llvm-project/clang/lib/Analysis/GRCoreEngine.cpp

489 lines
14 KiB
C++

//==- GRCoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GRCoreEngine.h"
#include "clang/AST/Expr.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using llvm::cast;
using llvm::isa;
using namespace clang;
namespace {
class VISIBILITY_HIDDEN DFS : public GRWorkList {
llvm::SmallVector<GRWorkListUnit,20> Stack;
public:
virtual bool hasWork() const {
return !Stack.empty();
}
virtual void Enqueue(const GRWorkListUnit& U) {
Stack.push_back(U);
}
virtual GRWorkListUnit Dequeue() {
assert (!Stack.empty());
const GRWorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
};
} // end anonymous namespace
// Place the dstor for GRWorkList here because it contains virtual member
// functions, and we the code for the dstor generated in one compilation unit.
GRWorkList::~GRWorkList() {}
GRWorkList* GRWorkList::MakeDFS() { return new DFS(); }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
bool GRCoreEngineImpl::ExecuteWorkList(unsigned Steps) {
if (G->num_roots() == 0) { // Initialize the analysis by constructing
// the root if none exists.
CFGBlock* Entry = &getCFG().getEntry();
assert (Entry->empty() &&
"Entry block must be empty.");
assert (Entry->succ_size() == 1 &&
"Entry block must have 1 successor.");
// Get the solitary successor.
CFGBlock* Succ = *(Entry->succ_begin());
// Construct an edge representing the
// starting location in the function.
BlockEdge StartLoc(Entry, Succ);
// Set the current block counter to being empty.
WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
// Generate the root.
GenerateNode(StartLoc, getInitialState(), 0);
}
while (Steps && WList->hasWork()) {
--Steps;
const GRWorkListUnit& WU = WList->Dequeue();
// Set the current block counter.
WList->setBlockCounter(WU.getBlockCounter());
// Retrieve the node.
ExplodedNodeImpl* Node = WU.getNode();
// Dispatch on the location type.
switch (Node->getLocation().getKind()) {
default:
assert (isa<BlockEdge>(Node->getLocation()));
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockEntranceKind:
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockExitKind:
assert (false && "BlockExit location never occur in forward analysis.");
break;
case ProgramPoint::PostLoadKind:
case ProgramPoint::PostStmtKind:
HandlePostStmt(cast<PostStmt>(Node->getLocation()), WU.getBlock(),
WU.getIndex(), Node);
break;
}
}
return WList->hasWork();
}
void GRCoreEngineImpl::HandleBlockEdge(const BlockEdge& L,
ExplodedNodeImpl* Pred) {
CFGBlock* Blk = L.getDst();
// Check if we are entering the EXIT block.
if (Blk == &getCFG().getExit()) {
assert (getCFG().getExit().size() == 0
&& "EXIT block cannot contain Stmts.");
// Process the final state transition.
GREndPathNodeBuilderImpl Builder(Blk, Pred, this);
ProcessEndPath(Builder);
// This path is done. Don't enqueue any more nodes.
return;
}
// FIXME: Should we allow ProcessBlockEntrance to also manipulate state?
if (ProcessBlockEntrance(Blk, Pred->State, WList->getBlockCounter()))
GenerateNode(BlockEntrance(Blk), Pred->State, Pred);
}
void GRCoreEngineImpl::HandleBlockEntrance(const BlockEntrance& L,
ExplodedNodeImpl* Pred) {
// Increment the block counter.
GRBlockCounter Counter = WList->getBlockCounter();
Counter = BCounterFactory.IncrementCount(Counter, L.getBlock()->getBlockID());
WList->setBlockCounter(Counter);
// Process the entrance of the block.
if (Stmt* S = L.getFirstStmt()) {
GRStmtNodeBuilderImpl Builder(L.getBlock(), 0, Pred, this);
ProcessStmt(S, Builder);
}
else
HandleBlockExit(L.getBlock(), Pred);
}
GRCoreEngineImpl::~GRCoreEngineImpl() {
delete WList;
}
void GRCoreEngineImpl::HandleBlockExit(CFGBlock * B, ExplodedNodeImpl* Pred) {
if (Stmt* Term = B->getTerminator()) {
switch (Term->getStmtClass()) {
default:
assert(false && "Analysis for this terminator not implemented.");
break;
case Stmt::BinaryOperatorClass: // '&&' and '||'
HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
return;
case Stmt::ConditionalOperatorClass:
HandleBranch(cast<ConditionalOperator>(Term)->getCond(), Term, B, Pred);
return;
// FIXME: Use constant-folding in CFG construction to simplify this
// case.
