forked from OSchip/llvm-project
1439 lines
46 KiB
C++
1439 lines
46 KiB
C++
//===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements hazard recognizers for scheduling on GCN processors.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "GCNHazardRecognizer.h"
|
||
#include "AMDGPUSubtarget.h"
|
||
#include "SIDefines.h"
|
||
#include "SIInstrInfo.h"
|
||
#include "SIRegisterInfo.h"
|
||
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
||
#include "Utils/AMDGPUBaseInfo.h"
|
||
#include "llvm/ADT/iterator_range.h"
|
||
#include "llvm/CodeGen/MachineFunction.h"
|
||
#include "llvm/CodeGen/MachineInstr.h"
|
||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
#include "llvm/CodeGen/MachineOperand.h"
|
||
#include "llvm/CodeGen/ScheduleDAG.h"
|
||
#include "llvm/MC/MCInstrDesc.h"
|
||
#include "llvm/Support/ErrorHandling.h"
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <limits>
|
||
#include <set>
|
||
#include <vector>
|
||
|
||
using namespace llvm;
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Hazard Recoginizer Implementation
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
|
||
IsHazardRecognizerMode(false),
|
||
CurrCycleInstr(nullptr),
|
||
MF(MF),
|
||
ST(MF.getSubtarget<GCNSubtarget>()),
|
||
TII(*ST.getInstrInfo()),
|
||
TRI(TII.getRegisterInfo()),
|
||
ClauseUses(TRI.getNumRegUnits()),
|
||
ClauseDefs(TRI.getNumRegUnits()) {
|
||
MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 18 : 5;
|
||
TSchedModel.init(&ST);
|
||
}
|
||
|
||
void GCNHazardRecognizer::Reset() {
|
||
EmittedInstrs.clear();
|
||
}
|
||
|
||
void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
|
||
EmitInstruction(SU->getInstr());
|
||
}
|
||
|
||
void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
|
||
CurrCycleInstr = MI;
|
||
}
|
||
|
||
static bool isDivFMas(unsigned Opcode) {
|
||
return Opcode == AMDGPU::V_DIV_FMAS_F32 || Opcode == AMDGPU::V_DIV_FMAS_F64;
|
||
}
|
||
|
||
static bool isSGetReg(unsigned Opcode) {
|
||
return Opcode == AMDGPU::S_GETREG_B32;
|
||
}
|
||
|
||
static bool isSSetReg(unsigned Opcode) {
|
||
switch (Opcode) {
|
||
case AMDGPU::S_SETREG_B32:
|
||
case AMDGPU::S_SETREG_B32_mode:
|
||
case AMDGPU::S_SETREG_IMM32_B32:
|
||
case AMDGPU::S_SETREG_IMM32_B32_mode:
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static bool isRWLane(unsigned Opcode) {
|
||
return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
|
||
}
|
||
|
||
static bool isRFE(unsigned Opcode) {
|
||
return Opcode == AMDGPU::S_RFE_B64;
|
||
}
|
||
|
||
static bool isSMovRel(unsigned Opcode) {
|
||
switch (Opcode) {
|
||
case AMDGPU::S_MOVRELS_B32:
|
||
case AMDGPU::S_MOVRELS_B64:
|
||
case AMDGPU::S_MOVRELD_B32:
|
||
case AMDGPU::S_MOVRELD_B64:
|
||
return true;
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
|
||
const MachineInstr &MI) {
|
||
if (TII.isAlwaysGDS(MI.getOpcode()))
|
||
return true;
|
||
|
||
switch (MI.getOpcode()) {
|
||
case AMDGPU::S_SENDMSG:
|
||
case AMDGPU::S_SENDMSGHALT:
|
||
case AMDGPU::S_TTRACEDATA:
|
||
return true;
|
||
// These DS opcodes don't support GDS.
|
||
case AMDGPU::DS_NOP:
|
||
case AMDGPU::DS_PERMUTE_B32:
|
||
case AMDGPU::DS_BPERMUTE_B32:
|
||
return false;
|
||
default:
|
||
if (TII.isDS(MI.getOpcode())) {
|
||
int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
|
||
AMDGPU::OpName::gds);
|
||
if (MI.getOperand(GDS).getImm())
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static bool isPermlane(const MachineInstr &MI) {
|
||
unsigned Opcode = MI.getOpcode();
|
||
return Opcode == AMDGPU::V_PERMLANE16_B32 ||
|
||
Opcode == AMDGPU::V_PERMLANEX16_B32;
|
||
}
|
||
|
||
static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
|
||
const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
|
||
AMDGPU::OpName::simm16);
|
||
return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
|
||
}
|
||
|
||
ScheduleHazardRecognizer::HazardType
|
||
GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
|
||
MachineInstr *MI = SU->getInstr();
|
||
// If we are not in "HazardRecognizerMode" and therefore not being run from
|
||
// the scheduler, track possible stalls from hazards but don't insert noops.
|
||
auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
|
||
|
||
if (MI->isBundle())
|
||
return NoHazard;
|
||
|
||
if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
// FIXME: Should flat be considered vmem?
|
||
if ((SIInstrInfo::isVMEM(*MI) ||
|
||
SIInstrInfo::isFLAT(*MI))
|
||
&& checkVMEMHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (checkFPAtomicToDenormModeHazard(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (ST.hasNoDataDepHazard())
|
||
return NoHazard;
|
||
|
||
if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (ST.hasReadM0MovRelInterpHazard() &&
|
||
(TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
|
||
checkReadM0Hazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
|
||
checkReadM0Hazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if ((SIInstrInfo::isVMEM(*MI) ||
|
||
SIInstrInfo::isFLAT(*MI) ||
|
||
SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
|
||
return HazardType;
|
||
|
||
return NoHazard;
|
||
}
|
||
|
||
static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
|
||
unsigned Quantity) {
|
||
while (Quantity > 0) {
|
||
unsigned Arg = std::min(Quantity, 8u);
|
||
Quantity -= Arg;
|
||
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
|
||
.addImm(Arg - 1);
|
||
}
|
||
}
|
||
|
||
void GCNHazardRecognizer::processBundle() {
|
||
MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
|
||
MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
|
||
// Check bundled MachineInstr's for hazards.
