
|
|
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
|
|
AndOp = Op1;
|
|
|
|
// Ignore bitconvert.
|
|
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
|
|
AndOp = AndOp.getOperand(0);
|
|
|
|
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
|
|
Opc = ARMISD::VTST;
|
|
Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
|
|
Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
|
|
Invert = !Invert;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
|
|
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, VT);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// isNEONModifiedImm - Check if the specified splat value corresponds to a
|
|
/// valid vector constant for a NEON instruction with a "modified immediate"
|
|
/// operand (e.g., VMOV). If so, return the encoded value.
|
|
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
|
|
unsigned SplatBitSize, SelectionDAG &DAG,
|
|
EVT &VT, bool is128Bits, bool isVMOV) {
|
|
unsigned OpCmode, Imm;
|
|
|
|
// SplatBitSize is set to the smallest size that splats the vector, so a
|
|
// zero vector will always have SplatBitSize == 8. However, NEON modified
|
|
// immediate instructions others than VMOV do not support the 8-bit encoding
|
|
// of a zero vector, and the default encoding of zero is supposed to be the
|
|
// 32-bit version.
|
|
if (SplatBits == 0)
|
|
SplatBitSize = 32;
|
|
|
|
switch (SplatBitSize) {
|
|
case 8:
|
|
if (!isVMOV)
|
|
return SDValue();
|
|
// Any 1-byte value is OK. Op=0, Cmode=1110.
|
|
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
|
|
OpCmode = 0xe;
|
|
Imm = SplatBits;
|
|
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
|
|
break;
|
|
|
|
case 16:
|
|
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
|
|
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x00nn: Op=x, Cmode=100x.
|
|
OpCmode = 0x8;
|
|
Imm = SplatBits;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0xnn00: Op=x, Cmode=101x.
|
|
OpCmode = 0xa;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
return SDValue();
|
|
|
|
case 32:
|
|
// NEON's 32-bit VMOV supports splat values where:
|
|
// * only one byte is nonzero, or
|
|
// * the least significant byte is 0xff and the second byte is nonzero, or
|
|
// * the least significant 2 bytes are 0xff and the third is nonzero.
|
|
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x000000nn: Op=x, Cmode=000x.
|
|
OpCmode = 0;
|
|
Imm = SplatBits;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0x0000nn00: Op=x, Cmode=001x.
|
|
OpCmode = 0x2;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff0000) == 0) {
|
|
// Value = 0x00nn0000: Op=x, Cmode=010x.
|
|
OpCmode = 0x4;
|
|
Imm = SplatBits >> 16;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff000000) == 0) {
|
|
// Value = 0xnn000000: Op=x, Cmode=011x.
|
|
OpCmode = 0x6;
|
|
Imm = SplatBits >> 24;
|
|
break;
|
|
}
|
|
|
|
if ((SplatBits & ~0xffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xff) == 0xff) {
|
|
// Value = 0x0000nnff: Op=x, Cmode=1100.
|
|
OpCmode = 0xc;
|
|
Imm = SplatBits >> 8;
|
|
SplatBits |= 0xff;
|
|
break;
|
|
}
|
|
|
|
if ((SplatBits & ~0xffffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
|
|
// Value = 0x00nnffff: Op=x, Cmode=1101.
|
|
OpCmode = 0xd;
|
|
Imm = SplatBits >> 16;
|
|
SplatBits |= 0xffff;
|
|
break;
|
|
}
|
|
|
|
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
|
|
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
|
|
// VMOV.I32. A (very) minor optimization would be to replicate the value
|
|
// and fall through here to test for a valid 64-bit splat. But, then the
|
|
// caller would also need to check and handle the change in size.
|
|
return SDValue();
|
|
|
|
case 64: {
|
|
if (!isVMOV)
|
|
return SDValue();
|
|
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
|
|
uint64_t BitMask = 0xff;
|
|
uint64_t Val = 0;
|
|
unsigned ImmMask = 1;
|
|
Imm = 0;
|
|
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
|
|
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
|
|
Val |= BitMask;
|
|
Imm |= ImmMask;
|
|
} else if ((SplatBits & BitMask) != 0) {
|
|
return SDValue();
|
|
}
|
|
BitMask <<= 8;
|
|
ImmMask <<= 1;
|
|
}
|
|
// Op=1, Cmode=1110.
|
|
OpCmode = 0x1e;
|
|
SplatBits = Val;
|
|
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unexpected size for isNEONModifiedImm");
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
|
|
return DAG.getTargetConstant(EncodedVal, MVT::i32);
|
|
}
|
|
|
|
static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
|
|
bool &ReverseVEXT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
ReverseVEXT = false;
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, it may still be
|
|
// a VEXT but the source vectors must be swapped.
|
|
ExpectedElt += 1;
|
|
if (ExpectedElt == NumElts * 2) {
|
|
ExpectedElt = 0;
|
|
ReverseVEXT = true;
|
|
}
|
|
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
// Adjust the index value if the source operands will be swapped.
|
|
if (ReverseVEXT)
|
|
Imm -= NumElts;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
|
|
/// instruction with the specified blocksize. (The order of the elements
|
|
/// within each block of the vector is reversed.)
|
|
static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned BlockSize) {
|
|
assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
|
|
"Only possible block sizes for VREV are: 16, 32, 64");
|
|
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned BlockElts = M[0] + 1;
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSz;
|
|
|
|
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
|
|
static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if ((unsigned) M[i] != 2 * i + WhichResult)
|
|
return false;
|
|
}
|
|
|
|
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
|
|
static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned Half = VT.getVectorNumElements() / 2;
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned j = 0; j != 2; ++j) {
|
|
unsigned Idx = WhichResult;
|
|
for (unsigned i = 0; i != Half; ++i) {
|
|
int MIdx = M[i + j * Half];
|
|
if (MIdx >= 0 && (unsigned) MIdx != Idx)
|
|
return false;
|
|
Idx += 2;
|
|
}
|
|
}
|
|
|
|
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
|
|
static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
|
|
unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If N is an integer constant that can be moved into a register in one
|
|
// instruction, return an SDValue of such a constant (will become a MOV
|
|
// instruction). Otherwise return null.
|
|
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST, DebugLoc dl) {
|
|
uint64_t Val;
|
|
if (!isa<ConstantSDNode>(N))
|
|
return SDValue();
|
|
Val = cast<ConstantSDNode>(N)->getZExtValue();
|
|
|
|
if (ST->isThumb1Only()) {
|
|
if (Val <= 255 || ~Val <= 255)
|
|
return DAG.getConstant(Val, MVT::i32);
|
|
} else {
|
|
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
|
|
return DAG.getConstant(Val, MVT::i32);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it.
|
|
static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
// Check if an immediate VMOV works.
|
|
EVT VmovVT;
|
|
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VmovVT, VT.is128BitVector(), true);
|
|
if (Val.getNode()) {
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
|
|
}
|
|
|
|
// Try an immediate VMVN.
