llvm-project/llvm/lib/Target/PowerPC/PPCPreEmitPeephole.cpp

293 lines
12 KiB
C++

//===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A pre-emit peephole for catching opportunities introduced by late passes such
// as MachineBlockPlacement.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-pre-emit-peephole"
STATISTIC(NumRRConvertedInPreEmit,
"Number of r+r instructions converted to r+i in pre-emit peephole");
STATISTIC(NumRemovedInPreEmit,
"Number of instructions deleted in pre-emit peephole");
STATISTIC(NumberOfSelfCopies,
"Number of self copy instructions eliminated");
static cl::opt<bool>
RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
cl::desc("Run pre-emit peephole optimizations."));
namespace {
class PPCPreEmitPeephole : public MachineFunctionPass {
public:
static char ID;
PPCPreEmitPeephole() : MachineFunctionPass(ID) {
initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
// This function removes any redundant load immediates. It has two level
// loops - The outer loop finds the load immediates BBI that could be used
// to replace following redundancy. The inner loop scans instructions that
// after BBI to find redundancy and update kill/dead flags accordingly. If
// AfterBBI is the same as BBI, it is redundant, otherwise any instructions
// that modify the def register of BBI would break the scanning.
// DeadOrKillToUnset is a pointer to the previous operand that had the
// kill/dead flag set. It keeps track of the def register of BBI, the use
// registers of AfterBBIs and the def registers of AfterBBIs.
bool removeRedundantLIs(MachineBasicBlock &MBB,
const TargetRegisterInfo *TRI) {
LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
MBB.dump(); dbgs() << "\n");
DenseSet<MachineInstr *> InstrsToErase;
for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
// Skip load immediate that is marked to be erased later because it
// cannot be used to replace any other instructions.
if (InstrsToErase.find(&*BBI) != InstrsToErase.end())
continue;
// Skip non-load immediate.
unsigned Opc = BBI->getOpcode();
if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
Opc != PPC::LIS8)
continue;
// Skip load immediate, where the operand is a relocation (e.g., $r3 =
// LI target-flags(ppc-lo) %const.0).
if (!BBI->getOperand(1).isImm())
continue;
assert(BBI->getOperand(0).isReg() &&
"Expected a register for the first operand");
LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
Register Reg = BBI->getOperand(0).getReg();
int64_t Imm = BBI->getOperand(1).getImm();
MachineOperand *DeadOrKillToUnset = nullptr;
if (BBI->getOperand(0).isDead()) {
DeadOrKillToUnset = &BBI->getOperand(0);
LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
<< " from load immediate " << *BBI
<< " is a unsetting candidate\n");
}
// This loop scans instructions after BBI to see if there is any
// redundant load immediate.
for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
++AfterBBI) {
// Track the operand that kill Reg. We would unset the kill flag of
// the operand if there is a following redundant load immediate.
int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
if (KillIdx != -1) {
assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
LLVM_DEBUG(dbgs()
<< " Kill flag of " << *DeadOrKillToUnset << " from "
<< *AfterBBI << " is a unsetting candidate\n");
}
if (!AfterBBI->modifiesRegister(Reg, TRI))
continue;
assert(DeadOrKillToUnset &&
"Shouldn't overwrite a register before it is killed");
// Finish scanning because Reg is overwritten by a non-load
// instruction.
if (AfterBBI->getOpcode() != Opc)
break;
assert(AfterBBI->getOperand(0).isReg() &&
"Expected a register for the first operand");
// Finish scanning because Reg is overwritten by a relocation or a
// different value.
if (!AfterBBI->getOperand(1).isImm() ||
AfterBBI->getOperand(1).getImm() != Imm)
break;
// It loads same immediate value to the same Reg, which is redundant.
// We would unset kill flag in previous Reg usage to extend live range
// of Reg first, then remove the redundancy.
