llvm-project/llvm/lib/Analysis/CFLGraph.h

642 lines
21 KiB
C++

//======- CFLGraph.h - Abstract stratified sets implementation. --------======//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines CFLGraph, an auxiliary data structure used by CFL-based
/// alias analysis.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CFLGRAPH_H
#define LLVM_ANALYSIS_CFLGRAPH_H
#include "AliasAnalysisSummary.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Instructions.h"
namespace llvm {
namespace cflaa {
/// \brief The Program Expression Graph (PEG) of CFL analysis
/// CFLGraph is auxiliary data structure used by CFL-based alias analysis to
/// describe flow-insensitive pointer-related behaviors. Given an LLVM function,
/// the main purpose of this graph is to abstract away unrelated facts and
/// translate the rest into a form that can be easily digested by CFL analyses.
/// Each Node in the graph is an InstantiatedValue, and each edge represent a
/// pointer assignment between InstantiatedValue. Pointer
/// references/dereferences are not explicitly stored in the graph: we
/// implicitly assume that for each node (X, I) it has a dereference edge to (X,
/// I+1) and a reference edge to (X, I-1).
class CFLGraph {
public:
typedef InstantiatedValue Node;
struct Edge {
Node Other;
int64_t Offset;
};
typedef std::vector<Edge> EdgeList;
struct NodeInfo {
EdgeList Edges, ReverseEdges;
AliasAttrs Attr;
};
class ValueInfo {
std::vector<NodeInfo> Levels;
public:
bool addNodeToLevel(unsigned Level) {
auto NumLevels = Levels.size();
if (NumLevels > Level)
return false;
Levels.resize(Level + 1);
return true;
}
NodeInfo &getNodeInfoAtLevel(unsigned Level) {
assert(Level < Levels.size());
return Levels[Level];
}
const NodeInfo &getNodeInfoAtLevel(unsigned Level) const {
assert(Level < Levels.size());
return Levels[Level];
}
unsigned getNumLevels() const { return Levels.size(); }
};
private:
typedef DenseMap<Value *, ValueInfo> ValueMap;
ValueMap ValueImpls;
NodeInfo *getNode(Node N) {
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
return nullptr;
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
}
public:
typedef ValueMap::const_iterator const_value_iterator;
bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) {
assert(N.Val != nullptr);
auto &ValInfo = ValueImpls[N.Val];
auto Changed = ValInfo.addNodeToLevel(N.DerefLevel);
ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr;
return Changed;
}
void addAttr(Node N, AliasAttrs Attr) {
auto *Info = getNode(N);
assert(Info != nullptr);
Info->Attr |= Attr;
}
void addEdge(Node From, Node To, int64_t Offset = 0) {
auto *FromInfo = getNode(From);
assert(FromInfo != nullptr);
auto *ToInfo = getNode(To);
assert(ToInfo != nullptr);
FromInfo->Edges.push_back(Edge{To, Offset});
ToInfo->ReverseEdges.push_back(Edge{From, Offset});
}
const NodeInfo *getNode(Node N) const {
auto Itr = ValueImpls.find(N.Val);
if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel)
return nullptr;
return &Itr->second.getNodeInfoAtLevel(N.DerefLevel);
}
AliasAttrs attrFor(Node N) const {
auto *Info = getNode(N);
assert(Info != nullptr);
return Info->Attr;
}
iterator_range<const_value_iterator> value_mappings() const {
return make_range<const_value_iterator>(ValueImpls.begin(),
ValueImpls.end());
}
};
///\brief A builder class used to create CFLGraph instance from a given function
/// The CFL-AA that uses this builder must provide its own type as a template
/// argument. This is necessary for interprocedural processing: CFLGraphBuilder
/// needs a way of obtaining the summary of other functions when callinsts are
/// encountered.
/// As a result, we expect the said CFL-AA to expose a getAliasSummary() public
/// member function that takes a Function& and returns the corresponding summary
/// as a const AliasSummary*.
template <typename CFLAA> class CFLGraphBuilder {
// Input of the builder
CFLAA &Analysis;
const TargetLibraryInfo &TLI;
// Output of the builder
CFLGraph Graph;
SmallVector<Value *, 4> ReturnedValues;
// Helper class
/// Gets the edges our graph should have, based on an Instruction*
class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> {
CFLAA &AA;
const DataLayout &DL;
const TargetLibraryInfo &TLI;
CFLGraph &Graph;
SmallVectorImpl<Value *> &ReturnValues;
static bool hasUsefulEdges(ConstantExpr *CE) {
// ConstantExpr doesn't have terminators, invokes, or fences, so only
// needs
// to check for compares.
return CE->getOpcode() != Instruction::ICmp &&
CE->getOpcode() != Instruction::FCmp;
}
// Returns possible functions called by CS into the given SmallVectorImpl.