|
|
uint64_t NegatedImm = (SplatBits.getZExtValue() ^
|
|
((1LL << SplatBitSize) - 1));
|
|
Val = isNEONModifiedImm(NegatedImm,
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VmovVT, VT.is128BitVector(), false);
|
|
if (Val.getNode()) {
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan through the operands to see if only one value is used.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isOnlyLowElement = true;
|
|
bool usesOnlyOneValue = true;
|
|
bool isConstant = true;
|
|
SDValue Value;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
if (!Value.getNode())
|
|
Value = V;
|
|
else if (V != Value)
|
|
usesOnlyOneValue = false;
|
|
}
|
|
|
|
if (!Value.getNode())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (isOnlyLowElement)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
|
|
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
|
|
// i32 and try again.
|
|
if (usesOnlyOneValue && EltSize <= 32) {
|
|
if (!isConstant)
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
|
|
if (VT.getVectorElementType().isFloatingPoint()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
|
|
Op.getOperand(i)));
|
|
SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
|
|
NumElts);
|
|
Val = LowerBUILD_VECTOR(Val, DAG, ST);
|
|
if (Val.getNode())
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
|
|
}
|
|
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
|
|
if (Val.getNode())
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
|
|
}
|
|
|
|
// If all elements are constants and the case above didn't get hit, fall back
|
|
// to the default expansion, which will generate a load from the constant
|
|
// pool.
|
|
if (isConstant)
|
|
return SDValue();
|
|
|
|
// Vectors with 32- or 64-bit elements can be built by directly assigning
|
|
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
|
|
// will be legalized.
|
|
if (EltSize >= 32) {
|
|
// Do the expansion with floating-point types, since that is what the VFP
|
|
// registers are defined to use, and since i64 is not legal.
|
|
EVT EltVT = EVT::getFloatingPointVT(EltSize);
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
|
|
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
|
|
/// are assumed to be legal.
|
|
bool
|
|
ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
|
|
EVT VT) const {
|
|
if (VT.getVectorNumElements() == 4 &&
|
|
(VT.is128BitVector() || VT.is64BitVector())) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (M[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = M[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return true;
|
|
}
|
|
|
|
bool ReverseVEXT;
|
|
unsigned Imm, WhichResult;
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
return (EltSize >= 32 ||
|
|
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
|
|
isVREVMask(M, VT, 64) ||
|
|
isVREVMask(M, VT, 32) ||
|
|
isVREVMask(M, VT, 16) ||
|
|
isVEXTMask(M, VT, ReverseVEXT, Imm) ||
|
|
isVTRNMask(M, VT, WhichResult) ||
|
|
isVUZPMask(M, VT, WhichResult) ||
|
|
isVZIPMask(M, VT, WhichResult) ||
|
|
isVTRN_v_undef_Mask(M, VT, WhichResult) ||
|
|
isVUZP_v_undef_Mask(M, VT, WhichResult) ||
|
|
isVZIP_v_undef_Mask(M, VT, WhichResult));
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
DebugLoc dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VREV,
|
|
OP_VDUP0,
|
|
OP_VDUP1,
|
|
OP_VDUP2,
|
|
OP_VDUP3,
|
|
OP_VEXT1,
|
|
OP_VEXT2,
|
|
OP_VEXT3,
|
|
OP_VUZPL, // VUZP, left result
|
|
OP_VUZPR, // VUZP, right result
|
|
OP_VZIPL, // VZIP, left result
|
|
OP_VZIPR, // VZIP, right result
|
|
OP_VTRNL, // VTRN, left result
|
|
OP_VTRNR // VTRN, right result
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1*9+2)*9+3) return LHS;
|
|
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
switch (OpNum) {
|
|
default: llvm_unreachable("Unknown shuffle opcode!");
|
|
case OP_VREV:
|
|
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
|
|
case OP_VDUP0:
|
|
case OP_VDUP1:
|
|
case OP_VDUP2:
|
|
case OP_VDUP3:
|
|
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
|
|
case OP_VEXT1:
|
|
case OP_VEXT2:
|
|
case OP_VEXT3:
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT,
|
|
OpLHS, OpRHS,
|
|
DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
|
|
case OP_VUZPL:
|
|
case OP_VUZPR:
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
|
|
case OP_VZIPL:
|
|
case OP_VZIPR:
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
|
|
case OP_VTRNL:
|
|
case OP_VTRNR:
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
EVT VT = Op.getValueType();
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
SmallVector<int, 8> ShuffleMask;
|
|
|
|
// Convert shuffles that are directly supported on NEON to target-specific
|
|
// DAG nodes, instead of keeping them as shuffles and matching them again
|
|
// during code selection. This is more efficient and avoids the possibility
|
|
// of inconsistencies between legalization and selection.
|
|
// FIXME: floating-point vectors should be canonicalized to integer vectors
|
|
// of the same time so that they get CSEd properly.
|
|
SVN->getMask(ShuffleMask);
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSize <= 32) {
|
|
if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
|
|
int Lane = SVN->getSplatIndex();
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane == -1) Lane = 0;
|
|
|
|
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
|
|
}
|
|
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
|
|
DAG.getConstant(Lane, MVT::i32));
|
|
}
|
|
|
|
bool ReverseVEXT;
|
|
unsigned Imm;
|
|
if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
|
|
if (ReverseVEXT)
|
|
std::swap(V1, V2);
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
|
|
DAG.getConstant(Imm, MVT::i32));
|
|
}
|
|
|
|
if (isVREVMask(ShuffleMask, VT, 64))
|
|
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
|
|
if (isVREVMask(ShuffleMask, VT, 32))
|
|
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
|
|
if (isVREVMask(ShuffleMask, VT, 16))
|
|
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
|
|
|
|
// Check for Neon shuffles that modify both input vectors in place.
|
|
// If both results are used, i.e., if there are two shuffles with the same
|
|
// source operands and with masks corresponding to both results of one of
|
|
// these operations, DAG memoization will ensure that a single node is
|
|
// used for both shuffles.
|
|
unsigned WhichResult;
|
|
if (isVTRNMask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
V1, V2).getValue(WhichResult);
|
|
if (isVUZPMask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
V1, V2).getValue(WhichResult);
|
|
if (isVZIPMask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
V1, V2).getValue(WhichResult);
|
|
|
|
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
V1, V1).getValue(WhichResult);
|
|
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
V1, V1).getValue(WhichResult);
|
|
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
V1, V1).getValue(WhichResult);
|
|
}
|
|
|
|
// If the shuffle is not directly supported and it has 4 elements, use
|
|
// the PerfectShuffle-generated table to synthesize it from other shuffles.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts == 4) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = ShuffleMask[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
|
|
if (EltSize >= 32) {
|
|
// Do the expansion with floating-point types, since that is what the VFP
|
|
// registers are defined to use, and since i64 is not legal.