LLVM_DEBUG(dbgs() << " Unset dead/kill flag of " << *DeadOrKillToUnset
<< " from " << *DeadOrKillToUnset->getParent());
if (DeadOrKillToUnset->isDef())
DeadOrKillToUnset->setIsDead(false);
else
DeadOrKillToUnset->setIsKill(false);
DeadOrKillToUnset =
AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
if (DeadOrKillToUnset)
LLVM_DEBUG(dbgs()
<< " Dead flag of " << *DeadOrKillToUnset << " from "
<< *AfterBBI << " is a unsetting candidate\n");
InstrsToErase.insert(&*AfterBBI);
LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
AfterBBI->dump());
}
}
for (MachineInstr *MI : InstrsToErase) {
MI->eraseFromParent();
}
NumRemovedInPreEmit += InstrsToErase.size();
return !InstrsToErase.empty();
}
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole)
return false;
bool Changed = false;
const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
SmallVector<MachineInstr *, 4> InstrsToErase;
for (MachineBasicBlock &MBB : MF) {
Changed |= removeRedundantLIs(MBB, TRI);
for (MachineInstr &MI : MBB) {
unsigned Opc = MI.getOpcode();
// Detect self copies - these can result from running AADB.
if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
const MCInstrDesc &MCID = TII->get(Opc);
if (MCID.getNumOperands() == 3 &&
MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
NumberOfSelfCopies++;
LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
LLVM_DEBUG(MI.dump());
InstrsToErase.push_back(&MI);
continue;
}
else if (MCID.getNumOperands() == 2 &&
MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
NumberOfSelfCopies++;
LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
LLVM_DEBUG(MI.dump());
InstrsToErase.push_back(&MI);
continue;
}
}
MachineInstr *DefMIToErase = nullptr;
if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
Changed = true;
NumRRConvertedInPreEmit++;
LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
LLVM_DEBUG(MI.dump());
if (DefMIToErase) {
InstrsToErase.push_back(DefMIToErase);
}
}
}
// Eliminate conditional branch based on a constant CR bit by
// CRSET or CRUNSET. We eliminate the conditional branch or
// convert it into an unconditional branch. Also, if the CR bit
// is not used by other instructions, we eliminate CRSET as well.
auto I = MBB.getFirstInstrTerminator();
if (I == MBB.instr_end())
continue;
MachineInstr *Br = &*I;
if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
continue;
MachineInstr *CRSetMI = nullptr;
Register CRBit = Br->getOperand(0).getReg();
unsigned CRReg = getCRFromCRBit(CRBit);
bool SeenUse = false;
MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
for (It++; It != Er; It++) {
if (It->modifiesRegister(CRBit, TRI)) {
if ((It->getOpcode() == PPC::CRUNSET ||
It->getOpcode() == PPC::CRSET) &&
It->getOperand(0).getReg() == CRBit)
CRSetMI = &*It;
break;
}
if (It->readsRegister(CRBit, TRI))
SeenUse = true;
}
if (!CRSetMI) continue;
unsigned CRSetOp = CRSetMI->getOpcode();
if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
(Br->getOpcode() == PPC::BC && CRSetOp == PPC::CRUNSET)) {
// Remove this branch since it cannot be taken.
InstrsToErase.push_back(Br);
MBB.removeSuccessor(Br->getOperand(1).getMBB());
}
else {
// This conditional branch is always taken. So, remove all branches
// and insert an unconditional branch to the destination of this.
MachineBasicBlock::iterator It = Br, Er = MBB.end();
for (; It != Er; It++) {
if (It->isDebugInstr()) continue;
assert(It->isTerminator() && "Non-terminator after a terminator");
InstrsToErase.push_back(&*It);
}
if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
ArrayRef<MachineOperand> NoCond;
TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
NoCond, Br->getDebugLoc());
}
for (auto &Succ : MBB.successors())
if (Succ != Br->getOperand(1).getMBB()) {
MBB.removeSuccessor(Succ);
break;
}
}
// If the CRBit is not used by another instruction, we can eliminate
// CRSET/CRUNSET instruction.
if (!SeenUse) {
// We need to check use of the CRBit in successors.
for (auto &SuccMBB : MBB.successors())
if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
SeenUse = true;
break;
}
if (!SeenUse)
InstrsToErase.push_back(CRSetMI);
}
}
for (MachineInstr *MI : InstrsToErase) {
LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
LLVM_DEBUG(MI->dump());
MI->eraseFromParent();
NumRemovedInPreEmit++;
}
return Changed;
}
};
}
INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
false, false)
char PPCPreEmitPeephole::ID = 0;
FunctionPass *llvm::createPPCPreEmitPeepholePass() {
return new PPCPreEmitPeephole();
}