|
||
for (; MI != E && MI->isInsideBundle(); ++MI) {
|
||
CurrCycleInstr = &*MI;
|
||
unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
|
||
|
||
if (IsHazardRecognizerMode) {
|
||
fixHazards(CurrCycleInstr);
|
||
|
||
insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
|
||
}
|
||
|
||
// It’s unnecessary to track more than MaxLookAhead instructions. Since we
|
||
// include the bundled MI directly after, only add a maximum of
|
||
// (MaxLookAhead - 1) noops to EmittedInstrs.
|
||
for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
|
||
EmittedInstrs.push_front(nullptr);
|
||
|
||
EmittedInstrs.push_front(CurrCycleInstr);
|
||
EmittedInstrs.resize(MaxLookAhead);
|
||
}
|
||
CurrCycleInstr = nullptr;
|
||
}
|
||
|
||
unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
|
||
IsHazardRecognizerMode = true;
|
||
CurrCycleInstr = MI;
|
||
unsigned W = PreEmitNoopsCommon(MI);
|
||
fixHazards(MI);
|
||
CurrCycleInstr = nullptr;
|
||
return W;
|
||
}
|
||
|
||
unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
|
||
if (MI->isBundle())
|
||
return 0;
|
||
|
||
int WaitStates = 0;
|
||
|
||
if (SIInstrInfo::isSMRD(*MI))
|
||
return std::max(WaitStates, checkSMRDHazards(MI));
|
||
|
||
if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
|
||
WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
|
||
|
||
if (ST.hasNSAtoVMEMBug())
|
||
WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
|
||
|
||
WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
|
||
|
||
if (ST.hasNoDataDepHazard())
|
||
return WaitStates;
|
||
|
||
if (SIInstrInfo::isVALU(*MI))
|
||
WaitStates = std::max(WaitStates, checkVALUHazards(MI));
|
||
|
||
if (SIInstrInfo::isDPP(*MI))
|
||
WaitStates = std::max(WaitStates, checkDPPHazards(MI));
|
||
|
||
if (isDivFMas(MI->getOpcode()))
|
||
WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
|
||
|
||
if (isRWLane(MI->getOpcode()))
|
||
WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
|
||
|
||
if (MI->isInlineAsm())
|
||
return std::max(WaitStates, checkInlineAsmHazards(MI));
|
||
|
||
if (isSGetReg(MI->getOpcode()))
|
||
return std::max(WaitStates, checkGetRegHazards(MI));
|
||
|
||
if (isSSetReg(MI->getOpcode()))
|
||
return std::max(WaitStates, checkSetRegHazards(MI));
|
||
|
||
if (isRFE(MI->getOpcode()))
|
||
return std::max(WaitStates, checkRFEHazards(MI));
|
||
|
||
if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
|
||
isSMovRel(MI->getOpcode())))
|
||
return std::max(WaitStates, checkReadM0Hazards(MI));
|
||
|
||
if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
|
||
return std::max(WaitStates, checkReadM0Hazards(MI));
|
||
|
||
if (SIInstrInfo::isMAI(*MI))
|
||
return std::max(WaitStates, checkMAIHazards(MI));
|
||
|
||
if (SIInstrInfo::isVMEM(*MI) ||
|
||
SIInstrInfo::isFLAT(*MI) ||
|
||
SIInstrInfo::isDS(*MI))
|
||
return std::max(WaitStates, checkMAILdStHazards(MI));
|
||
|
||
return WaitStates;
|
||
}
|
||
|
||
void GCNHazardRecognizer::EmitNoop() {
|
||
EmittedInstrs.push_front(nullptr);
|
||
}
|
||
|
||
void GCNHazardRecognizer::AdvanceCycle() {
|
||
// When the scheduler detects a stall, it will call AdvanceCycle() without
|
||
// emitting any instructions.
|
||
if (!CurrCycleInstr) {
|
||
EmittedInstrs.push_front(nullptr);
|
||
return;
|
||
}
|
||
|
||
// Do not track non-instructions which do not affect the wait states.
|
||
// If included, these instructions can lead to buffer overflow such that
|
||
// detectable hazards are missed.
|
||
if (CurrCycleInstr->isImplicitDef() || CurrCycleInstr->isDebugInstr() ||
|
||
CurrCycleInstr->isKill()) {
|
||
CurrCycleInstr = nullptr;
|
||
return;
|
||
}
|
||
|
||
if (CurrCycleInstr->isBundle()) {
|
||
processBundle();
|
||
return;
|
||
}
|
||
|
||
unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
|
||
|
||
// Keep track of emitted instructions
|
||
EmittedInstrs.push_front(CurrCycleInstr);
|
||
|
||
// Add a nullptr for each additional wait state after the first. Make sure
|
||
// not to add more than getMaxLookAhead() items to the list, since we
|
||
// truncate the list to that size right after this loop.
|
||
for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
|
||
i < e; ++i) {
|
||
EmittedInstrs.push_front(nullptr);
|
||
}
|
||
|
||
// getMaxLookahead() is the largest number of wait states we will ever need
|
||
// to insert, so there is no point in keeping track of more than that many
|
||
// wait states.