|
|
EVT EltVT = EVT::getFloatingPointVT(EltSize);
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
|
|
V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
|
|
V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
Ops.push_back(DAG.getUNDEF(EltVT));
|
|
else
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
|
|
ShuffleMask[i] < (int)NumElts ? V1 : V2,
|
|
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
|
|
MVT::i32)));
|
|
}
|
|
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Vec = Op.getOperand(0);
|
|
SDValue Lane = Op.getOperand(1);
|
|
assert(VT == MVT::i32 &&
|
|
Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
|
|
"unexpected type for custom-lowering vector extract");
|
|
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
|
|
}
|
|
|
|
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
|
|
// The only time a CONCAT_VECTORS operation can have legal types is when
|
|
// two 64-bit vectors are concatenated to a 128-bit vector.
|
|
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
|
|
"unexpected CONCAT_VECTORS");
|
|
DebugLoc dl = Op.getDebugLoc();
|
|
SDValue Val = DAG.getUNDEF(MVT::v2f64);
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
if (Op0.getOpcode() != ISD::UNDEF)
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
|
|
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
|
|
DAG.getIntPtrConstant(0));
|
|
if (Op1.getOpcode() != ISD::UNDEF)
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
|
|
DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
|
|
DAG.getIntPtrConstant(1));
|
|
return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
|
|
}
|
|
|
|
/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
|
|
/// an extending load, return the unextended value.
|
|
static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return N->getOperand(0);
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
|
|
LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->getAlignment());
|
|
}
|
|
|
|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
|
|
// Multiplications are only custom-lowered for 128-bit vectors so that
|
|
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
|
|
SDNode *N0 = Op.getOperand(0).getNode();
|
|
SDNode *N1 = Op.getOperand(1).getNode();
|
|
unsigned NewOpc = 0;
|
|
if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
|
|
(N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
|
|
NewOpc = ARMISD::VMULLs;
|
|
} else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
|
|
(N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
|
|
NewOpc = ARMISD::VMULLu;
|
|
} else if (VT.getSimpleVT().SimpleTy == MVT::v2i64) {
|
|
// Fall through to expand this. It is not legal.
|
|
return SDValue();
|
|
} else {
|
|
// Other vector multiplications are legal.
|
|
return Op;
|
|
}
|
|
|
|
// Legalize to a VMULL instruction.
|
|
DebugLoc DL = Op.getDebugLoc();
|
|
SDValue Op0 = SkipExtension(N0, DAG);
|
|
SDValue Op1 = SkipExtension(N1, DAG);
|
|
|
|
assert(Op0.getValueType().is64BitVector() &&
|
|
Op1.getValueType().is64BitVector() &&
|
|
"unexpected types for extended operands to VMULL");
|
|
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Don't know how to custom lower this!");
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
|
|
LowerGlobalAddressELF(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
|
|
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
|
|
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
|
|
Subtarget);
|
|
case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
|
|
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
|
|
case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
|
|
case ISD::VSETCC: return LowerVSETCC(Op, DAG);
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Res;
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom expand this!");
|
|
break;
|
|
case ISD::BIT_CONVERT:
|
|
Res = ExpandBIT_CONVERT(N, DAG);
|
|
break;
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
Res = LowerShift(N, DAG, Subtarget);
|
|
break;
|
|
}
|
|
if (Res.getNode())
|
|
Results.push_back(Res);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Scheduler Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned oldval = MI->getOperand(2).getReg();
|
|
unsigned newval = MI->getOperand(3).getReg();
|
|
unsigned scratch = BB->getParent()->getRegInfo()
|
|
.createVirtualRegister(ARM::GPRRegisterClass);
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
unsigned ldrOpc, strOpc;
|
|
switch (Size) {
|
|
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
|
|
case 1:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
|
|
strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
|
|
break;
|
|
case 2:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
|
|
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
|
|
break;
|
|
case 4:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
|
|
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
|
|
break;
|
|
}
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It; // insert the new blocks after the current block
|
|
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loop1MBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// loop1MBB:
|
|
// ldrex dest, [ptr]
|
|
// cmp dest, oldval
|
|
// bne exitMBB
|
|
BB = loop1MBB;
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(dest).addReg(oldval));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// loop2MBB:
|
|
// strex scratch, newval, [ptr]
|
|
// cmp scratch, #0
|
|
// bne loop1MBB
|
|
BB = loop2MBB;
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
|
|
.addReg(ptr));
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(scratch).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned Size, unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned incr = MI->getOperand(2).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
unsigned ldrOpc, strOpc;
|
|
switch (Size) {
|
|
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
|
|
case 1:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
|
|
strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
|
|
break;
|
|
case 2:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
|
|
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
|
|
break;
|
|
case 4:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
|
|
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
|
|
break;
|
|
}
|
|
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
|
|
unsigned scratch2 = (!BinOpcode) ? incr :
|
|
RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// ldrex dest, ptr
|
|
// <binop> scratch2, dest, incr
|
|
// strex scratch, scratch2, ptr
|
|
// cmp scratch, #0
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
|
|
if (BinOpcode) {
|
|
// operand order needs to go the other way for NAND
|
|
if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
|
|
addReg(incr).addReg(dest)).addReg(0);
|
|
else
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
|
|
addReg(dest).addReg(incr)).addReg(0);
|
|
}
|
|
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
|
|
.addReg(ptr));
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(scratch).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
static
|
|
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
if (*I != Succ)
|
|
return *I;
|
|
llvm_unreachable("Expecting a BB with two successors!");
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
MI->dump();
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
|
|
case ARM::ATOMIC_LOAD_ADD_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
|
|
case ARM::ATOMIC_LOAD_ADD_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
|
|
case ARM::ATOMIC_LOAD_ADD_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
|
|
|
|
case ARM::ATOMIC_LOAD_AND_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
case ARM::ATOMIC_LOAD_AND_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
case ARM::ATOMIC_LOAD_AND_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
|
|
case ARM::ATOMIC_LOAD_OR_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
case ARM::ATOMIC_LOAD_OR_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
case ARM::ATOMIC_LOAD_OR_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
|
|
case ARM::ATOMIC_LOAD_XOR_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
case ARM::ATOMIC_LOAD_XOR_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
case ARM::ATOMIC_LOAD_XOR_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
|
|
case ARM::ATOMIC_LOAD_NAND_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
|
|
case ARM::ATOMIC_LOAD_NAND_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
|
|
case ARM::ATOMIC_LOAD_NAND_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
|
|
|
|
case ARM::ATOMIC_LOAD_SUB_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
|
|
case ARM::ATOMIC_LOAD_SUB_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
|
|
case ARM::ATOMIC_LOAD_SUB_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
|
|
|
|
case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
|
|
case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
|
|
case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
|
|
|
|
case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
|
|
case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
|
|
case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
|
|
|
|
case ARM::tMOVCCr_pseudo: {
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
|
|
.addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(ARM::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
case ARM::BCCi64:
|
|
case ARM::BCCZi64: {
|
|
// Compare both parts that make up the double comparison separately for
|
|
// equality.
