llvm-project/compiler-rt/lib/tsan/rtl/tsan_platform_linux.cc

367 lines
11 KiB
C++

//===-- tsan_platform_linux.cc --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Linux-specific code.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_LINUX
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_flags.h"
#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <sched.h>
#include <dlfcn.h>
#define __need_res_state
#include <resolv.h>
#include <malloc.h>
#ifdef sa_handler
# undef sa_handler
#endif
#ifdef sa_sigaction
# undef sa_sigaction
#endif
extern "C" struct mallinfo __libc_mallinfo();
namespace __tsan {
const uptr kPageSize = 4096;
void FillProfileCallback(uptr start, uptr rss, bool file,
uptr *mem, uptr stats_size) {
CHECK_EQ(7, stats_size);
mem[6] += rss; // total
start >>= 40;
if (start < 0x10) // shadow
mem[0] += rss;
else if (start >= 0x20 && start < 0x30) // compat modules
mem[file ? 1 : 2] += rss;
else if (start >= 0x7e) // modules
mem[file ? 1 : 2] += rss;
else if (start >= 0x60 && start < 0x62) // traces
mem[3] += rss;
else if (start >= 0x7d && start < 0x7e) // heap
mem[4] += rss;
else // other
mem[5] += rss;
}
void WriteMemoryProfile(char *buf, uptr buf_size) {
uptr mem[7] = {};
__sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
char *buf_pos = buf;
char *buf_end = buf + buf_size;
buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos,
"RSS %zd MB: shadow:%zd file:%zd mmap:%zd trace:%zd heap:%zd other:%zd\n",
mem[6] >> 20, mem[0] >> 20, mem[1] >> 20, mem[2] >> 20,
mem[3] >> 20, mem[4] >> 20, mem[5] >> 20);
struct mallinfo mi = __libc_mallinfo();
buf_pos += internal_snprintf(buf_pos, buf_end - buf_pos,
"mallinfo: arena=%d mmap=%d fordblks=%d keepcost=%d\n",
mi.arena >> 20, mi.hblkhd >> 20, mi.fordblks >> 20, mi.keepcost >> 20);
}
uptr GetRSS() {
uptr mem[7] = {};
__sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
return mem[6];
}
void FlushShadowMemoryCallback(
const SuspendedThreadsList &suspended_threads_list,
void *argument) {
FlushUnneededShadowMemory(kLinuxShadowBeg, kLinuxShadowEnd - kLinuxShadowBeg);
}
void FlushShadowMemory() {
StopTheWorld(FlushShadowMemoryCallback, 0);
}
#ifndef TSAN_GO
static void ProtectRange(uptr beg, uptr end) {
CHECK_LE(beg, end);
if (beg == end)
return;
if (beg != (uptr)Mprotect(beg, end - beg)) {
Printf("FATAL: ThreadSanitizer can not protect [%zx,%zx]\n", beg, end);
Printf("FATAL: Make sure you are not using unlimited stack\n");
Die();
}
}
#endif
#ifndef TSAN_GO
// Mark shadow for .rodata sections with the special kShadowRodata marker.
// Accesses to .rodata can't race, so this saves time, memory and trace space.
static void MapRodata() {
// First create temp file.
const char *tmpdir = GetEnv("TMPDIR");
if (tmpdir == 0)
tmpdir = GetEnv("TEST_TMPDIR");
#ifdef P_tmpdir
if (tmpdir == 0)
tmpdir = P_tmpdir;
#endif
if (tmpdir == 0)
return;
char name[256];
internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
tmpdir, (int)internal_getpid());
uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
if (internal_iserror(openrv))
return;
internal_unlink(name); // Unlink it now, so that we can reuse the buffer.
fd_t fd = openrv;
// Fill the file with kShadowRodata.
const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
InternalScopedBuffer<u64> marker(kMarkerSize);
// volatile to prevent insertion of memset
for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
*p = kShadowRodata;
internal_write(fd, marker.data(), marker.size());
// Map the file into memory.
uptr page = internal_mmap(0, kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
if (internal_iserror(page)) {
internal_close(fd);
return;
}
// Map the file into shadow of .rodata sections.
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
uptr start, end, offset, prot;
// Reusing the buffer 'name'.
while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
if (name[0] != 0 && name[0] != '['
&& (prot & MemoryMappingLayout::kProtectionRead)
&& (prot & MemoryMappingLayout::kProtectionExecute)
&& !(prot & MemoryMappingLayout::kProtectionWrite)
&& IsAppMem(start)) {
// Assume it's .rodata
char *shadow_start = (char*)MemToShadow(start);
char *shadow_end = (char*)MemToShadow(end);
for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
}
}
}
internal_close(fd);
}
void InitializeShadowMemory() {
uptr shadow = (uptr)MmapFixedNoReserve(kLinuxShadowBeg,
kLinuxShadowEnd - kLinuxShadowBeg);
if (shadow != kLinuxShadowBeg) {
Printf("FATAL: ThreadSanitizer can not mmap the shadow memory\n");
Printf("FATAL: Make sure to compile with -fPIE and "
"to link with -pie (%p, %p).\n", shadow, kLinuxShadowBeg);
Die();
}
const uptr kClosedLowBeg = 0x200000;
const uptr kClosedLowEnd = kLinuxShadowBeg - 1;
const uptr kClosedMidBeg = kLinuxShadowEnd + 1;
const uptr kClosedMidEnd = min(kLinuxAppMemBeg, kTraceMemBegin);
ProtectRange(kClosedLowBeg, kClosedLowEnd);
ProtectRange(kClosedMidBeg, kClosedMidEnd);
DPrintf("kClosedLow %zx-%zx (%zuGB)\n",
kClosedLowBeg, kClosedLowEnd, (kClosedLowEnd - kClosedLowBeg) >> 30);
DPrintf("kLinuxShadow %zx-%zx (%zuGB)\n",
kLinuxShadowBeg, kLinuxShadowEnd,
(kLinuxShadowEnd - kLinuxShadowBeg) >> 30);
DPrintf("kClosedMid %zx-%zx (%zuGB)\n",
kClosedMidBeg, kClosedMidEnd, (kClosedMidEnd - kClosedMidBeg) >> 30);
DPrintf("kLinuxAppMem %zx-%zx (%zuGB)\n",
kLinuxAppMemBeg, kLinuxAppMemEnd,
(kLinuxAppMemEnd - kLinuxAppMemBeg) >> 30);
DPrintf("stack %zx\n", (uptr)&shadow);
MapRodata();
}
#endif
static uptr g_data_start;
static uptr g_data_end;
#ifndef TSAN_GO
static void CheckPIE() {
// Ensure that the binary is indeed compiled with -pie.