// Returns true if targets found, false otherwise.
static bool getPossibleTargets(CallSite CS,
SmallVectorImpl<Function *> &Output) {
if (auto *Fn = CS.getCalledFunction()) {
Output.push_back(Fn);
return true;
}
// TODO: If the call is indirect, we might be able to enumerate all
// potential
// targets of the call and return them, rather than just failing.
return false;
}
void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) {
assert(Val != nullptr && Val->getType()->isPointerTy());
if (auto GVal = dyn_cast<GlobalValue>(Val)) {
if (Graph.addNode(InstantiatedValue{GVal, 0},
getGlobalOrArgAttrFromValue(*GVal)))
Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown());
} else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) {
if (hasUsefulEdges(CExpr)) {
if (Graph.addNode(InstantiatedValue{CExpr, 0}))
visitConstantExpr(CExpr);
}
} else
Graph.addNode(InstantiatedValue{Val, 0}, Attr);
}
void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) {
assert(From != nullptr && To != nullptr);
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
return;
addNode(From);
if (To != From) {
addNode(To);
Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0},
Offset);
}
}
void addDerefEdge(Value *From, Value *To, bool IsRead) {
assert(From != nullptr && To != nullptr);
if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy())
return;
addNode(From);
addNode(To);
if (IsRead) {
Graph.addNode(InstantiatedValue{From, 1});
Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0});
} else {
Graph.addNode(InstantiatedValue{To, 1});
Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1});
}
}
void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); }
void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); }
public:
GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL)
: AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph),
ReturnValues(Builder.ReturnedValues) {}
void visitInstruction(Instruction &) {
llvm_unreachable("Unsupported instruction encountered");
}
void visitReturnInst(ReturnInst &Inst) {
if (auto RetVal = Inst.getReturnValue()) {
if (RetVal->getType()->isPointerTy()) {
addNode(RetVal);
ReturnValues.push_back(RetVal);
}
}
}
void visitPtrToIntInst(PtrToIntInst &Inst) {
auto *Ptr = Inst.getOperand(0);
addNode(Ptr, getAttrEscaped());
}
void visitIntToPtrInst(IntToPtrInst &Inst) {
auto *Ptr = &Inst;
addNode(Ptr, getAttrUnknown());
}
void visitCastInst(CastInst &Inst) {
auto *Src = Inst.getOperand(0);
addAssignEdge(Src, &Inst);
}
void visitBinaryOperator(BinaryOperator &Inst) {
auto *Op1 = Inst.getOperand(0);
auto *Op2 = Inst.getOperand(1);
addAssignEdge(Op1, &Inst);
addAssignEdge(Op2, &Inst);
}
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getNewValOperand();
addStoreEdge(Val, Ptr);
}
void visitAtomicRMWInst(AtomicRMWInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValOperand();
addStoreEdge(Val, Ptr);
}
void visitPHINode(PHINode &Inst) {
for (Value *Val : Inst.incoming_values())
addAssignEdge(Val, &Inst);
}
void visitGEP(GEPOperator &GEPOp) {
uint64_t Offset = UnknownOffset;
APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()),
0);
if (GEPOp.accumulateConstantOffset(DL, APOffset))
Offset = APOffset.getSExtValue();
auto *Op = GEPOp.getPointerOperand();
addAssignEdge(Op, &GEPOp, Offset);
}
void visitGetElementPtrInst(GetElementPtrInst &Inst) {
auto *GEPOp = cast<GEPOperator>(&Inst);
visitGEP(*GEPOp);
}
void visitSelectInst(SelectInst &Inst) {
// Condition is not processed here (The actual statement producing
// the condition result is processed elsewhere). For select, the
// condition is evaluated, but not loaded, stored, or assigned
// simply as a result of being the condition of a select.
auto *TrueVal = Inst.getTrueValue();
auto *FalseVal = Inst.getFalseValue();
addAssignEdge(TrueVal, &Inst);
addAssignEdge(FalseVal, &Inst);
}
void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); }
void visitLoadInst(LoadInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = &Inst;
addLoadEdge(Ptr, Val);
}
void visitStoreInst(StoreInst &Inst) {
auto *Ptr = Inst.getPointerOperand();
auto *Val = Inst.getValueOperand();
addStoreEdge(Val, Ptr);
}
void visitVAArgInst(VAArgInst &Inst) {
// We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it
// does
// two things:
// 1. Loads a value from *((T*)*Ptr).