|
|
bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
|
|
|
|
unsigned LHS1 = MI->getOperand(1).getReg();
|
|
unsigned LHS2 = MI->getOperand(2).getReg();
|
|
if (RHSisZero) {
|
|
AddDefaultPred(BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(LHS1).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(LHS2).addImm(0)
|
|
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
} else {
|
|
unsigned RHS1 = MI->getOperand(3).getReg();
|
|
unsigned RHS2 = MI->getOperand(4).getReg();
|
|
AddDefaultPred(BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(LHS1).addReg(RHS1));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(LHS2).addReg(RHS2)
|
|
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
}
|
|
|
|
MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
|
|
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
|
|
if (MI->getOperand(0).getImm() == ARMCC::NE)
|
|
std::swap(destMBB, exitMBB);
|
|
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
|
|
.addMBB(exitMBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static
|
|
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT VT = N->getValueType(0);
|
|
unsigned Opc = N->getOpcode();
|
|
bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
|
|
SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
|
|
SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
|
|
ISD::CondCode CC = ISD::SETCC_INVALID;
|
|
|
|
if (isSlctCC) {
|
|
CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
|
|
} else {
|
|
SDValue CCOp = Slct.getOperand(0);
|
|
if (CCOp.getOpcode() == ISD::SETCC)
|
|
CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
|
|
}
|
|
|
|
bool DoXform = false;
|
|
bool InvCC = false;
|
|
assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
|
|
"Bad input!");
|
|
|
|
if (LHS.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(LHS)->isNullValue()) {
|
|
DoXform = true;
|
|
} else if (CC != ISD::SETCC_INVALID &&
|
|
RHS.getOpcode() == ISD::Constant &&
|
|
cast<ConstantSDNode>(RHS)->isNullValue()) {
|
|
std::swap(LHS, RHS);
|
|
SDValue Op0 = Slct.getOperand(0);
|
|
EVT OpVT = isSlctCC ? Op0.getValueType() :
|
|
Op0.getOperand(0).getValueType();
|
|
bool isInt = OpVT.isInteger();
|
|
CC = ISD::getSetCCInverse(CC, isInt);
|
|
|
|
if (!TLI.isCondCodeLegal(CC, OpVT))
|
|
return SDValue(); // Inverse operator isn't legal.
|
|
|
|
DoXform = true;
|
|
InvCC = true;
|
|
}
|
|
|
|
if (DoXform) {
|
|
SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
|
|
if (isSlctCC)
|
|
return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
|
|
Slct.getOperand(0), Slct.getOperand(1), CC);
|
|
SDValue CCOp = Slct.getOperand(0);
|
|
if (InvCC)
|
|
CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
|
|
CCOp.getOperand(0), CCOp.getOperand(1), CC);
|
|
return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
|
|
CCOp, OtherOp, Result);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
|
|
/// operands N0 and N1. This is a helper for PerformADDCombine that is
|
|
/// called with the default operands, and if that fails, with commuted
|
|
/// operands.
|
|
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
|
|
if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
|
|
SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
|
|
if (Result.getNode()) return Result;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
|
|
///
|
|
static SDValue PerformADDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// First try with the default operand order.
|
|
SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
|
|
if (Result.getNode())
|
|
return Result;
|
|
|
|
// If that didn't work, try again with the operands commuted.
|
|
return PerformADDCombineWithOperands(N, N1, N0, DCI);
|
|
}
|
|
|
|
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
|
|
///
|
|
static SDValue PerformSUBCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
|
|
if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
|
|
SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
|
|
if (Result.getNode()) return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformMULCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return SDValue();
|
|
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
|
|
uint64_t MulAmt = C->getZExtValue();
|
|
unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
|
|
ShiftAmt = ShiftAmt & (32 - 1);
|
|
SDValue V = N->getOperand(0);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
|
|
SDValue Res;
|
|
MulAmt >>= ShiftAmt;
|
|
if (isPowerOf2_32(MulAmt - 1)) {
|
|
// (mul x, 2^N + 1) => (add (shl x, N), x)
|
|
Res = DAG.getNode(ISD::ADD, DL, VT,
|
|
V, DAG.getNode(ISD::SHL, DL, VT,
|
|
V, DAG.getConstant(Log2_32(MulAmt-1),
|
|
MVT::i32)));
|
|
} else if (isPowerOf2_32(MulAmt + 1)) {
|
|
// (mul x, 2^N - 1) => (sub (shl x, N), x)
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V, DAG.getConstant(Log2_32(MulAmt+1),
|
|
MVT::i32)),
|
|
V);
|
|
} else
|
|
return SDValue();
|
|
|
|
if (ShiftAmt != 0)
|
|
Res = DAG.getNode(ISD::SHL, DL, VT, Res,
|
|
DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
|
|
static SDValue PerformORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
|
|
// reasonable.
|
|
|
|
// BFI is only available on V6T2+
|
|
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
DebugLoc DL = N->getDebugLoc();
|
|
// 1) or (and A, mask), val => ARMbfi A, val, mask
|
|
// iff (val & mask) == val
|
|
//
|
|
// 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
|
|
// 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
|
|
// && CountPopulation_32(mask) == CountPopulation_32(~mask2)
|
|
// 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
|
|
// && CountPopulation_32(mask) == CountPopulation_32(~mask2)
|
|
// (i.e., copy a bitfield value into another bitfield of the same width)
|
|
if (N0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
|
|
// The value and the mask need to be constants so we can verify this is
|
|
// actually a bitfield set. If the mask is 0xffff, we can do better
|
|
// via a movt instruction, so don't use BFI in that case.
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
unsigned Mask = C->getZExtValue();
|
|
if (Mask == 0xffff)
|
|
return SDValue();
|
|
SDValue Res;
|
|
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
|
|
if ((C = dyn_cast<ConstantSDNode>(N1))) {
|
|
unsigned Val = C->getZExtValue();
|
|
if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
|
|
return SDValue();
|
|
Val >>= CountTrailingZeros_32(~Mask);
|
|
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(Val, MVT::i32),
|
|
DAG.getConstant(Mask, MVT::i32));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
} else if (N1.getOpcode() == ISD::AND) {
|
|
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
|
|
C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
unsigned Mask2 = C->getZExtValue();
|
|
|
|
if (ARM::isBitFieldInvertedMask(Mask) &&
|
|
ARM::isBitFieldInvertedMask(~Mask2) &&
|
|
(CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
|
|
// The pack halfword instruction works better for masks that fit it,
|
|
// so use that when it's available.
