llvm-project/clang/lib/Basic/Targets/AMDGPU.h

436 lines
13 KiB
C++

//===--- AMDGPU.h - Declare AMDGPU target feature support -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares AMDGPU TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_BASIC_TARGETS_AMDGPU_H
#define LLVM_CLANG_LIB_BASIC_TARGETS_AMDGPU_H
#include "clang/Basic/TargetID.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TargetParser.h"
namespace clang {
namespace targets {
class LLVM_LIBRARY_VISIBILITY AMDGPUTargetInfo final : public TargetInfo {
static const Builtin::Info BuiltinInfo[];
static const char *const GCCRegNames[];
enum AddrSpace {
Generic = 0,
Global = 1,
Local = 3,
Constant = 4,
Private = 5
};
static const LangASMap AMDGPUDefIsGenMap;
static const LangASMap AMDGPUDefIsPrivMap;
llvm::AMDGPU::GPUKind GPUKind;
unsigned GPUFeatures;
/// Target ID is device name followed by optional feature name postfixed
/// by plus or minus sign delimitted by colon, e.g. gfx908:xnack+:sram-ecc-.
/// If the target ID contains feature+, map it to true.
/// If the target ID contains feature-, map it to false.
/// If the target ID does not contain a feature (default), do not map it.
llvm::StringMap<bool> OffloadArchFeatures;
std::string TargetID;
bool hasFP64() const {
return getTriple().getArch() == llvm::Triple::amdgcn ||
!!(GPUFeatures & llvm::AMDGPU::FEATURE_FP64);
}
/// Has fast fma f32
bool hasFastFMAF() const {
return !!(GPUFeatures & llvm::AMDGPU::FEATURE_FAST_FMA_F32);
}
/// Has fast fma f64
bool hasFastFMA() const {
return getTriple().getArch() == llvm::Triple::amdgcn;
}
bool hasFMAF() const {
return getTriple().getArch() == llvm::Triple::amdgcn ||
!!(GPUFeatures & llvm::AMDGPU::FEATURE_FMA);
}
bool hasFullRateDenormalsF32() const {
return !!(GPUFeatures & llvm::AMDGPU::FEATURE_FAST_DENORMAL_F32);
}
bool hasLDEXPF() const {
return getTriple().getArch() == llvm::Triple::amdgcn ||
!!(GPUFeatures & llvm::AMDGPU::FEATURE_LDEXP);
}
static bool isAMDGCN(const llvm::Triple &TT) {
return TT.getArch() == llvm::Triple::amdgcn;
}
static bool isR600(const llvm::Triple &TT) {
return TT.getArch() == llvm::Triple::r600;
}
public:
AMDGPUTargetInfo(const llvm::Triple &Triple, const TargetOptions &Opts);
void setAddressSpaceMap(bool DefaultIsPrivate);
void adjust(LangOptions &Opts) override;
uint64_t getPointerWidthV(unsigned AddrSpace) const override {
if (isR600(getTriple()))
return 32;
if (AddrSpace == Private || AddrSpace == Local)
return 32;
return 64;
}
uint64_t getPointerAlignV(unsigned AddrSpace) const override {
return getPointerWidthV(AddrSpace);
}
uint64_t getMaxPointerWidth() const override {
return getTriple().getArch() == llvm::Triple::amdgcn ? 64 : 32;
}
const char *getClobbers() const override { return ""; }
ArrayRef<const char *> getGCCRegNames() const override;
ArrayRef<TargetInfo::GCCRegAlias> getGCCRegAliases() const override {
return None;
}
/// Accepted register names: (n, m is unsigned integer, n < m)
/// v
/// s
/// a
/// {vn}, {v[n]}
/// {sn}, {s[n]}
/// {an}, {a[n]}
/// {S} , where S is a special register name
////{v[n:m]}
/// {s[n:m]}
/// {a[n:m]}
bool validateAsmConstraint(const char *&Name,
TargetInfo::ConstraintInfo &Info) const override {
static const ::llvm::StringSet<> SpecialRegs({
"exec", "vcc", "flat_scratch", "m0", "scc", "tba", "tma",
"flat_scratch_lo", "flat_scratch_hi", "vcc_lo", "vcc_hi", "exec_lo",
"exec_hi", "tma_lo", "tma_hi", "tba_lo", "tba_hi",
});
switch (*Name) {
case 'I':
Info.setRequiresImmediate(-16, 64);
return true;
case 'J':
Info.setRequiresImmediate(-32768, 32767);
return true;
case 'A':
case 'B':
case 'C':
Info.setRequiresImmediate();
return true;
default:
break;
}
StringRef S(Name);
if (S == "DA" || S == "DB") {
Name++;
Info.setRequiresImmediate();
return true;
}
bool HasLeftParen = false;
if (S.front() == '{') {
HasLeftParen = true;
S = S.drop_front();
}
if (S.empty())
return false;
if (S.front() != 'v' && S.front() != 's' && S.front() != 'a') {
if (!HasLeftParen)
return false;
auto E = S.find('}');
if (!SpecialRegs.count(S.substr(0, E)))
return false;
S = S.drop_front(E + 1);
if (!S.empty())
return false;
// Found {S} where S is a special register.