case Stmt::ChooseExprClass:
HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::DoStmtClass:
HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::ForStmtClass:
HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::ContinueStmtClass:
case Stmt::BreakStmtClass:
case Stmt::GotoStmtClass:
break;
case Stmt::IfStmtClass:
HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
return;
case Stmt::IndirectGotoStmtClass: {
// Only 1 successor: the indirect goto dispatch block.
assert (B->succ_size() == 1);
GRIndirectGotoNodeBuilderImpl
builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
*(B->succ_begin()), this);
ProcessIndirectGoto(builder);
return;
}
case Stmt::ObjCForCollectionStmtClass: {
// In the case of ObjCForCollectionStmt, it appears twice in a CFG:
//
// (1) inside a basic block, which represents the binding of the
// 'element' variable to a value.
// (2) in a terminator, which represents the branch.
//
// For (1), subengines will bind a value (i.e., 0 or 1) indicating
// whether or not collection contains any more elements. We cannot
// just test to see if the element is nil because a container can
// contain nil elements.
HandleBranch(Term, Term, B, Pred);
return;
}
case Stmt::SwitchStmtClass: {
GRSwitchNodeBuilderImpl builder(Pred, B,
cast<SwitchStmt>(Term)->getCond(),
this);
ProcessSwitch(builder);
return;
}
case Stmt::WhileStmtClass:
HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
return;
}
}
assert (B->succ_size() == 1 &&
"Blocks with no terminator should have at most 1 successor.");
GenerateNode(BlockEdge(B, *(B->succ_begin())), Pred->State, Pred);
}
void GRCoreEngineImpl::HandleBranch(Stmt* Cond, Stmt* Term, CFGBlock * B,
ExplodedNodeImpl* Pred) {
assert (B->succ_size() == 2);
GRBranchNodeBuilderImpl Builder(B, *(B->succ_begin()), *(B->succ_begin()+1),
Pred, this);
ProcessBranch(Cond, Term, Builder);
}
void GRCoreEngineImpl::HandlePostStmt(const PostStmt& L, CFGBlock* B,
unsigned StmtIdx, ExplodedNodeImpl* Pred) {
assert (!B->empty());
if (StmtIdx == B->size())
HandleBlockExit(B, Pred);
else {
GRStmtNodeBuilderImpl Builder(B, StmtIdx, Pred, this);
ProcessStmt((*B)[StmtIdx], Builder);
}
}
/// GenerateNode - Utility method to generate nodes, hook up successors,
/// and add nodes to the worklist.
void GRCoreEngineImpl::GenerateNode(const ProgramPoint& Loc, const void* State,
ExplodedNodeImpl* Pred) {
bool IsNew;
ExplodedNodeImpl* Node = G->getNodeImpl(Loc, State, &IsNew);
if (Pred)
Node->addPredecessor(Pred); // Link 'Node' with its predecessor.
else {
assert (IsNew);
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
}
// Only add 'Node' to the worklist if it was freshly generated.
if (IsNew) WList->Enqueue(Node);
}
GRStmtNodeBuilderImpl::GRStmtNodeBuilderImpl(CFGBlock* b, unsigned idx,
ExplodedNodeImpl* N, GRCoreEngineImpl* e)
: Eng(*e), B(*b), Idx(idx), Pred(N), LastNode(N) {
Deferred.insert(N);
}
GRStmtNodeBuilderImpl::~GRStmtNodeBuilderImpl() {
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isSink())
GenerateAutoTransition(*I);
}
void GRStmtNodeBuilderImpl::GenerateAutoTransition(ExplodedNodeImpl* N) {
assert (!N->isSink());
PostStmt Loc(getStmt());
if (Loc == N->getLocation()) {
// Note: 'N' should be a fresh node because otherwise it shouldn't be
// a member of Deferred.
