llvm-project/clang/lib/Sema/SemaStmtAsm.cpp

677 lines
24 KiB
C++

//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for inline asm statements.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
using namespace clang;
using namespace sema;
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
/// provide a strong guidance to not use it.
///
/// This method checks to see if the argument is an acceptable l-value and
/// returns false if it is a case we can handle.
static bool CheckAsmLValue(const Expr *E, Sema &S) {
// Type dependent expressions will be checked during instantiation.
if (E->isTypeDependent())
return false;
if (E->isLValue())
return false; // Cool, this is an lvalue.
// Okay, this is not an lvalue, but perhaps it is the result of a cast that we
// are supposed to allow.
const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
if (E != E2 && E2->isLValue()) {
if (!S.getLangOpts().HeinousExtensions)
S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
<< E->getSourceRange();
else
S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
<< E->getSourceRange();
// Accept, even if we emitted an error diagnostic.
return false;
}
// None of the above, just randomly invalid non-lvalue.
return true;
}
/// isOperandMentioned - Return true if the specified operand # is mentioned
/// anywhere in the decomposed asm string.
static bool isOperandMentioned(unsigned OpNo,
ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
if (!Piece.isOperand()) continue;
// If this is a reference to the input and if the input was the smaller
// one, then we have to reject this asm.
if (Piece.getOperandNo() == OpNo)
return true;
}
return false;
}
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
bool IsVolatile, unsigned NumOutputs,
unsigned NumInputs, IdentifierInfo **Names,
MultiExprArg constraints, MultiExprArg exprs,
Expr *asmString, MultiExprArg clobbers,
SourceLocation RParenLoc) {
unsigned NumClobbers = clobbers.size();
StringLiteral **Constraints =
reinterpret_cast<StringLiteral**>(constraints.data());
Expr **Exprs = exprs.data();
StringLiteral *AsmString = cast<StringLiteral>(asmString);
StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
// The parser verifies that there is a string literal here.
if (!AsmString->isAscii())
return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
<< AsmString->getSourceRange());
for (unsigned i = 0; i != NumOutputs; i++) {
StringLiteral *Literal = Constraints[i];
if (!Literal->isAscii())
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
<< Literal->getSourceRange());
StringRef OutputName;
if (Names[i])
OutputName = Names[i]->getName();
TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
if (!Context.getTargetInfo().validateOutputConstraint(Info))
return StmtError(Diag(Literal->getLocStart(),
diag::err_asm_invalid_output_constraint)
<< Info.getConstraintStr());
// Check that the output exprs are valid lvalues.
Expr *OutputExpr = Exprs[i];
if (CheckAsmLValue(OutputExpr, *this)) {
return StmtError(Diag(OutputExpr->getLocStart(),
diag::err_asm_invalid_lvalue_in_output)
<< OutputExpr->getSourceRange());
}
OutputConstraintInfos.push_back(Info);
}
SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
StringLiteral *Literal = Constraints[i];
if (!Literal->isAscii())
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
<< Literal->getSourceRange());
StringRef InputName;
if (Names[i])
InputName = Names[i]->getName();
TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
NumOutputs, Info)) {
return StmtError(Diag(Literal->getLocStart(),
diag::err_asm_invalid_input_constraint)
<< Info.getConstraintStr());
}
Expr *InputExpr = Exprs[i];
// Only allow void types for memory constraints.
if (Info.allowsMemory() && !Info.allowsRegister()) {
if (CheckAsmLValue(InputExpr, *this))
return StmtError(Diag(InputExpr->getLocStart(),
diag::err_asm_invalid_lvalue_in_input)
<< Info.getConstraintStr()
<< InputExpr->getSourceRange());
}
if (Info.allowsRegister()) {
if (InputExpr->getType()->isVoidType()) {
return StmtError(Diag(InputExpr->getLocStart(),
diag::err_asm_invalid_type_in_input)
<< InputExpr->getType() << Info.getConstraintStr()
<< InputExpr->getSourceRange());
}
}
ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
if (Result.isInvalid())
return StmtError();
Exprs[i] = Result.take();
InputConstraintInfos.push_back(Info);
const Type *Ty = Exprs[i]->getType().getTypePtr();
if (Ty->isDependentType() || Ty->isIncompleteType())
continue;
unsigned Size = Context.getTypeSize(Ty);
if (!Context.getTargetInfo().validateInputSize(Literal->getString(),
Size))
return StmtError(Diag(InputExpr->getLocStart(),
diag::err_asm_invalid_input_size)
<< Info.getConstraintStr());
}
// Check that the clobbers are valid.