|
||
EmittedInstrs.resize(getMaxLookAhead());
|
||
|
||
CurrCycleInstr = nullptr;
|
||
}
|
||
|
||
void GCNHazardRecognizer::RecedeCycle() {
|
||
llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Helper Functions
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
typedef function_ref<bool(MachineInstr *, int WaitStates)> IsExpiredFn;
|
||
|
||
// Returns a minimum wait states since \p I walking all predecessors.
|
||
// Only scans until \p IsExpired does not return true.
|
||
// Can only be run in a hazard recognizer mode.
|
||
static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
|
||
MachineBasicBlock *MBB,
|
||
MachineBasicBlock::reverse_instr_iterator I,
|
||
int WaitStates,
|
||
IsExpiredFn IsExpired,
|
||
DenseSet<const MachineBasicBlock *> &Visited) {
|
||
for (auto E = MBB->instr_rend(); I != E; ++I) {
|
||
// Don't add WaitStates for parent BUNDLE instructions.
|
||
if (I->isBundle())
|
||
continue;
|
||
|
||
if (IsHazard(&*I))
|
||
return WaitStates;
|
||
|
||
if (I->isInlineAsm() || I->isMetaInstruction())
|
||
continue;
|
||
|
||
WaitStates += SIInstrInfo::getNumWaitStates(*I);
|
||
|
||
if (IsExpired(&*I, WaitStates))
|
||
return std::numeric_limits<int>::max();
|
||
}
|
||
|
||
int MinWaitStates = WaitStates;
|
||
bool Found = false;
|
||
for (MachineBasicBlock *Pred : MBB->predecessors()) {
|
||
if (!Visited.insert(Pred).second)
|
||
continue;
|
||
|
||
int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(),
|
||
WaitStates, IsExpired, Visited);
|
||
|
||
if (W == std::numeric_limits<int>::max())
|
||
continue;
|
||
|
||
MinWaitStates = Found ? std::min(MinWaitStates, W) : W;
|
||
if (IsExpired(nullptr, MinWaitStates))
|
||
return MinWaitStates;
|
||
|
||
Found = true;
|
||
}
|
||
|
||
if (Found)
|
||
return MinWaitStates;
|
||
|
||
return std::numeric_limits<int>::max();
|
||
}
|
||
|
||
static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
|
||
MachineInstr *MI,
|
||
IsExpiredFn IsExpired) {
|
||
DenseSet<const MachineBasicBlock *> Visited;
|
||
return getWaitStatesSince(IsHazard, MI->getParent(),
|
||
std::next(MI->getReverseIterator()),
|
||
0, IsExpired, Visited);
|
||
}
|
||
|
||
int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
|
||
if (IsHazardRecognizerMode) {
|
||
auto IsExpiredFn = [Limit] (MachineInstr *, int WaitStates) {
|
||
return WaitStates >= Limit;
|
||
};
|
||
return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
|
||
}
|
||
|
||
int WaitStates = 0;
|
||
for (MachineInstr *MI : EmittedInstrs) {
|
||
if (MI) {
|
||
if (IsHazard(MI))
|
||
return WaitStates;
|
||
|
||
if (MI->isInlineAsm())
|
||
continue;
|
||
}
|
||
++WaitStates;
|
||
|
||
if (WaitStates >= Limit)
|
||
break;
|
||
}
|
||
return std::numeric_limits<int>::max();
|
||
}
|
||
|
||
int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
|
||
IsHazardFn IsHazardDef,
|
||
int Limit) {
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
|
||
auto IsHazardFn = [IsHazardDef, TRI, Reg] (MachineInstr *MI) {
|
||
return IsHazardDef(MI) && MI->modifiesRegister(Reg, TRI);
|
||
};
|
||
|
||
return getWaitStatesSince(IsHazardFn, Limit);
|
||
}
|
||
|
||
int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
|
||
int Limit) {
|
||
auto IsHazardFn = [IsHazard] (MachineInstr *MI) {
|
||
return isSSetReg(MI->getOpcode()) && IsHazard(MI);
|
||
};
|
||
|
||
return getWaitStatesSince(IsHazardFn, Limit);
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// No-op Hazard Detection
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
|
||
MCRegister Reg) {
|
||
for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
|
||
BV.set(*RUI);
|
||
}
|
||
|
||
static void addRegsToSet(const SIRegisterInfo &TRI,
|
||
iterator_range<MachineInstr::const_mop_iterator> Ops,
|
||
BitVector &Set) {
|
||
for (const MachineOperand &Op : Ops) {
|
||
if (Op.isReg())
|
||
addRegUnits(TRI, Set, Op.getReg().asMCReg());
|
||
}
|
||
}
|
||
|
||
void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
|
||
// XXX: Do we need to worry about implicit operands
|
||
addRegsToSet(TRI, MI.defs(), ClauseDefs);
|
||
addRegsToSet(TRI, MI.uses(), ClauseUses);
|
||
}
|
||
|
||
static bool breaksSMEMSoftClause(MachineInstr *MI) {
|
||
return !SIInstrInfo::isSMRD(*MI);
|
||
}
|
||
|
||
static bool breaksVMEMSoftClause(MachineInstr *MI) {
|
||
return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
|
||
// SMEM soft clause are only present on VI+, and only matter if xnack is
|
||
// enabled.
|
||
if (!ST.isXNACKEnabled())
|
||
return 0;
|
||
|
||
bool IsSMRD = TII.isSMRD(*MEM);
|
||
|
||
resetClause();
|
||
|
||
// A soft-clause is any group of consecutive SMEM instructions. The
|
||
// instructions in this group may return out of order and/or may be
|
||
// replayed (i.e. the same instruction issued more than once).