// 2. Increments (stores to) *Ptr by some target-specific amount.
// For now, we'll handle this like a landingpad instruction (by placing
// the
// result in its own group, and having that group alias externals).
if (Inst.getType()->isPointerTy())
addNode(&Inst, getAttrUnknown());
}
static bool isFunctionExternal(Function *Fn) {
return !Fn->hasExactDefinition();
}
bool tryInterproceduralAnalysis(CallSite CS,
const SmallVectorImpl<Function *> &Fns) {
assert(Fns.size() > 0);
if (CS.arg_size() > MaxSupportedArgsInSummary)
return false;
// Exit early if we'll fail anyway
for (auto *Fn : Fns) {
if (isFunctionExternal(Fn) || Fn->isVarArg())
return false;
// Fail if the caller does not provide enough arguments
assert(Fn->arg_size() <= CS.arg_size());
if (!AA.getAliasSummary(*Fn))
return false;
}
for (auto *Fn : Fns) {
auto Summary = AA.getAliasSummary(*Fn);
assert(Summary != nullptr);
auto &RetParamRelations = Summary->RetParamRelations;
for (auto &Relation : RetParamRelations) {
auto IRelation = instantiateExternalRelation(Relation, CS);
if (IRelation.hasValue()) {
Graph.addNode(IRelation->From);
Graph.addNode(IRelation->To);
Graph.addEdge(IRelation->From, IRelation->To);
}
}
auto &RetParamAttributes = Summary->RetParamAttributes;
for (auto &Attribute : RetParamAttributes) {
auto IAttr = instantiateExternalAttribute(Attribute, CS);
if (IAttr.hasValue())
Graph.addNode(IAttr->IValue, IAttr->Attr);
}
}
return true;
}
void visitCallSite(CallSite CS) {
auto Inst = CS.getInstruction();
// Make sure all arguments and return value are added to the graph first
for (Value *V : CS.args())
if (V->getType()->isPointerTy())
addNode(V);
if (Inst->getType()->isPointerTy())
addNode(Inst);
// Check if Inst is a call to a library function that
// allocates/deallocates
// on the heap. Those kinds of functions do not introduce any aliases.
// TODO: address other common library functions such as realloc(),
// strdup(),
// etc.
if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI))
return;
// TODO: Add support for noalias args/all the other fun function
// attributes
// that we can tack on.
SmallVector<Function *, 4> Targets;
if (getPossibleTargets(CS, Targets))
if (tryInterproceduralAnalysis(CS, Targets))
return;
// Because the function is opaque, we need to note that anything
// could have happened to the arguments (unless the function is marked
// readonly or readnone), and that the result could alias just about
// anything, too (unless the result is marked noalias).
if (!CS.onlyReadsMemory())
for (Value *V : CS.args()) {
if (V->getType()->isPointerTy()) {
// The argument itself escapes.
Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped());
// The fate of argument memory is unknown. Note that since
// AliasAttrs is transitive with respect to dereference, we only
// need to specify it for the first-level memory.
Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown());
}
}
if (Inst->getType()->isPointerTy()) {
auto *Fn = CS.getCalledFunction();
if (Fn == nullptr || !Fn->doesNotAlias(0))
// No need to call addNode() since we've added Inst at the
// beginning of this function and we know it is not a global.
Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown());
}
}
/// Because vectors/aggregates are immutable and unaddressable, there's
/// nothing we can do to coax a value out of them, other than calling
/// Extract{Element,Value}. We can effectively treat them as pointers to
/// arbitrary memory locations we can store in and load from.
void visitExtractElementInst(ExtractElementInst &Inst) {
auto *Ptr = Inst.getVectorOperand();
auto *Val = &Inst;
addLoadEdge(Ptr, Val);
}
void visitInsertElementInst(InsertElementInst &Inst) {
auto *Vec = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addAssignEdge(Vec, &Inst);
addStoreEdge(Val, &Inst);
}
void visitLandingPadInst(LandingPadInst &Inst) {
// Exceptions come from "nowhere", from our analysis' perspective.