|
|
if (Subtarget->hasT2ExtractPack() &&
|
|
(Mask == 0xffff || Mask == 0xffff0000))
|
|
return SDValue();
|
|
// 2a
|
|
unsigned lsb = CountTrailingZeros_32(Mask2);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
|
|
DAG.getConstant(lsb, MVT::i32));
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
|
|
DAG.getConstant(Mask, MVT::i32));
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
|
|
ARM::isBitFieldInvertedMask(Mask2) &&
|
|
(CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
|
|
// The pack halfword instruction works better for masks that fit it,
|
|
// so use that when it's available.
|
|
if (Subtarget->hasT2ExtractPack() &&
|
|
(Mask2 == 0xffff || Mask2 == 0xffff0000))
|
|
return SDValue();
|
|
// 2b
|
|
unsigned lsb = CountTrailingZeros_32(Mask);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(lsb, MVT::i32));
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
|
|
DAG.getConstant(Mask2, MVT::i32));
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VMOVRRD.
|
|
static SDValue PerformVMOVRRDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// vmovrrd(vmovdrr x, y) -> x,y
|
|
SDValue InDouble = N->getOperand(0);
|
|
if (InDouble.getOpcode() == ARMISD::VMOVDRR)
|
|
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
|
|
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op0.getOpcode() == ISD::BIT_CONVERT)
|
|
Op0 = Op0.getOperand(0);
|
|
if (Op1.getOpcode() == ISD::BIT_CONVERT)
|
|
Op1 = Op1.getOperand(0);
|
|
if (Op0.getOpcode() == ARMISD::VMOVRRD &&
|
|
Op0.getNode() == Op1.getNode() &&
|
|
Op0.getResNo() == 0 && Op1.getResNo() == 1)
|
|
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
|
|
N->getValueType(0), Op0.getOperand(0));
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
|
|
/// ISD::BUILD_VECTOR.
|
|
static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
|
|
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
|
|
// into a pair of GPRs, which is fine when the value is used as a scalar,
|
|
// but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
|
|
if (N->getNumOperands() == 2)
|
|
return PerformVMOVDRRCombine(N, DAG);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
|
|
/// ISD::VECTOR_SHUFFLE.
|
|
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
|
|
// The LLVM shufflevector instruction does not require the shuffle mask
|
|
// length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
|
|
// have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
|
|
// operands do not match the mask length, they are extended by concatenating
|
|
// them with undef vectors. That is probably the right thing for other
|
|
// targets, but for NEON it is better to concatenate two double-register
|
|
// size vector operands into a single quad-register size vector. Do that
|
|
// transformation here:
|
|
// shuffle(concat(v1, undef), concat(v2, undef)) ->
|
|
// shuffle(concat(v1, v2), undef)
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
|
|
Op1.getOpcode() != ISD::CONCAT_VECTORS ||
|
|
Op0.getNumOperands() != 2 ||
|
|
Op1.getNumOperands() != 2)
|
|
return SDValue();
|
|
SDValue Concat0Op1 = Op0.getOperand(1);
|
|
SDValue Concat1Op1 = Op1.getOperand(1);
|
|
if (Concat0Op1.getOpcode() != ISD::UNDEF ||
|
|
Concat1Op1.getOpcode() != ISD::UNDEF)
|
|
return SDValue();
|
|
// Skip the transformation if any of the types are illegal.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT VT = N->getValueType(0);
|
|
if (!TLI.isTypeLegal(VT) ||
|
|
!TLI.isTypeLegal(Concat0Op1.getValueType()) ||
|
|
!TLI.isTypeLegal(Concat1Op1.getValueType()))
|
|
return SDValue();
|
|
|
|
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
|
|
Op0.getOperand(0), Op1.getOperand(0));
|
|
// Translate the shuffle mask.
|
|
SmallVector<int, 16> NewMask;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned HalfElts = NumElts/2;
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
for (unsigned n = 0; n < NumElts; ++n) {
|
|
int MaskElt = SVN->getMaskElt(n);
|
|
int NewElt = -1;
|
|
if (MaskElt < HalfElts)
|
|
NewElt = MaskElt;
|
|
else if (MaskElt >= NumElts && MaskElt < NumElts + HalfElts)
|
|
NewElt = HalfElts + MaskElt - NumElts;
|
|
NewMask.push_back(NewElt);
|
|
}
|
|
return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
|
|
DAG.getUNDEF(VT), NewMask.data());
|
|
}
|
|
|
|
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VDUPLANE.
|
|
static SDValue PerformVDUPLANECombine(SDNode *N, SelectionDAG &DAG) {
|
|
// If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
|
|
// redundant.
|
|
SDValue Op = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BIT_CONVERT)
|
|
Op = Op.getOperand(0);
|
|
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
|
|
return SDValue();
|
|
|
|
// Make sure the VMOV element size is not bigger than the VDUPLANE elements.
|
|
unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
|
|
// The canonical VMOV for a zero vector uses a 32-bit element size.
|
|
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned EltBits;
|
|
if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
|
|
EltSize = 8;
|
|
if (EltSize > VT.getVectorElementType().getSizeInBits())
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
|
|
}
|
|
|
|
/// getVShiftImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift operation, where all the elements of the
|
|
/// build_vector must have the same constant integer value.
|
|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BIT_CONVERT)
|
|
Op = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElementBits) ||
|
|
SplatBitSize > ElementBits)
|
|
return false;
|
|
Cnt = SplatBits.getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift left operation. That value must be in the range:
|
|
/// 0 <= Value < ElementBits for a left shift; or
|
|
/// 0 <= Value <= ElementBits for a long left shift.
|
|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (! getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
|
|
}
|
|
|
|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift right operation. For a shift opcode, the value
|
|
/// is positive, but for an intrinsic the value count must be negative. The
|
|
/// absolute value must be in the range:
|
|
/// 1 <= |Value| <= ElementBits for a right shift; or
|
|
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
|
|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
|
|
int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (! getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
if (isIntrinsic)
|
|
Cnt = -Cnt;
|
|
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
|
|
}
|
|
|
|
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
|
|
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
// Don't do anything for most intrinsics.
|
|
break;
|
|
|
|
// Vector shifts: check for immediate versions and lower them.
|
|
// Note: This is done during DAG combining instead of DAG legalizing because
|
|
// the build_vectors for 64-bit vector element shift counts are generally
|
|
// not legal, and it is hard to see their values after they get legalized to
|
|
// loads from a constant pool.