|
||
//
|
||
// In order to handle these situations correctly we need to make sure that
|
||
// when a clause has more than one instruction, no instruction in the clause
|
||
// writes to a register that is read by another instruction in the clause
|
||
// (including itself). If we encounter this situaion, we need to break the
|
||
// clause by inserting a non SMEM instruction.
|
||
|
||
for (MachineInstr *MI : EmittedInstrs) {
|
||
// When we hit a non-SMEM instruction then we have passed the start of the
|
||
// clause and we can stop.
|
||
if (!MI)
|
||
break;
|
||
|
||
if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
|
||
break;
|
||
|
||
addClauseInst(*MI);
|
||
}
|
||
|
||
if (ClauseDefs.none())
|
||
return 0;
|
||
|
||
// We need to make sure not to put loads and stores in the same clause if they
|
||
// use the same address. For now, just start a new clause whenever we see a
|
||
// store.
|
||
if (MEM->mayStore())
|
||
return 1;
|
||
|
||
addClauseInst(*MEM);
|
||
|
||
// If the set of defs and uses intersect then we cannot add this instruction
|
||
// to the clause, so we have a hazard.
|
||
return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
|
||
int WaitStatesNeeded = 0;
|
||
|
||
WaitStatesNeeded = checkSoftClauseHazards(SMRD);
|
||
|
||
// This SMRD hazard only affects SI.
|
||
if (!ST.hasSMRDReadVALUDefHazard())
|
||
return WaitStatesNeeded;
|
||
|
||
// A read of an SGPR by SMRD instruction requires 4 wait states when the
|
||
// SGPR was written by a VALU instruction.
|
||
int SmrdSgprWaitStates = 4;
|
||
auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
|
||
auto IsBufferHazardDefFn = [this] (MachineInstr *MI) { return TII.isSALU(*MI); };
|
||
|
||
bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
|
||
|
||
for (const MachineOperand &Use : SMRD->uses()) {
|
||
if (!Use.isReg())
|
||
continue;
|
||
int WaitStatesNeededForUse =
|
||
SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
|
||
SmrdSgprWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
|
||
// This fixes what appears to be undocumented hardware behavior in SI where
|
||
// s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
|
||
// needs some number of nops in between. We don't know how many we need, but
|
||
// let's use 4. This wasn't discovered before probably because the only
|
||
// case when this happens is when we expand a 64-bit pointer into a full
|
||
// descriptor and use s_buffer_load_dword instead of s_load_dword, which was
|
||
// probably never encountered in the closed-source land.
|
||
if (IsBufferSMRD) {
|
||
int WaitStatesNeededForUse =
|
||
SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
|
||
IsBufferHazardDefFn,
|
||
SmrdSgprWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
}
|
||
}
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
|
||
if (!ST.hasVMEMReadSGPRVALUDefHazard())
|
||
return 0;
|
||
|
||
int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
|
||
|
||
// A read of an SGPR by a VMEM instruction requires 5 wait states when the
|
||
// SGPR was written by a VALU Instruction.
|
||
const int VmemSgprWaitStates = 5;
|
||
auto IsHazardDefFn = [this] (MachineInstr *MI) { return TII.isVALU(*MI); };
|
||
for (const MachineOperand &Use : VMEM->uses()) {
|
||
if (!Use.isReg() || TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
|
||
continue;
|
||
|
||
int WaitStatesNeededForUse =
|
||
VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
|
||
VmemSgprWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
}
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
|
||
// Check for DPP VGPR read after VALU VGPR write and EXEC write.
|
||
int DppVgprWaitStates = 2;
|
||
int DppExecWaitStates = 5;
|
||
int WaitStatesNeeded = 0;
|
||
auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
|
||
|
||
for (const MachineOperand &Use : DPP->uses()) {
|
||
if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
|
||
continue;
|
||
int WaitStatesNeededForUse =
|
||
DppVgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
|
||
[](MachineInstr *) { return true; },
|
||
DppVgprWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
}
|
||
|
||
WaitStatesNeeded = std::max(
|
||
WaitStatesNeeded,
|
||
DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
|
||
DppExecWaitStates));
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
|
||
// v_div_fmas requires 4 wait states after a write to vcc from a VALU
|
||
// instruction.
|
||
const int DivFMasWaitStates = 4;
|
||
auto IsHazardDefFn = [TII] (MachineInstr *MI) { return TII->isVALU(*MI); };
|
||
int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
|
||
DivFMasWaitStates);
|
||
|
||
return DivFMasWaitStates - WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
|
||
|
||
const int GetRegWaitStates = 2;
|
||
auto IsHazardFn = [TII, GetRegHWReg] (MachineInstr *MI) {
|
||
return GetRegHWReg == getHWReg(TII, *MI);
|
||
};
|
||
int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
|
||
|
||
return GetRegWaitStates - WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
unsigned HWReg = getHWReg(TII, *SetRegInstr);
|
||
|
||
const int SetRegWaitStates = ST.getSetRegWaitStates();
|
||
auto IsHazardFn = [TII, HWReg] (MachineInstr *MI) {
|
||
return HWReg == getHWReg(TII, *MI);
|
||
};
|
||
int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
|
||
return SetRegWaitStates - WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
|
||
if (!MI.mayStore())
|
||
return -1;
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
unsigned Opcode = MI.getOpcode();
|
||
const MCInstrDesc &Desc = MI.getDesc();
|
||
|
||
int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
|
||
int VDataRCID = -1;
|
||
if (VDataIdx != -1)
|
||
VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
|
||
|
||
if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
|
||
// There is no hazard if the instruction does not use vector regs
|
||
// (like wbinvl1)
|
||
if (VDataIdx == -1)
|
||
return -1;
|
||
// For MUBUF/MTBUF instructions this hazard only exists if the
|
||
// instruction is not using a register in the soffset field.