// So we place the instruction its own group, noting that said group may
// alias externals
if (Inst.getType()->isPointerTy())
addNode(&Inst, getAttrUnknown());
}
void visitInsertValueInst(InsertValueInst &Inst) {
auto *Agg = Inst.getOperand(0);
auto *Val = Inst.getOperand(1);
addAssignEdge(Agg, &Inst);
addStoreEdge(Val, &Inst);
}
void visitExtractValueInst(ExtractValueInst &Inst) {
auto *Ptr = Inst.getAggregateOperand();
addLoadEdge(Ptr, &Inst);
}
void visitShuffleVectorInst(ShuffleVectorInst &Inst) {
auto *From1 = Inst.getOperand(0);
auto *From2 = Inst.getOperand(1);
addAssignEdge(From1, &Inst);
addAssignEdge(From2, &Inst);
}
void visitConstantExpr(ConstantExpr *CE) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr: {
auto GEPOp = cast<GEPOperator>(CE);
visitGEP(*GEPOp);
break;
}
case Instruction::PtrToInt: {
auto *Ptr = CE->getOperand(0);
addNode(Ptr, getAttrEscaped());
break;
}
case Instruction::IntToPtr: {
addNode(CE, getAttrUnknown());
break;
}
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI: {
auto *Src = CE->getOperand(0);
addAssignEdge(Src, CE);
break;
}
case Instruction::Select: {
auto *TrueVal = CE->getOperand(0);
auto *FalseVal = CE->getOperand(1);
addAssignEdge(TrueVal, CE);
addAssignEdge(FalseVal, CE);
break;
}
case Instruction::InsertElement: {
auto *Vec = CE->getOperand(0);
auto *Val = CE->getOperand(1);
addAssignEdge(Vec, CE);
addStoreEdge(Val, CE);
break;
}
case Instruction::ExtractElement: {
auto *Ptr = CE->getOperand(0);
addLoadEdge(Ptr, CE);
break;
}
case Instruction::InsertValue: {
auto *Agg = CE->getOperand(0);
auto *Val = CE->getOperand(1);
addAssignEdge(Agg, CE);
addStoreEdge(Val, CE);
break;
}
case Instruction::ExtractValue: {
auto *Ptr = CE->getOperand(0);
addLoadEdge(Ptr, CE);
}
case Instruction::ShuffleVector: {
auto *From1 = CE->getOperand(0);
auto *From2 = CE->getOperand(1);
addAssignEdge(From1, CE);
addAssignEdge(From2, CE);
break;
}
case Instruction::Add:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::ICmp:
case Instruction::FCmp: {
addAssignEdge(CE->getOperand(0), CE);
addAssignEdge(CE->getOperand(1), CE);
break;
}
default:
llvm_unreachable("Unknown instruction type encountered!");
}
}
};
// Helper functions
// Determines whether or not we an instruction is useless to us (e.g.
// FenceInst)
static bool hasUsefulEdges(Instruction *Inst) {
bool IsNonInvokeRetTerminator = isa<TerminatorInst>(Inst) &&
!isa<InvokeInst>(Inst) &&
!isa<ReturnInst>(Inst);
return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) &&
!IsNonInvokeRetTerminator;
}
void addArgumentToGraph(Argument &Arg) {
if (Arg.getType()->isPointerTy()) {
Graph.addNode(InstantiatedValue{&Arg, 0},
getGlobalOrArgAttrFromValue(Arg));
// Pointees of a formal parameter is known to the caller
Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller());
}
}
// Given an Instruction, this will add it to the graph, along with any
// Instructions that are potentially only available from said Instruction
// For example, given the following line:
// %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2
// addInstructionToGraph would add both the `load` and `getelementptr`
// instructions to the graph appropriately.
void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) {
if (!hasUsefulEdges(&Inst))
return;
Visitor.visit(Inst);
}
// Builds the graph needed for constructing the StratifiedSets for the given
// function
void buildGraphFrom(Function &Fn) {
GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout());
for (auto &Bb : Fn.getBasicBlockList())
for (auto &Inst : Bb.getInstList())
addInstructionToGraph(Visitor, Inst);
for (auto &Arg : Fn.args())
addArgumentToGraph(Arg);
}
public:
CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn)
: Analysis(Analysis), TLI(TLI) {
buildGraphFrom(Fn);
}
const CFLGraph &getCFLGraph() const { return Graph; }
const SmallVector<Value *, 4> &getReturnValues() const {
return ReturnedValues;
}
};
}
}
#endif