Info.setAllowsRegister();
Name = S.data() - 1;
return true;
}
S = S.drop_front();
if (!HasLeftParen) {
if (!S.empty())
return false;
// Found s, v or a.
Info.setAllowsRegister();
Name = S.data() - 1;
return true;
}
bool HasLeftBracket = false;
if (!S.empty() && S.front() == '[') {
HasLeftBracket = true;
S = S.drop_front();
}
unsigned long long N;
if (S.empty() || consumeUnsignedInteger(S, 10, N))
return false;
if (!S.empty() && S.front() == ':') {
if (!HasLeftBracket)
return false;
S = S.drop_front();
unsigned long long M;
if (consumeUnsignedInteger(S, 10, M) || N >= M)
return false;
}
if (HasLeftBracket) {
if (S.empty() || S.front() != ']')
return false;
S = S.drop_front();
}
if (S.empty() || S.front() != '}')
return false;
S = S.drop_front();
if (!S.empty())
return false;
// Found {vn}, {sn}, {an}, {v[n]}, {s[n]}, {a[n]}, {v[n:m]}, {s[n:m]}
// or {a[n:m]}.
Info.setAllowsRegister();
Name = S.data() - 1;
return true;
}
// \p Constraint will be left pointing at the last character of
// the constraint. In practice, it won't be changed unless the
// constraint is longer than one character.
std::string convertConstraint(const char *&Constraint) const override {
StringRef S(Constraint);
if (S == "DA" || S == "DB") {
return std::string("^") + std::string(Constraint++, 2);
}
const char *Begin = Constraint;
TargetInfo::ConstraintInfo Info("", "");
if (validateAsmConstraint(Constraint, Info))
return std::string(Begin).substr(0, Constraint - Begin + 1);
Constraint = Begin;
return std::string(1, *Constraint);
}
bool
initFeatureMap(llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags,
StringRef CPU,
const std::vector<std::string> &FeatureVec) const override;
ArrayRef<Builtin::Info> getTargetBuiltins() const override;
bool useFP16ConversionIntrinsics() const override { return false; }
void getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const override;
BuiltinVaListKind getBuiltinVaListKind() const override {
return TargetInfo::CharPtrBuiltinVaList;
}
bool isValidCPUName(StringRef Name) const override {
if (getTriple().getArch() == llvm::Triple::amdgcn)
return llvm::AMDGPU::parseArchAMDGCN(Name) != llvm::AMDGPU::GK_NONE;
return llvm::AMDGPU::parseArchR600(Name) != llvm::AMDGPU::GK_NONE;
}
void fillValidCPUList(SmallVectorImpl<StringRef> &Values) const override;
bool setCPU(const std::string &Name) override {
if (getTriple().getArch() == llvm::Triple::amdgcn) {
GPUKind = llvm::AMDGPU::parseArchAMDGCN(Name);
GPUFeatures = llvm::AMDGPU::getArchAttrAMDGCN(GPUKind);
} else {
GPUKind = llvm::AMDGPU::parseArchR600(Name);
GPUFeatures = llvm::AMDGPU::getArchAttrR600(GPUKind);
}
return GPUKind != llvm::AMDGPU::GK_NONE;
}
void setSupportedOpenCLOpts() override {
auto &Opts = getSupportedOpenCLOpts();
Opts.support("cl_clang_storage_class_specifiers");
Opts.support("cl_khr_icd");
bool IsAMDGCN = isAMDGCN(getTriple());
if (hasFP64())
Opts.support("cl_khr_fp64");
if (IsAMDGCN || GPUKind >= llvm::AMDGPU::GK_CEDAR) {
Opts.support("cl_khr_byte_addressable_store");
Opts.support("cl_khr_global_int32_base_atomics");
Opts.support("cl_khr_global_int32_extended_atomics");
Opts.support("cl_khr_local_int32_base_atomics");
Opts.support("cl_khr_local_int32_extended_atomics");
}
if (IsAMDGCN) {
Opts.support("cl_khr_fp16");
Opts.support("cl_khr_int64_base_atomics");
Opts.support("cl_khr_int64_extended_atomics");
Opts.support("cl_khr_mipmap_image");
Opts.support("cl_khr_mipmap_image_writes");