|
||
const MachineOperand *SOffset =
|
||
TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
|
||
// If we have no soffset operand, then assume this field has been
|
||
// hardcoded to zero.
|
||
if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
|
||
(!SOffset || !SOffset->isReg()))
|
||
return VDataIdx;
|
||
}
|
||
|
||
// MIMG instructions create a hazard if they don't use a 256-bit T# and
|
||
// the store size is greater than 8 bytes and they have more than two bits
|
||
// of their dmask set.
|
||
// All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
|
||
if (TII->isMIMG(MI)) {
|
||
int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
|
||
assert(SRsrcIdx != -1 &&
|
||
AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
|
||
(void)SRsrcIdx;
|
||
}
|
||
|
||
if (TII->isFLAT(MI)) {
|
||
int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
|
||
if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
|
||
return DataIdx;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
|
||
const MachineRegisterInfo &MRI) {
|
||
// Helper to check for the hazard where VMEM instructions that store more than
|
||
// 8 bytes can have there store data over written by the next instruction.
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
|
||
const int VALUWaitStates = 1;
|
||
int WaitStatesNeeded = 0;
|
||
|
||
if (!TRI->isVGPR(MRI, Def.getReg()))
|
||
return WaitStatesNeeded;
|
||
Register Reg = Def.getReg();
|
||
auto IsHazardFn = [this, Reg, TRI] (MachineInstr *MI) {
|
||
int DataIdx = createsVALUHazard(*MI);
|
||
return DataIdx >= 0 &&
|
||
TRI->regsOverlap(MI->getOperand(DataIdx).getReg(), Reg);
|
||
};
|
||
int WaitStatesNeededForDef =
|
||
VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
|
||
// This checks for the hazard where VMEM instructions that store more than
|
||
// 8 bytes can have there store data over written by the next instruction.
|
||
if (!ST.has12DWordStoreHazard())
|
||
return 0;
|
||
|
||
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
int WaitStatesNeeded = 0;
|
||
|
||
for (const MachineOperand &Def : VALU->defs()) {
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
|
||
}
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
|
||
// This checks for hazards associated with inline asm statements.
|
||
// Since inline asms can contain just about anything, we use this
|
||
// to call/leverage other check*Hazard routines. Note that
|
||
// this function doesn't attempt to address all possible inline asm
|
||
// hazards (good luck), but is a collection of what has been
|
||
// problematic thus far.
|
||
|
||
// see checkVALUHazards()
|
||
if (!ST.has12DWordStoreHazard())
|
||
return 0;
|
||
|
||
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
int WaitStatesNeeded = 0;
|
||
|
||
for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
|
||
I != E; ++I) {
|
||
const MachineOperand &Op = IA->getOperand(I);
|
||
if (Op.isReg() && Op.isDef()) {
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
|
||
}
|
||
}
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
|
||
const MachineOperand *LaneSelectOp =
|
||
TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
|
||
|
||
if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
|
||
return 0;
|
||
|
||
Register LaneSelectReg = LaneSelectOp->getReg();
|
||
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
||
return TII->isVALU(*MI);
|
||
};
|
||
|
||
const int RWLaneWaitStates = 4;
|
||
int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
|
||
RWLaneWaitStates);
|
||
return RWLaneWaitStates - WaitStatesSince;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
|
||
if (!ST.hasRFEHazards())
|
||
return 0;
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
|
||
const int RFEWaitStates = 1;
|
||
|
||
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
||
return getHWReg(TII, *MI) == AMDGPU::Hwreg::ID_TRAPSTS;
|
||
};
|
||
int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
|
||
return RFEWaitStates - WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
const int SMovRelWaitStates = 1;
|
||
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
||
return TII->isSALU(*MI);
|
||
};
|
||
return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn,
|
||
SMovRelWaitStates);
|
||
}
|
||
|
||
void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
|
||
fixVMEMtoScalarWriteHazards(MI);
|
||
fixVcmpxPermlaneHazards(MI);
|
||
fixSMEMtoVectorWriteHazards(MI);
|
||
fixVcmpxExecWARHazard(MI);
|
||
fixLdsBranchVmemWARHazard(MI);
|
||
}
|
||
|
||
bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
|
||
if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
|
||
return false;
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
auto IsHazardFn = [TII] (MachineInstr *MI) {
|
||
return TII->isVOPC(*MI);
|
||
};
|
||
|
||
auto IsExpiredFn = [] (MachineInstr *MI, int) {
|
||
if (!MI)
|
||
return false;
|
||
unsigned Opc = MI->getOpcode();
|
||
return SIInstrInfo::isVALU(*MI) &&
|
||
Opc != AMDGPU::V_NOP_e32 &&
|
||
Opc != AMDGPU::V_NOP_e64 &&
|
||
Opc != AMDGPU::V_NOP_sdwa;
|
||
};
|
||
|
||
if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
|
||
std::numeric_limits<int>::max())
|
||
return false;
|
||
|
||
// V_NOP will be discarded by SQ.
|
||
// Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
|
||
// which is always a VGPR and available.