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
case Intrinsic::arm_neon_vshiftls:
|
|
case Intrinsic::arm_neon_vshiftlu:
|
|
case Intrinsic::arm_neon_vshiftn:
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
case Intrinsic::arm_neon_vqrshiftnsu: {
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
unsigned VShiftOpc = 0;
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
|
|
VShiftOpc = ARMISD::VSHL;
|
|
break;
|
|
}
|
|
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
|
|
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
|
|
ARMISD::VSHRs : ARMISD::VSHRu);
|
|
break;
|
|
}
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vshiftls:
|
|
case Intrinsic::arm_neon_vshiftlu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for vshll intrinsic");
|
|
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
|
|
break;
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
|
|
break;
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for vqshlu intrinsic");
|
|
|
|
case Intrinsic::arm_neon_vshiftn:
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
case Intrinsic::arm_neon_vqrshiftnsu:
|
|
// Narrowing shifts require an immediate right shift.
|
|
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for narrowing vector shift "
|
|
"intrinsic");
|
|
|
|
default:
|
|
llvm_unreachable("unhandled vector shift");
|
|
}
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
// Opcode already set above.
|
|
break;
|
|
case Intrinsic::arm_neon_vshiftls:
|
|
case Intrinsic::arm_neon_vshiftlu:
|
|
if (Cnt == VT.getVectorElementType().getSizeInBits())
|
|
VShiftOpc = ARMISD::VSHLLi;
|
|
else
|
|
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
|
|
ARMISD::VSHLLs : ARMISD::VSHLLu);
|
|
break;
|
|
case Intrinsic::arm_neon_vshiftn:
|
|
VShiftOpc = ARMISD::VSHRN; break;
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
VShiftOpc = ARMISD::VRSHRs; break;
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
VShiftOpc = ARMISD::VRSHRu; break;
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
VShiftOpc = ARMISD::VRSHRN; break;
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
VShiftOpc = ARMISD::VQSHLs; break;
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
VShiftOpc = ARMISD::VQSHLu; break;
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
VShiftOpc = ARMISD::VQSHLsu; break;
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
VShiftOpc = ARMISD::VQSHRNs; break;
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
VShiftOpc = ARMISD::VQSHRNu; break;
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
VShiftOpc = ARMISD::VQSHRNsu; break;
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
VShiftOpc = ARMISD::VQRSHRNs; break;
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
VShiftOpc = ARMISD::VQRSHRNu; break;
|
|
case Intrinsic::arm_neon_vqrshiftnsu:
|
|
VShiftOpc = ARMISD::VQRSHRNsu; break;
|
|
}
|
|
|
|
return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
|
|
N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vshiftins: {
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
unsigned VShiftOpc = 0;
|
|
|
|
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
|
|
VShiftOpc = ARMISD::VSLI;
|
|
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
|
|
VShiftOpc = ARMISD::VSRI;
|
|
else {
|
|
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
|
|
}
|
|
|
|
return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vqrshifts:
|
|
case Intrinsic::arm_neon_vqrshiftu:
|
|
// No immediate versions of these to check for.
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
|
|
/// lowers them. As with the vector shift intrinsics, this is done during DAG
|
|
/// combining instead of DAG legalizing because the build_vectors for 64-bit
|
|
/// vector element shift counts are generally not legal, and it is hard to see
|
|
/// their values after they get legalized to loads from a constant pool.
|
|
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Nothing to be done for scalar shifts.
|
|
if (! VT.isVector())
|
|
return SDValue();
|
|
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
int64_t Cnt;
|
|
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected shift opcode");
|
|
|
|
case ISD::SHL:
|
|
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
|
|
return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
break;
|
|
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
|
|
unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
|
|
ARMISD::VSHRs : ARMISD::VSHRu);
|
|
return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
|
|
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
|
|
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// Check for sign- and zero-extensions of vector extract operations of 8-
|
|
// and 16-bit vector elements. NEON supports these directly. They are
|
|
// handled during DAG combining because type legalization will promote them
|
|
// to 32-bit types and it is messy to recognize the operations after that.
|
|
if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
SDValue Vec = N0.getOperand(0);
|
|
SDValue Lane = N0.getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT EltVT = N0.getValueType();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
if (VT == MVT::i32 &&
|
|
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
|
|
TLI.isTypeLegal(Vec.getValueType())) {
|
|
|
|
unsigned Opc = 0;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode");
|
|
case ISD::SIGN_EXTEND:
|
|
Opc = ARMISD::VGETLANEs;
|
|
break;
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
Opc = ARMISD::VGETLANEu;
|
|
break;
|
|
}
|
|
return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
|
|
/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
|
|
static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
// If the target supports NEON, try to use vmax/vmin instructions for f32
|
|
// selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
|
|
// be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
|
|
// a NaN; only do the transformation when it matches that behavior.
|
|
|
|
// For now only do this when using NEON for FP operations; if using VFP, it
|
|
// is not obvious that the benefit outweighs the cost of switching to the
|
|
// NEON pipeline.
|
|
if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
|
|
N->getValueType(0) != MVT::f32)
|
|
return SDValue();
|
|
|
|
SDValue CondLHS = N->getOperand(0);
|
|
SDValue CondRHS = N->getOperand(1);
|
|
SDValue LHS = N->getOperand(2);
|
|
SDValue RHS = N->getOperand(3);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
|
|
|
|
unsigned Opcode = 0;
|
|
bool IsReversed;
|
|
if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
|
|
IsReversed = false; // x CC y ? x : y
|
|
} else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
|
|
IsReversed = true ; // x CC y ? y : x
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
bool IsUnordered;
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
// If LHS is NaN, an ordered comparison will be false and the result will
|
|
// be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
|
|
// != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
|
|
IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
|
|
if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
|
|
break;
|
|
// For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
|
|
// will return -0, so vmin can only be used for unsafe math or if one of
|
|
// the operands is known to be nonzero.
|
|
if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
|
|
!UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
|
|
break;
|
|
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
// If LHS is NaN, an ordered comparison will be false and the result will
|
|
// be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
|
|
// != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
|
|
IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
|
|
if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
|
|
break;
|
|
// For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
|
|
// will return +0, so vmax can only be used for unsafe math or if one of
|
|
// the operands is known to be nonzero.
|
|
if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
|
|
!UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
|
|
break;
|
|
}
|
|
|
|
if (!Opcode)
|
|
return SDValue();
|
|
return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD: return PerformADDCombine(N, DCI);
|
|
case ISD::SUB: return PerformSUBCombine(N, DCI);
|
|
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
|
|
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
|
|
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
|
|
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
|
|
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
|
|
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
|
|
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI.DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
|
|
if (!Subtarget->allowsUnalignedMem())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
return true;
|
|
// FIXME: VLD1 etc with standard alignment is legal.
|
|
}
|
|
}
|
|
|
|
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
|
|
if (V < 0)
|
|
return false;
|
|
|
|
unsigned Scale = 1;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
// Scale == 1;
|
|
break;
|
|
case MVT::i16:
|
|
// Scale == 2;
|
|
Scale = 2;
|
|
break;
|
|
case MVT::i32:
|
|
// Scale == 4;
|
|
Scale = 4;
|
|
break;
|
|
}
|
|
|
|
if ((V & (Scale - 1)) != 0)
|
|
return false;
|
|
V /= Scale;
|
|
return V == (V & ((1LL << 5) - 1));
|
|
}
|
|
|
|
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
bool isNeg = false;
|
|
if (V < 0) {
|
|
isNeg = true;
|
|
V = - V;
|
|
}
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
// + imm12 or - imm8
|
|
if (isNeg)
|
|
return V == (V & ((1LL << 8) - 1));
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// Same as ARM mode. FIXME: NEON?
|
|
if (!Subtarget->hasVFP2())
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode for load / store of the
|
|
/// given type.
|
|
static bool isLegalAddressImmediate(int64_t V, EVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (V == 0)
|
|
return true;
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return isLegalT1AddressImmediate(V, VT);
|
|
else if (Subtarget->isThumb2())
|
|
return isLegalT2AddressImmediate(V, VT, Subtarget);
|
|
|
|
// ARM mode.
|
|
if (V < 0)
|
|
V = - V;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
// +- imm12
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::i16:
|
|
// +- imm8
|
|
return V == (V & ((1LL << 8) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2()) // FIXME: NEON?