for (unsigned i = 0; i != NumClobbers; i++) {
StringLiteral *Literal = Clobbers[i];
if (!Literal->isAscii())
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
<< Literal->getSourceRange());
StringRef Clobber = Literal->getString();
if (!Context.getTargetInfo().isValidClobber(Clobber))
return StmtError(Diag(Literal->getLocStart(),
diag::err_asm_unknown_register_name) << Clobber);
}
GCCAsmStmt *NS =
new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
NumInputs, Names, Constraints, Exprs, AsmString,
NumClobbers, Clobbers, RParenLoc);
// Validate the asm string, ensuring it makes sense given the operands we
// have.
SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
unsigned DiagOffs;
if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
<< AsmString->getSourceRange();
return StmtError();
}
// Validate constraints and modifiers.
for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
if (!Piece.isOperand()) continue;
// Look for the correct constraint index.
unsigned Idx = 0;
unsigned ConstraintIdx = 0;
for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
if (Idx == Piece.getOperandNo())
break;
++Idx;
if (Info.isReadWrite()) {
if (Idx == Piece.getOperandNo())
break;
++Idx;
}
}
for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
if (Idx == Piece.getOperandNo())
break;
++Idx;
if (Info.isReadWrite()) {
if (Idx == Piece.getOperandNo())
break;
++Idx;
}
}
// Now that we have the right indexes go ahead and check.
StringLiteral *Literal = Constraints[ConstraintIdx];
const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
if (Ty->isDependentType() || Ty->isIncompleteType())
continue;
unsigned Size = Context.getTypeSize(Ty);
if (!Context.getTargetInfo()
.validateConstraintModifier(Literal->getString(), Piece.getModifier(),
Size))
Diag(Exprs[ConstraintIdx]->getLocStart(),
diag::warn_asm_mismatched_size_modifier);
}
// Validate tied input operands for type mismatches.
for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
// If this is a tied constraint, verify that the output and input have
// either exactly the same type, or that they are int/ptr operands with the
// same size (int/long, int*/long, are ok etc).
if (!Info.hasTiedOperand()) continue;
unsigned TiedTo = Info.getTiedOperand();
unsigned InputOpNo = i+NumOutputs;
Expr *OutputExpr = Exprs[TiedTo];
Expr *InputExpr = Exprs[InputOpNo];
if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
continue;
QualType InTy = InputExpr->getType();
QualType OutTy = OutputExpr->getType();
if (Context.hasSameType(InTy, OutTy))
continue; // All types can be tied to themselves.
// Decide if the input and output are in the same domain (integer/ptr or
// floating point.
enum AsmDomain {
AD_Int, AD_FP, AD_Other
} InputDomain, OutputDomain;
if (InTy->isIntegerType() || InTy->isPointerType())
InputDomain = AD_Int;
else if (InTy->isRealFloatingType())
InputDomain = AD_FP;
else
InputDomain = AD_Other;
if (OutTy->isIntegerType() || OutTy->isPointerType())
OutputDomain = AD_Int;
else if (OutTy->isRealFloatingType())
OutputDomain = AD_FP;
else
OutputDomain = AD_Other;
// They are ok if they are the same size and in the same domain. This
// allows tying things like:
// void* to int*
// void* to int if they are the same size.
// double to long double if they are the same size.