|
||
auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
|
||
Register Reg = Src0->getReg();
|
||
bool IsUndef = Src0->isUndef();
|
||
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
|
||
TII->get(AMDGPU::V_MOV_B32_e32))
|
||
.addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
|
||
.addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
|
||
|
||
return true;
|
||
}
|
||
|
||
bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
|
||
if (!ST.hasVMEMtoScalarWriteHazard())
|
||
return false;
|
||
|
||
if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
|
||
return false;
|
||
|
||
if (MI->getNumDefs() == 0)
|
||
return false;
|
||
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
|
||
auto IsHazardFn = [TRI, MI] (MachineInstr *I) {
|
||
if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isDS(*I) &&
|
||
!SIInstrInfo::isFLAT(*I))
|
||
return false;
|
||
|
||
for (const MachineOperand &Def : MI->defs()) {
|
||
MachineOperand *Op = I->findRegisterUseOperand(Def.getReg(), false, TRI);
|
||
if (!Op)
|
||
continue;
|
||
return true;
|
||
}
|
||
return false;
|
||
};
|
||
|
||
auto IsExpiredFn = [](MachineInstr *MI, int) {
|
||
return MI && (SIInstrInfo::isVALU(*MI) ||
|
||
(MI->getOpcode() == AMDGPU::S_WAITCNT &&
|
||
!MI->getOperand(0).getImm()) ||
|
||
(MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
|
||
MI->getOperand(0).getImm() == 0xffe3));
|
||
};
|
||
|
||
if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
|
||
std::numeric_limits<int>::max())
|
||
return false;
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
|
||
TII->get(AMDGPU::S_WAITCNT_DEPCTR))
|
||
.addImm(0xffe3);
|
||
return true;
|
||
}
|
||
|
||
bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
|
||
if (!ST.hasSMEMtoVectorWriteHazard())
|
||
return false;
|
||
|
||
if (!SIInstrInfo::isVALU(*MI))
|
||
return false;
|
||
|
||
unsigned SDSTName;
|
||
switch (MI->getOpcode()) {
|
||
case AMDGPU::V_READLANE_B32:
|
||
case AMDGPU::V_READFIRSTLANE_B32:
|
||
SDSTName = AMDGPU::OpName::vdst;
|
||
break;
|
||
default:
|
||
SDSTName = AMDGPU::OpName::sdst;
|
||
break;
|
||
}
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
|
||
const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
|
||
if (!SDST) {
|
||
for (const auto &MO : MI->implicit_operands()) {
|
||
if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
|
||
SDST = &MO;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!SDST)
|
||
return false;
|
||
|
||
const Register SDSTReg = SDST->getReg();
|
||
auto IsHazardFn = [SDSTReg, TRI] (MachineInstr *I) {
|
||
return SIInstrInfo::isSMRD(*I) && I->readsRegister(SDSTReg, TRI);
|
||
};
|
||
|
||
auto IsExpiredFn = [TII, IV] (MachineInstr *MI, int) {
|
||
if (MI) {
|
||
if (TII->isSALU(*MI)) {
|
||
switch (MI->getOpcode()) {
|
||
case AMDGPU::S_SETVSKIP:
|
||
case AMDGPU::S_VERSION:
|
||
case AMDGPU::S_WAITCNT_VSCNT:
|
||
case AMDGPU::S_WAITCNT_VMCNT:
|
||
case AMDGPU::S_WAITCNT_EXPCNT:
|
||
// These instructions cannot not mitigate the hazard.
|
||
return false;
|
||
case AMDGPU::S_WAITCNT_LGKMCNT:
|
||
// Reducing lgkmcnt count to 0 always mitigates the hazard.
|
||
return (MI->getOperand(1).getImm() == 0) &&
|
||
(MI->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
|
||
case AMDGPU::S_WAITCNT: {
|
||
const int64_t Imm = MI->getOperand(0).getImm();
|
||
AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
|
||
return (Decoded.LgkmCnt == 0);
|
||
}
|
||
default:
|
||
// SOPP instructions cannot mitigate the hazard.
|
||
if (TII->isSOPP(*MI))
|
||
return false;
|
||
// At this point the SALU can be assumed to mitigate the hazard
|
||
// because either:
|
||
// (a) it is independent of the at risk SMEM (breaking chain),
|
||
// or
|
||
// (b) it is dependent on the SMEM, in which case an appropriate
|
||
// s_waitcnt lgkmcnt _must_ exist between it and the at risk
|
||
// SMEM instruction.