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
|
|
EVT VT) const {
|
|
int Scale = AM.Scale;
|
|
if (Scale < 0)
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
Scale = Scale & ~1;
|
|
return Scale == 2 || Scale == 4 || Scale == 8;
|
|
case MVT::i64:
|
|
// r + r
|
|
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
|
|
return true;
|
|
return false;
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (Scale & 1) return false;
|
|
return isPowerOf2_32(Scale);
|
|
}
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
const Type *Ty) const {
|
|
EVT VT = getValueType(Ty, true);
|
|
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
|
|
return false;
|
|
|
|
// Can never fold addr of global into load/store.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // no scale reg, must be "r+i" or "r", or "i".
|
|
break;
|
|
case 1:
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
// FALL THROUGH.
|
|
default:
|
|
// ARM doesn't support any R+R*scale+imm addr modes.
|
|
if (AM.BaseOffs)
|
|
return false;
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (Subtarget->isThumb2())
|
|
return isLegalT2ScaledAddressingMode(AM, VT);
|
|
|
|
int Scale = AM.Scale;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
if (Scale < 0) Scale = -Scale;
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
return isPowerOf2_32(Scale & ~1);
|
|
case MVT::i16:
|
|
case MVT::i64:
|
|
// r + r
|
|
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
|
|
return true;
|
|
return false;
|
|
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (Scale & 1) return false;
|
|
return isPowerOf2_32(Scale);
|
|
}
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can compare
|
|
/// a register against the immediate without having to materialize the
|
|
/// immediate into a register.
|
|
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
if (!Subtarget->isThumb())
|
|
return ARM_AM::getSOImmVal(Imm) != -1;
|
|
if (Subtarget->isThumb2())
|
|
return ARM_AM::getT2SOImmVal(Imm) != -1;
|
|
return Imm >= 0 && Imm <= 255;
|
|
}
|
|
|
|
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
|
|
// AddressingMode 3
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -256) {
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
|
|
// AddressingMode 2
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x1000) {
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
Base = Ptr->getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Ptr->getOpcode() == ISD::ADD) {
|
|
isInc = true;
|
|
ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
Base = Ptr->getOperand(1);
|
|
Offset = Ptr->getOperand(0);
|
|
} else {
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
|
|
return false;
|
|
}
|
|
|
|
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
return true;
|
|
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
|
|
isInc = Ptr->getOpcode() == ISD::ADD;
|
|
Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool
|
|
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
Ptr = LD->getBasePtr();
|
|
VT = LD->getMemoryVT();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
Ptr = ST->getBasePtr();
|
|
VT = ST->getMemoryVT();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = false;
|
|
if (Subtarget->isThumb2())
|
|
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
|
|
Offset, isInc, DAG);
|
|
else
|
|
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
|
|
Offset, isInc, DAG);
|
|
if (!isLegal)
|
|
return false;
|
|
|
|
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
|
|
return true;
|
|
}
|
|
|
|
/// getPostIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if this node can be
|
|
/// combined with a load / store to form a post-indexed load / store.
|
|
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = false;
|
|
if (Subtarget->isThumb2())
|
|
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
else
|
|
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
if (!isLegal)
|
|
return false;
|
|
|
|
if (Ptr != Base) {
|
|
// Swap base ptr and offset to catch more post-index load / store when
|
|
// it's legal. In Thumb2 mode, offset must be an immediate.
|
|
if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
|
|
!Subtarget->isThumb2())
|
|
std::swap(Base, Offset);
|
|
|
|
// Post-indexed load / store update the base pointer.
|
|
if (Ptr != Base)
|
|
return false;
|
|
}
|
|
|
|
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
|
|
return true;
|
|
}
|
|
|
|
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ARMISD::CMOV: {
|
|
// Bits are known zero/one if known on the LHS and RHS.
|
|
DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
|
if (KnownZero == 0 && KnownOne == 0) return;
|
|
|
|
APInt KnownZeroRHS, KnownOneRHS;
|
|
DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
|
|
KnownZeroRHS, KnownOneRHS, Depth+1);
|
|
KnownZero &= KnownZeroRHS;
|
|
KnownOne &= KnownOneRHS;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
ARMTargetLowering::ConstraintType
|
|
ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'l': return C_RegisterClass;
|
|
case 'w': return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC ARM Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'l':
|
|
if (Subtarget->isThumb())
|
|
return std::make_pair(0U, ARM::tGPRRegisterClass);
|
|
else
|
|
return std::make_pair(0U, ARM::GPRRegisterClass);
|
|
case 'r':
|
|
return std::make_pair(0U, ARM::GPRRegisterClass);
|
|
case 'w':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, ARM::SPRRegisterClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return std::make_pair(0U, ARM::DPRRegisterClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, ARM::QPRRegisterClass);
|
|
break;
|
|
}
|
|
}
|
|
if (StringRef("{cc}").equals_lower(Constraint))
|
|
return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
std::vector<unsigned> ARMTargetLowering::
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const {
|
|
if (Constraint.size() != 1)
|
|
return std::vector<unsigned>();
|
|
|
|
switch (Constraint[0]) { // GCC ARM Constraint Letters
|
|
default: break;
|
|
case 'l':
|
|
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
|
|
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
|
|
0);
|
|
case 'r':
|
|
return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
|
|
ARM::R4, ARM::R5, ARM::R6, ARM::R7,
|
|
ARM::R8, ARM::R9, ARM::R10, ARM::R11,
|
|
ARM::R12, ARM::LR, 0);
|
|
case 'w':
|
|
if (VT == MVT::f32)
|
|
return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
|
|
ARM::S4, ARM::S5, ARM::S6, ARM::S7,
|
|
ARM::S8, ARM::S9, ARM::S10, ARM::S11,
|
|
ARM::S12,ARM::S13,ARM::S14,ARM::S15,
|
|
ARM::S16,ARM::S17,ARM::S18,ARM::S19,
|
|
ARM::S20,ARM::S21,ARM::S22,ARM::S23,
|
|
ARM::S24,ARM::S25,ARM::S26,ARM::S27,
|
|
ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
|
|
if (VT.getSizeInBits() == 64)
|
|
return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
|
|
ARM::D4, ARM::D5, ARM::D6, ARM::D7,
|
|
ARM::D8, ARM::D9, ARM::D10,ARM::D11,
|
|
ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
|
|
if (VT.getSizeInBits() == 128)
|
|
return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
|
|
ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
|
|
break;
|
|
}
|
|
|
|
return std::vector<unsigned>();
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
char Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result(0, 0);
|
|
|
|
switch (Constraint) {
|
|
default: break;
|
|
case 'I': case 'J': case 'K': case 'L':
|
|
case 'M': case 'N': case 'O':
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C)
|
|
return;
|
|
|
|
int64_t CVal64 = C->getSExtValue();
|
|
int CVal = (int) CVal64;
|
|
// None of these constraints allow values larger than 32 bits. Check
|
|
// that the value fits in an int.