MemoryMappingLayout proc_maps(true);
uptr start, end;
if (proc_maps.Next(&start, &end,
/*offset*/0, /*filename*/0, /*filename_size*/0,
/*protection*/0)) {
if ((u64)start < kLinuxAppMemBeg) {
Printf("FATAL: ThreadSanitizer can not mmap the shadow memory ("
"something is mapped at 0x%zx < 0x%zx)\n",
start, kLinuxAppMemBeg);
Printf("FATAL: Make sure to compile with -fPIE"
" and to link with -pie.\n");
Die();
}
}
}
static void InitDataSeg() {
MemoryMappingLayout proc_maps(true);
uptr start, end, offset;
char name[128];
bool prev_is_data = false;
while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
/*protection*/ 0)) {
DPrintf("%p-%p %p %s\n", start, end, offset, name);
bool is_data = offset != 0 && name[0] != 0;
// BSS may get merged with [heap] in /proc/self/maps. This is not very
// reliable.
bool is_bss = offset == 0 &&
(name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
if (g_data_start == 0 && is_data)
g_data_start = start;
if (is_bss)
g_data_end = end;
prev_is_data = is_data;
}
DPrintf("guessed data_start=%p data_end=%p\n", g_data_start, g_data_end);
CHECK_LT(g_data_start, g_data_end);
CHECK_GE((uptr)&g_data_start, g_data_start);
CHECK_LT((uptr)&g_data_start, g_data_end);
}
#endif // #ifndef TSAN_GO
static rlim_t getlim(int res) {
rlimit rlim;
CHECK_EQ(0, getrlimit(res, &rlim));
return rlim.rlim_cur;
}
static void setlim(int res, rlim_t lim) {
// The following magic is to prevent clang from replacing it with memset.
volatile rlimit rlim;
rlim.rlim_cur = lim;
rlim.rlim_max = lim;
setrlimit(res, (rlimit*)&rlim);
}
const char *InitializePlatform() {
void *p = 0;
if (sizeof(p) == 8) {
// Disable core dumps, dumping of 16TB usually takes a bit long.
setlim(RLIMIT_CORE, 0);
}
// Go maps shadow memory lazily and works fine with limited address space.
// Unlimited stack is not a problem as well, because the executable
// is not compiled with -pie.
if (kCppMode) {
bool reexec = false;
// TSan doesn't play well with unlimited stack size (as stack
// overlaps with shadow memory). If we detect unlimited stack size,
// we re-exec the program with limited stack size as a best effort.
if (getlim(RLIMIT_STACK) == (rlim_t)-1) {
const uptr kMaxStackSize = 32 * 1024 * 1024;
VReport(1, "Program is run with unlimited stack size, which wouldn't "
"work with ThreadSanitizer.\n"
"Re-execing with stack size limited to %zd bytes.\n",
kMaxStackSize);
SetStackSizeLimitInBytes(kMaxStackSize);
reexec = true;
}
if (getlim(RLIMIT_AS) != (rlim_t)-1) {
Report("WARNING: Program is run with limited virtual address space,"
" which wouldn't work with ThreadSanitizer.\n");
Report("Re-execing with unlimited virtual address space.\n");
setlim(RLIMIT_AS, -1);
reexec = true;
}
if (reexec)
ReExec();
}
#ifndef TSAN_GO
CheckPIE();
InitTlsSize();
InitDataSeg();
#endif
return GetEnv(kTsanOptionsEnv);
}
bool IsGlobalVar(uptr addr) {
return g_data_start && addr >= g_data_start && addr < g_data_end;
}
#ifndef TSAN_GO
// Extract file descriptors passed to glibc internal __res_iclose function.
// This is required to properly "close" the fds, because we do not see internal
// closes within glibc. The code is a pure hack.
int ExtractResolvFDs(void *state, int *fds, int nfd) {
int cnt = 0;
__res_state *statp = (__res_state*)state;
for (int i = 0; i < MAXNS && cnt < nfd; i++) {
if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
fds[cnt++] = statp->_u._ext.nssocks[i];
}
return cnt;
}
// Extract file descriptors passed via UNIX domain sockets.
// This is requried to properly handle "open" of these fds.
// see 'man recvmsg' and 'man 3 cmsg'.
int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
int res = 0;
msghdr *msg = (msghdr*)msgp;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
continue;
int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
for (int i = 0; i < n; i++) {
fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
if (res == nfd)
return res;
}
}
return res;
}
#endif
} // namespace __tsan
#endif // SANITIZER_LINUX