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
};
|
||
|
||
if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
|
||
std::numeric_limits<int>::max())
|
||
return false;
|
||
|
||
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
|
||
TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
|
||
.addImm(0);
|
||
return true;
|
||
}
|
||
|
||
bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
|
||
if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
|
||
return false;
|
||
|
||
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
|
||
return false;
|
||
|
||
auto IsHazardFn = [TRI] (MachineInstr *I) {
|
||
if (SIInstrInfo::isVALU(*I))
|
||
return false;
|
||
return I->readsRegister(AMDGPU::EXEC, TRI);
|
||
};
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
auto IsExpiredFn = [TII, TRI] (MachineInstr *MI, int) {
|
||
if (!MI)
|
||
return false;
|
||
if (SIInstrInfo::isVALU(*MI)) {
|
||
if (TII->getNamedOperand(*MI, AMDGPU::OpName::sdst))
|
||
return true;
|
||
for (auto MO : MI->implicit_operands())
|
||
if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
|
||
return true;
|
||
}
|
||
if (MI->getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
|
||
(MI->getOperand(0).getImm() & 0xfffe) == 0xfffe)
|
||
return true;
|
||
return false;
|
||
};
|
||
|
||
if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
|
||
std::numeric_limits<int>::max())
|
||
return false;
|
||
|
||
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
|
||
TII->get(AMDGPU::S_WAITCNT_DEPCTR))
|
||
.addImm(0xfffe);
|
||
return true;
|
||
}
|
||
|
||
bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
|
||
if (!ST.hasLdsBranchVmemWARHazard())
|
||
return false;
|
||
|
||
auto IsHazardInst = [] (const MachineInstr *MI) {
|
||
if (SIInstrInfo::isDS(*MI))
|
||
return 1;
|
||
if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isSegmentSpecificFLAT(*MI))
|
||
return 2;
|
||
return 0;
|
||
};
|
||
|
||
auto InstType = IsHazardInst(MI);
|
||
if (!InstType)
|
||
return false;
|
||
|
||
auto IsExpiredFn = [&IsHazardInst] (MachineInstr *I, int) {
|
||
return I && (IsHazardInst(I) ||
|
||
(I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
|
||
I->getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
|
||
!I->getOperand(1).getImm()));
|
||
};
|
||
|
||
auto IsHazardFn = [InstType, &IsHazardInst] (MachineInstr *I) {
|
||
if (!I->isBranch())
|
||
return false;
|
||
|
||
auto IsHazardFn = [InstType, IsHazardInst] (MachineInstr *I) {
|
||
auto InstType2 = IsHazardInst(I);
|
||
return InstType2 && InstType != InstType2;
|
||
};
|
||
|
||
auto IsExpiredFn = [InstType, &IsHazardInst] (MachineInstr *I, int) {
|
||
if (!I)
|
||
return false;
|
||
|
||
auto InstType2 = IsHazardInst(I);
|
||
if (InstType == InstType2)
|
||
return true;
|
||
|
||
return I->getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
|
||
I->getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
|
||
!I->getOperand(1).getImm();
|
||
};
|
||
|
||
return ::getWaitStatesSince(IsHazardFn, I, IsExpiredFn) !=
|
||
std::numeric_limits<int>::max();
|
||
};
|
||
|
||
if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
|
||
std::numeric_limits<int>::max())
|
||
return false;
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
|
||
TII->get(AMDGPU::S_WAITCNT_VSCNT))
|
||
.addReg(AMDGPU::SGPR_NULL, RegState::Undef)
|
||
.addImm(0);
|
||
|
||
return true;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
|
||
int NSAtoVMEMWaitStates = 1;
|
||
|
||
if (!ST.hasNSAtoVMEMBug())
|
||
return 0;
|
||
|
||
if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
|
||
return 0;
|
||
|
||
const SIInstrInfo *TII = ST.getInstrInfo();
|
||
const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
|
||
if (!Offset || (Offset->getImm() & 6) == 0)
|
||
return 0;
|
||
|
||
auto IsHazardFn = [TII] (MachineInstr *I) {
|
||
if (!SIInstrInfo::isMIMG(*I))
|
||
return false;
|
||
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I->getOpcode());
|
||
return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
|
||
TII->getInstSizeInBytes(*I) >= 16;
|
||
};
|
||
|
||
return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
|
||
int FPAtomicToDenormModeWaitStates = 3;
|
||
|
||
if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
|
||
return 0;
|
||
|
||
auto IsHazardFn = [] (MachineInstr *I) {
|
||
if (!SIInstrInfo::isVMEM(*I) && !SIInstrInfo::isFLAT(*I))
|
||
return false;
|
||
return SIInstrInfo::isFPAtomic(*I);
|
||
};
|
||
|
||
auto IsExpiredFn = [] (MachineInstr *MI, int WaitStates) {
|
||
if (WaitStates >= 3 || SIInstrInfo::isVALU(*MI))
|
||
return true;
|
||
|
||
switch (MI->getOpcode()) {
|
||
case AMDGPU::S_WAITCNT:
|
||
case AMDGPU::S_WAITCNT_VSCNT:
|
||
case AMDGPU::S_WAITCNT_VMCNT:
|
||
case AMDGPU::S_WAITCNT_EXPCNT:
|
||
case AMDGPU::S_WAITCNT_LGKMCNT:
|
||
case AMDGPU::S_WAIT_IDLE:
|
||
return true;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
};
|
||
|
||
|
||
return FPAtomicToDenormModeWaitStates -
|
||
::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
|
||
assert(SIInstrInfo::isMAI(*MI));
|
||
|
||
int WaitStatesNeeded = 0;
|
||
unsigned Opc = MI->getOpcode();
|
||
|
||
auto IsVALUFn = [] (MachineInstr *MI) {
|
||
return SIInstrInfo::isVALU(*MI);
|
||
};
|
||
|
||
if (Opc != AMDGPU::V_ACCVGPR_READ_B32) { // MFMA or v_accvgpr_write
|
||
const int LegacyVALUWritesVGPRWaitStates = 2;
|
||
const int VALUWritesExecWaitStates = 4;
|
||
const int MaxWaitStates = 4;
|
||
|
||
int WaitStatesNeededForUse = VALUWritesExecWaitStates -
|
||
getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
|
||
if (WaitStatesNeeded < MaxWaitStates) {
|
||
for (const MachineOperand &Use : MI->explicit_uses()) {
|
||
const int MaxWaitStates = 2;
|
||
|
||
if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
|
||
continue;
|
||
|
||
int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
|
||
getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
|
||
if (WaitStatesNeeded == MaxWaitStates)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
auto IsMFMAFn = [] (MachineInstr *MI) {
|
||
return SIInstrInfo::isMAI(*MI) &&
|
||
MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32 &&
|
||
MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32;
|
||
};
|
||
|
||
for (const MachineOperand &Op : MI->explicit_operands()) {
|
||
if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
|
||
continue;
|
||
|
||
if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32)
|
||
continue;
|
||
|
||
const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
|
||
const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
|
||
const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
|
||
const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
|
||
const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
|
||
const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
|
||
const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
|
||
const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
|
||
const int MaxWaitStates = 18;
|
||
Register Reg = Op.getReg();
|
||
unsigned HazardDefLatency = 0;
|
||
|
||
auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency, this]
|
||
(MachineInstr *MI) {
|
||
if (!IsMFMAFn(MI))
|
||
return false;
|
||
Register DstReg = MI->getOperand(0).getReg();
|
||
if (DstReg == Reg)
|
||
return false;
|
||
HazardDefLatency = std::max(HazardDefLatency,
|
||
TSchedModel.computeInstrLatency(MI));
|
||
return TRI.regsOverlap(DstReg, Reg);
|
||
};
|
||
|
||
int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
|
||
MaxWaitStates);
|
||
int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
|
||
int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
|
||
int OpNo = MI->getOperandNo(&Op);
|
||
if (OpNo == SrcCIdx) {
|
||
NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
|
||
} else if (Opc == AMDGPU::V_ACCVGPR_READ_B32) {
|
||
switch (HazardDefLatency) {
|
||
case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
|
||
break;
|
||
case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
|
||
break;
|
||
case 16: LLVM_FALLTHROUGH;
|
||
default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
|
||
break;
|
||
}
|
||
} else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32) {
|
||
switch (HazardDefLatency) {
|
||
case 2: NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
|
||
break;
|
||
case 8: NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
|
||
break;
|
||
case 16: LLVM_FALLTHROUGH;
|
||
default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
|
||
break;
|
||
}
|
||
}
|
||
|
||
int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
|
||
if (WaitStatesNeeded == MaxWaitStates)
|
||
return WaitStatesNeeded; // Early exit.