Eng.WList->Enqueue(N, B, Idx+1);
return;
}
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(Loc, N->State, &IsNew);
Succ->addPredecessor(N);
if (IsNew)
Eng.WList->Enqueue(Succ, B, Idx+1);
}
static inline ProgramPoint GetPostLoc(Stmt* S, ProgramPoint::Kind K) {
switch (K) {
default:
assert(false && "Invalid PostXXXKind.");
case ProgramPoint::PostStmtKind:
return PostStmt(S);
case ProgramPoint::PostLoadKind:
return PostLoad(S);
case ProgramPoint::PostStoreKind:
return PostStore(S);
case ProgramPoint::PostPurgeDeadSymbolsKind:
return PostPurgeDeadSymbols(S);
}
}
ExplodedNodeImpl*
GRStmtNodeBuilderImpl::generateNodeImpl(Stmt* S, const void* State,
ExplodedNodeImpl* Pred,
ProgramPoint::Kind K) {
bool IsNew;
ProgramPoint Loc = GetPostLoc(S, K);
ExplodedNodeImpl* N = Eng.G->getNodeImpl(Loc, State, &IsNew);
N->addPredecessor(Pred);
Deferred.erase(Pred);
if (IsNew) {
Deferred.insert(N);
LastNode = N;
return N;
}
LastNode = NULL;
return NULL;
}
ExplodedNodeImpl* GRBranchNodeBuilderImpl::generateNodeImpl(const void* State,
bool branch) {
bool IsNew;
ExplodedNodeImpl* Succ =
Eng.G->getNodeImpl(BlockEdge(Src, branch ? DstT : DstF), State, &IsNew);
Succ->addPredecessor(Pred);
if (branch) GeneratedTrue = true;
else GeneratedFalse = true;
if (IsNew) {
Deferred.push_back(Succ);
return Succ;
}
return NULL;
}
GRBranchNodeBuilderImpl::~GRBranchNodeBuilderImpl() {
if (!GeneratedTrue) generateNodeImpl(Pred->State, true);
if (!GeneratedFalse) generateNodeImpl(Pred->State, false);
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isSink()) Eng.WList->Enqueue(*I);
}
ExplodedNodeImpl*
GRIndirectGotoNodeBuilderImpl::generateNodeImpl(const Iterator& I,
const void* St,
bool isSink) {
bool IsNew;
ExplodedNodeImpl* Succ =
Eng.G->getNodeImpl(BlockEdge(Src, I.getBlock()), St, &IsNew);
Succ->addPredecessor(Pred);
if (IsNew) {
if (isSink)
Succ->markAsSink();
else
Eng.WList->Enqueue(Succ);
return Succ;
}
return NULL;
}
ExplodedNodeImpl*
GRSwitchNodeBuilderImpl::generateCaseStmtNodeImpl(const Iterator& I,
const void* St) {
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(BlockEdge(Src, I.getBlock()),
St, &IsNew);
Succ->addPredecessor(Pred);
if (IsNew) {
Eng.WList->Enqueue(Succ);
return Succ;
}
return NULL;
}
ExplodedNodeImpl*
GRSwitchNodeBuilderImpl::generateDefaultCaseNodeImpl(const void* St,
bool isSink) {
// Get the block for the default case.
assert (Src->succ_rbegin() != Src->succ_rend());
CFGBlock* DefaultBlock = *Src->succ_rbegin();
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(BlockEdge(Src, DefaultBlock),
St, &IsNew);
Succ->addPredecessor(Pred);
if (IsNew) {
if (isSink)
Succ->markAsSink();
else
Eng.WList->Enqueue(Succ);
return Succ;
}
return NULL;
}
GREndPathNodeBuilderImpl::~GREndPathNodeBuilderImpl() {
// Auto-generate an EOP node if one has not been generated.
if (!HasGeneratedNode) generateNodeImpl(Pred->State);
}
ExplodedNodeImpl* GREndPathNodeBuilderImpl::generateNodeImpl(const void* State){
HasGeneratedNode = true;
bool IsNew;
ExplodedNodeImpl* Node =
Eng.G->getNodeImpl(BlockEntrance(&B), State, &IsNew);
Node->addPredecessor(Pred);
if (IsNew) {
Node->markAsSink();
Eng.G->addEndOfPath(Node);
return Node;
}
return NULL;
}