//
uint64_t OutSize = Context.getTypeSize(OutTy);
uint64_t InSize = Context.getTypeSize(InTy);
if (OutSize == InSize && InputDomain == OutputDomain &&
InputDomain != AD_Other)
continue;
// If the smaller input/output operand is not mentioned in the asm string,
// then we can promote the smaller one to a larger input and the asm string
// won't notice.
bool SmallerValueMentioned = false;
// If this is a reference to the input and if the input was the smaller
// one, then we have to reject this asm.
if (isOperandMentioned(InputOpNo, Pieces)) {
// This is a use in the asm string of the smaller operand. Since we
// codegen this by promoting to a wider value, the asm will get printed
// "wrong".
SmallerValueMentioned |= InSize < OutSize;
}
if (isOperandMentioned(TiedTo, Pieces)) {
// If this is a reference to the output, and if the output is the larger
// value, then it's ok because we'll promote the input to the larger type.
SmallerValueMentioned |= OutSize < InSize;
}
// If the smaller value wasn't mentioned in the asm string, and if the
// output was a register, just extend the shorter one to the size of the
// larger one.
if (!SmallerValueMentioned && InputDomain != AD_Other &&
OutputConstraintInfos[TiedTo].allowsRegister())
continue;
// Either both of the operands were mentioned or the smaller one was
// mentioned. One more special case that we'll allow: if the tied input is
// integer, unmentioned, and is a constant, then we'll allow truncating it
// down to the size of the destination.
if (InputDomain == AD_Int && OutputDomain == AD_Int &&
!isOperandMentioned(InputOpNo, Pieces) &&
InputExpr->isEvaluatable(Context)) {
CastKind castKind =
(OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
Exprs[InputOpNo] = InputExpr;
NS->setInputExpr(i, InputExpr);
continue;
}
Diag(InputExpr->getLocStart(),
diag::err_asm_tying_incompatible_types)
<< InTy << OutTy << OutputExpr->getSourceRange()
<< InputExpr->getSourceRange();
return StmtError();
}
return Owned(NS);
}
// getSpelling - Get the spelling of the AsmTok token.
static StringRef getSpelling(Sema &SemaRef, Token AsmTok) {
StringRef Asm;
SmallString<512> TokenBuf;
TokenBuf.resize(512);
bool StringInvalid = false;
Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid);
assert (!StringInvalid && "Expected valid string!");
return Asm;
}
// Build the inline assembly string. Returns true on error.
static bool buildMSAsmString(Sema &SemaRef,
SourceLocation AsmLoc,
ArrayRef<Token> AsmToks,
SmallVectorImpl<unsigned> &TokOffsets,
std::string &AsmString) {
assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
SmallString<512> Asm;
for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
bool isNewAsm = ((i == 0) ||
AsmToks[i].isAtStartOfLine() ||
AsmToks[i].is(tok::kw_asm));
if (isNewAsm) {
if (i != 0)
Asm += "\n\t";
if (AsmToks[i].is(tok::kw_asm)) {
i++; // Skip __asm
if (i == e) {
SemaRef.Diag(AsmLoc, diag::err_asm_empty);
return true;
}
}
}
if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm)
Asm += ' ';
StringRef Spelling = getSpelling(SemaRef, AsmToks[i]);
Asm += Spelling;
TokOffsets.push_back(Asm.size());
}
AsmString = Asm.str();
return false;
}
namespace {
class MCAsmParserSemaCallbackImpl : public llvm::MCAsmParserSemaCallback {
Sema &SemaRef;
SourceLocation AsmLoc;
ArrayRef<Token> AsmToks;
ArrayRef<unsigned> TokOffsets;
public:
MCAsmParserSemaCallbackImpl(Sema &Ref, SourceLocation Loc,
ArrayRef<Token> Toks,
ArrayRef<unsigned> Offsets)
: SemaRef(Ref), AsmLoc(Loc), AsmToks(Toks), TokOffsets(Offsets) { }
~MCAsmParserSemaCallbackImpl() {}
void *LookupInlineAsmIdentifier(StringRef Name, void *SrcLoc, unsigned &Size,
bool &IsVarDecl){
SourceLocation Loc = SourceLocation::getFromPtrEncoding(SrcLoc);
NamedDecl *OpDecl = SemaRef.LookupInlineAsmIdentifier(Name, Loc, Size,
IsVarDecl);
return static_cast<void *>(OpDecl);
}
bool LookupInlineAsmField(StringRef Base, StringRef Member,
unsigned &Offset) {
return SemaRef.LookupInlineAsmField(Base, Member, Offset, AsmLoc);
}
static void MSAsmDiagHandlerCallback(const llvm::SMDiagnostic &D,
void *Context) {
((MCAsmParserSemaCallbackImpl*)Context)->MSAsmDiagHandler(D);
}
void MSAsmDiagHandler(const llvm::SMDiagnostic &D) {
// Compute an offset into the inline asm buffer.