|
||
|
||
auto IsAccVgprWriteFn = [Reg, this] (MachineInstr *MI) {
|
||
if (MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32)
|
||
return false;
|
||
Register DstReg = MI->getOperand(0).getReg();
|
||
return TRI.regsOverlap(Reg, DstReg);
|
||
};
|
||
|
||
const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
|
||
const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
|
||
const int AccVGPRWriteAccVgprReadWaitStates = 3;
|
||
NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
|
||
if (OpNo == SrcCIdx)
|
||
NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
|
||
else if (Opc == AMDGPU::V_ACCVGPR_READ_B32)
|
||
NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
|
||
|
||
WaitStatesNeededForUse = NeedWaitStates -
|
||
getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
|
||
if (WaitStatesNeeded == MaxWaitStates)
|
||
return WaitStatesNeeded; // Early exit.
|
||
}
|
||
|
||
if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32) {
|
||
const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
|
||
const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
|
||
const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
|
||
const int MaxWaitStates = 13;
|
||
Register DstReg = MI->getOperand(0).getReg();
|
||
unsigned HazardDefLatency = 0;
|
||
|
||
auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency, this]
|
||
(MachineInstr *MI) {
|
||
if (!IsMFMAFn(MI))
|
||
return false;
|
||
Register Reg = TII.getNamedOperand(*MI, AMDGPU::OpName::src2)->getReg();
|
||
HazardDefLatency = std::max(HazardDefLatency,
|
||
TSchedModel.computeInstrLatency(MI));
|
||
return TRI.regsOverlap(Reg, DstReg);
|
||
};
|
||
|
||
int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
|
||
int NeedWaitStates;
|
||
switch (HazardDefLatency) {
|
||
case 2: NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
|
||
break;
|
||
case 8: NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
|
||
break;
|
||
case 16: LLVM_FALLTHROUGH;
|
||
default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
|
||
break;
|
||
}
|
||
|
||
int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
}
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
|
||
if (!ST.hasMAIInsts())
|
||
return 0;
|
||
|
||
int WaitStatesNeeded = 0;
|
||
|
||
auto IsAccVgprReadFn = [] (MachineInstr *MI) {
|
||
return MI->getOpcode() == AMDGPU::V_ACCVGPR_READ_B32;
|
||
};
|
||
|
||
for (const MachineOperand &Op : MI->explicit_uses()) {
|
||
if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
|
||
continue;
|
||
|
||
Register Reg = Op.getReg();
|
||
|
||
const int AccVgprReadLdStWaitStates = 2;
|
||
const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
|
||
const int MaxWaitStates = 2;
|
||
|
||
int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
|
||
getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
|
||
if (WaitStatesNeeded == MaxWaitStates)
|
||
return WaitStatesNeeded; // Early exit.
|
||
|
||
auto IsVALUAccVgprRdWrCheckFn = [Reg, this](MachineInstr *MI) {
|
||
if (MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32 &&
|
||
MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32)
|
||
return false;
|
||
auto IsVALUFn = [] (MachineInstr *MI) {
|
||
return SIInstrInfo::isVALU(*MI) && !SIInstrInfo::isMAI(*MI);
|
||
};
|
||
return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
|
||
std::numeric_limits<int>::max();
|
||
};
|
||
|
||
WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
|
||
getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
|
||
WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
|
||
}
|
||
|
||
return WaitStatesNeeded;
|
||
}
|
||
|
||
bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
|
||
if (!SU->isInstr())
|
||
return false;
|
||
|
||
MachineInstr *MAI = nullptr;
|
||
auto IsMFMAFn = [&MAI] (MachineInstr *MI) {
|
||
MAI = nullptr;
|
||
if (SIInstrInfo::isMAI(*MI) &&
|
||
MI->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32 &&
|
||
MI->getOpcode() != AMDGPU::V_ACCVGPR_READ_B32)
|
||
MAI = MI;
|
||
return MAI != nullptr;
|
||
};
|
||
|
||
MachineInstr *MI = SU->getInstr();
|
||
if (IsMFMAFn(MI)) {
|
||
int W = getWaitStatesSince(IsMFMAFn, 16);
|
||
if (MAI)
|
||
return W < (int)TSchedModel.computeInstrLatency(MAI);
|
||
}
|
||
|
||
return false;
|
||
}
|