Opts.support("cl_khr_subgroups");
Opts.support("cl_khr_3d_image_writes");
Opts.support("cl_amd_media_ops");
Opts.support("cl_amd_media_ops2");
}
}
LangAS getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const override {
switch (TK) {
case OCLTK_Image:
return LangAS::opencl_constant;
case OCLTK_ClkEvent:
case OCLTK_Queue:
case OCLTK_ReserveID:
return LangAS::opencl_global;
default:
return TargetInfo::getOpenCLTypeAddrSpace(TK);
}
}
LangAS getOpenCLBuiltinAddressSpace(unsigned AS) const override {
switch (AS) {
case 0:
return LangAS::opencl_generic;
case 1:
return LangAS::opencl_global;
case 3:
return LangAS::opencl_local;
case 4:
return LangAS::opencl_constant;
case 5:
return LangAS::opencl_private;
default:
return getLangASFromTargetAS(AS);
}
}
LangAS getCUDABuiltinAddressSpace(unsigned AS) const override {
return LangAS::Default;
}
llvm::Optional<LangAS> getConstantAddressSpace() const override {
return getLangASFromTargetAS(Constant);
}
/// \returns Target specific vtbl ptr address space.
unsigned getVtblPtrAddressSpace() const override {
return static_cast<unsigned>(Constant);
}
/// \returns If a target requires an address within a target specific address
/// space \p AddressSpace to be converted in order to be used, then return the
/// corresponding target specific DWARF address space.
///
/// \returns Otherwise return None and no conversion will be emitted in the
/// DWARF.
Optional<unsigned>
getDWARFAddressSpace(unsigned AddressSpace) const override {
const unsigned DWARF_Private = 1;
const unsigned DWARF_Local = 2;
if (AddressSpace == Private) {
return DWARF_Private;
} else if (AddressSpace == Local) {
return DWARF_Local;
} else {
return None;
}
}
CallingConvCheckResult checkCallingConvention(CallingConv CC) const override {
switch (CC) {
default:
return CCCR_Warning;
case CC_C:
case CC_OpenCLKernel:
return CCCR_OK;
}
}
// In amdgcn target the null pointer in global, constant, and generic
// address space has value 0 but in private and local address space has
// value ~0.
uint64_t getNullPointerValue(LangAS AS) const override {
// FIXME: Also should handle region.
return (AS == LangAS::opencl_local || AS == LangAS::opencl_private)
? ~0 : 0;
}
void setAuxTarget(const TargetInfo *Aux) override;
bool hasExtIntType() const override { return true; }
// Record offload arch features since they are needed for defining the
// pre-defined macros.
bool handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) override {
auto TargetIDFeatures =
getAllPossibleTargetIDFeatures(getTriple(), getArchNameAMDGCN(GPUKind));
llvm::for_each(Features, [&](const auto &F) {
assert(F.front() == '+' || F.front() == '-');
bool IsOn = F.front() == '+';
StringRef Name = StringRef(F).drop_front();
if (llvm::find(TargetIDFeatures, Name) == TargetIDFeatures.end())
return;
assert(OffloadArchFeatures.find(Name) == OffloadArchFeatures.end());
OffloadArchFeatures[Name] = IsOn;
});
return true;
}
Optional<std::string> getTargetID() const override {
if (!isAMDGCN(getTriple()))
return llvm::None;
// When -target-cpu is not set, we assume generic code that it is valid
// for all GPU and use an empty string as target ID to represent that.
if (GPUKind == llvm::AMDGPU::GK_NONE)
return std::string("");
return getCanonicalTargetID(getArchNameAMDGCN(GPUKind),
OffloadArchFeatures);
}
};
} // namespace targets
} // namespace clang
#endif // LLVM_CLANG_LIB_BASIC_TARGETS_AMDGPU_H