|
|
if (CVal != CVal64)
|
|
return;
|
|
|
|
switch (Constraint) {
|
|
case 'I':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between 0 and 255, for ADD
|
|
// immediates.
|
|
if (CVal >= 0 && CVal <= 255)
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant that can be used as an immediate value in a
|
|
// data-processing instruction.
|
|
if (ARM_AM::getT2SOImmVal(CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant that can be used as an immediate value in a
|
|
// data-processing instruction.
|
|
if (ARM_AM::getSOImmVal(CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'J':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a constant between -255 and -1, for negated ADD
|
|
// immediates. This can be used in GCC with an "n" modifier that
|
|
// prints the negated value, for use with SUB instructions. It is
|
|
// not useful otherwise but is implemented for compatibility.
|
|
if (CVal >= -255 && CVal <= -1)
|
|
break;
|
|
} else {
|
|
// This must be a constant between -4095 and 4095. It is not clear
|
|
// what this constraint is intended for. Implemented for
|
|
// compatibility with GCC.
|
|
if (CVal >= -4095 && CVal <= 4095)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'K':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// A 32-bit value where only one byte has a nonzero value. Exclude
|
|
// zero to match GCC. This constraint is used by GCC internally for
|
|
// constants that can be loaded with a move/shift combination.
|
|
// It is not useful otherwise but is implemented for compatibility.
|
|
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant whose bitwise inverse can be used as an immediate
|
|
// value in a data-processing instruction. This can be used in GCC
|
|
// with a "B" modifier that prints the inverted value, for use with
|
|
// BIC and MVN instructions. It is not useful otherwise but is
|
|
// implemented for compatibility.
|
|
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant whose bitwise inverse can be used as an immediate
|
|
// value in a data-processing instruction. This can be used in GCC
|
|
// with a "B" modifier that prints the inverted value, for use with
|
|
// BIC and MVN instructions. It is not useful otherwise but is
|
|
// implemented for compatibility.
|
|
if (ARM_AM::getSOImmVal(~CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'L':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between -7 and 7,
|
|
// for 3-operand ADD/SUB immediate instructions.
|
|
if (CVal >= -7 && CVal < 7)
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant whose negation can be used as an immediate value in a
|
|
// data-processing instruction. This can be used in GCC with an "n"
|
|
// modifier that prints the negated value, for use with SUB
|
|
// instructions. It is not useful otherwise but is implemented for
|
|
// compatibility.
|
|
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant whose negation can be used as an immediate value in a
|
|
// data-processing instruction. This can be used in GCC with an "n"
|
|
// modifier that prints the negated value, for use with SUB
|
|
// instructions. It is not useful otherwise but is implemented for
|
|
// compatibility.
|
|
if (ARM_AM::getSOImmVal(-CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'M':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a multiple of 4 between 0 and 1020, for
|
|
// ADD sp + immediate.
|
|
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
|
|
break;
|
|
} else {
|
|
// A power of two or a constant between 0 and 32. This is used in
|
|
// GCC for the shift amount on shifted register operands, but it is
|
|
// useful in general for any shift amounts.
|
|
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'N':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a constant between 0 and 31, for shift amounts.
|
|
if (CVal >= 0 && CVal <= 31)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'O':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a multiple of 4 between -508 and 508, for
|
|
// ADD/SUB sp = sp + immediate.
|
|
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
Result = DAG.getTargetConstant(CVal, Op.getValueType());
|
|
break;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
bool
|
|
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The ARM target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
int ARM::getVFPf32Imm(const APFloat &FPImm) {
|
|
APInt Imm = FPImm.bitcastToAPInt();
|
|
uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
|
|
int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
|
|
int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
|
|
|
|
// We can handle 4 bits of mantissa.
|
|
// mantissa = (16+UInt(e:f:g:h))/16.
|
|
if (Mantissa & 0x7ffff)
|
|
return -1;
|
|
Mantissa >>= 19;
|
|
if ((Mantissa & 0xf) != Mantissa)
|
|
return -1;
|
|
|
|
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
|
|
if (Exp < -3 || Exp > 4)
|
|
return -1;
|
|
Exp = ((Exp+3) & 0x7) ^ 4;
|
|
|
|
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
|
|
}
|
|
|
|
int ARM::getVFPf64Imm(const APFloat &FPImm) {
|
|
APInt Imm = FPImm.bitcastToAPInt();
|
|
uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
|
|
int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
|
|
uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
|
|
|
|
// We can handle 4 bits of mantissa.
|
|
// mantissa = (16+UInt(e:f:g:h))/16.
|
|
if (Mantissa & 0xffffffffffffLL)
|
|
return -1;
|
|
Mantissa >>= 48;
|
|
if ((Mantissa & 0xf) != Mantissa)
|
|
return -1;
|
|
|
|
// We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
|
|
if (Exp < -3 || Exp > 4)
|
|
return -1;
|
|
Exp = ((Exp+3) & 0x7) ^ 4;
|
|
|
|
return ((int)Sign << 7) | (Exp << 4) | Mantissa;
|
|
}
|
|
|
|
bool ARM::isBitFieldInvertedMask(unsigned v) {
|
|
if (v == 0xffffffff)
|
|
return 0;
|
|
// there can be 1's on either or both "outsides", all the "inside"
|
|
// bits must be 0's
|
|
unsigned int lsb = 0, msb = 31;
|
|
while (v & (1 << msb)) --msb;
|
|
while (v & (1 << lsb)) ++lsb;
|
|
for (unsigned int i = lsb; i <= msb; ++i) {
|
|
if (v & (1 << i))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/// isFPImmLegal - Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (!Subtarget->hasVFP3())
|
|
return false;
|
|
if (VT == MVT::f32)
|
|
return ARM::getVFPf32Imm(Imm) != -1;
|
|
if (VT == MVT::f64)
|
|
return ARM::getVFPf64Imm(Imm) != -1;
|
|
return false;
|
|
}
|
|
|
|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
|
|
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
|
|
/// specified in the intrinsic calls.
|
|
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
Info.vol = false; // volatile loads with NEON intrinsics not supported
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
const Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
Info.vol = false; // volatile stores with NEON intrinsics not supported
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|