// FIXME: This isn't right if .macro is involved (but hopefully, no
// real-world code does that).
const llvm::SourceMgr &LSM = *D.getSourceMgr();
const llvm::MemoryBuffer *LBuf =
LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc()));
unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart();
// Figure out which token that offset points into.
const unsigned *OffsetPtr =
std::lower_bound(TokOffsets.begin(), TokOffsets.end(), Offset);
unsigned TokIndex = OffsetPtr - TokOffsets.begin();
// If we come up with an answer which seems sane, use it; otherwise,
// just point at the __asm keyword.
// FIXME: Assert the answer is sane once we handle .macro correctly.
SourceLocation Loc = AsmLoc;
if (TokIndex < AsmToks.size()) {
const Token *Tok = &AsmToks[TokIndex];
Loc = Tok->getLocation();
Loc = Loc.getLocWithOffset(Offset - (*OffsetPtr - Tok->getLength()));
}
SemaRef.Diag(Loc, diag::err_inline_ms_asm_parsing) << D.getMessage();
}
};
}
NamedDecl *Sema::LookupInlineAsmIdentifier(StringRef Name, SourceLocation Loc,
unsigned &Size, bool &IsVarDecl) {
Size = 0;
IsVarDecl = false;
LookupResult Result(*this, &Context.Idents.get(Name), Loc,
Sema::LookupOrdinaryName);
if (!LookupName(Result, getCurScope())) {
// If we don't find anything, return null; the AsmParser will assume
// it is a label of some sort.
return 0;
}
if (!Result.isSingleResult()) {
// FIXME: Diagnose result.
return 0;
}
NamedDecl *ND = Result.getFoundDecl();
if (isa<VarDecl>(ND) || isa<FunctionDecl>(ND)) {
if (VarDecl *Var = dyn_cast<VarDecl>(ND)) {
Size = Context.getTypeInfo(Var->getType()).first;
IsVarDecl = true;
}
return ND;
}
// FIXME: Handle other kinds of results? (FieldDecl, etc.)
// FIXME: Diagnose if we find something we can't handle, like a typedef.
return 0;
}
bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
unsigned &Offset, SourceLocation AsmLoc) {
Offset = 0;
LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
LookupOrdinaryName);
if (!LookupName(BaseResult, getCurScope()))
return true;
if (!BaseResult.isSingleResult())
return true;
NamedDecl *FoundDecl = BaseResult.getFoundDecl();
const RecordType *RT = 0;
if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) {
RT = VD->getType()->getAs<RecordType>();
} else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(FoundDecl)) {
RT = TD->getUnderlyingType()->getAs<RecordType>();
}
if (!RT)
return true;
if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
return true;
LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
LookupMemberName);
if (!LookupQualifiedName(FieldResult, RT->getDecl()))
return true;
// FIXME: Handle IndirectFieldDecl?
FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
if (!FD)
return true;
const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
unsigned i = FD->getFieldIndex();
CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
Offset = (unsigned)Result.getQuantity();
return false;
}
StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
ArrayRef<Token> AsmToks,SourceLocation EndLoc) {
SmallVector<IdentifierInfo*, 4> Names;
SmallVector<StringRef, 4> ConstraintRefs;
SmallVector<Expr*, 4> Exprs;
SmallVector<StringRef, 4> ClobberRefs;
// Empty asm statements don't need to instantiate the AsmParser, etc.
if (AsmToks.empty()) {
StringRef EmptyAsmStr;
MSAsmStmt *NS =
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
/*IsVolatile*/ true, AsmToks, /*NumOutputs*/ 0,
/*NumInputs*/ 0, Names, ConstraintRefs, Exprs,
EmptyAsmStr, ClobberRefs, EndLoc);
return Owned(NS);
}
std::string AsmString;
SmallVector<unsigned, 8> TokOffsets;
if (buildMSAsmString(*this, AsmLoc, AsmToks, TokOffsets, AsmString))
return StmtError();
// Get the target specific parser.
std::string Error;
const std::string &TT = Context.getTargetInfo().getTriple().getTriple();
const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error));
OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT));
OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
OwningPtr<llvm::MCSubtargetInfo>
STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
llvm::SourceMgr SrcMgr;
llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr);
llvm::MemoryBuffer *Buffer =
llvm::MemoryBuffer::getMemBuffer(AsmString, "<inline asm>");
// Tell SrcMgr about this buffer, which is what the parser will pick up.
SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
OwningPtr<llvm::MCAsmParser>
Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI));
OwningPtr<llvm::MCTargetAsmParser>
TargetParser(TheTarget->createMCAsmParser(*STI, *Parser));
// Get the instruction descriptor.
const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
llvm::MCInstPrinter *IP =
TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
// Change to the Intel dialect.
Parser->setAssemblerDialect(1);
Parser->setTargetParser(*TargetParser.get());
Parser->setParsingInlineAsm(true);
TargetParser->setParsingInlineAsm(true);
MCAsmParserSemaCallbackImpl MCAPSI(*this, AsmLoc, AsmToks, TokOffsets);
TargetParser->setSemaCallback(&MCAPSI);
SrcMgr.setDiagHandler(MCAsmParserSemaCallbackImpl::MSAsmDiagHandlerCallback,
&MCAPSI);
unsigned NumOutputs;
unsigned NumInputs;
std::string AsmStringIR;
SmallVector<std::pair<void *, bool>, 4> OpDecls;
SmallVector<std::string, 4> Constraints;
SmallVector<std::string, 4> Clobbers;
if (Parser->ParseMSInlineAsm(AsmLoc.getPtrEncoding(), AsmStringIR,
NumOutputs, NumInputs, OpDecls, Constraints,
Clobbers, MII, IP, MCAPSI))
return StmtError();
// Build the vector of clobber StringRefs.
unsigned NumClobbers = Clobbers.size();
ClobberRefs.resize(NumClobbers);
for (unsigned i = 0; i != NumClobbers; ++i)
ClobberRefs[i] = StringRef(Clobbers[i]);
// Recast the void pointers and build the vector of constraint StringRefs.
unsigned NumExprs = NumOutputs + NumInputs;
Names.resize(NumExprs);
ConstraintRefs.resize(NumExprs);
Exprs.resize(NumExprs);
for (unsigned i = 0, e = NumExprs; i != e; ++i) {
NamedDecl *OpDecl = static_cast<NamedDecl *>(OpDecls[i].first);
if (!OpDecl)
return StmtError();
DeclarationNameInfo NameInfo(OpDecl->getDeclName(), AsmLoc);
ExprResult OpExpr = BuildDeclarationNameExpr(CXXScopeSpec(), NameInfo,
OpDecl);
if (OpExpr.isInvalid())
return StmtError();
// Need address of variable.
if (OpDecls[i].second)
OpExpr = BuildUnaryOp(getCurScope(), AsmLoc, clang::UO_AddrOf,
OpExpr.take());
Names[i] = OpDecl->getIdentifier();
ConstraintRefs[i] = StringRef(Constraints[i]);
Exprs[i] = OpExpr.take();
}
bool IsSimple = NumExprs > 0;
MSAsmStmt *NS =
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
/*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
Names, ConstraintRefs, Exprs, AsmStringIR,
ClobberRefs, EndLoc);
return Owned(NS);
}