forked from OSchip/llvm-project
1010 lines
36 KiB
C++
1010 lines
36 KiB
C++
//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Instrumentation-based profile-guided optimization
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenPGO.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/MD5.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
void CodeGenPGO::setFuncName(llvm::Function *Fn) {
|
|
RawFuncName = Fn->getName();
|
|
|
|
// Function names may be prefixed with a binary '1' to indicate
|
|
// that the backend should not modify the symbols due to any platform
|
|
// naming convention. Do not include that '1' in the PGO profile name.
|
|
if (RawFuncName[0] == '\1')
|
|
RawFuncName = RawFuncName.substr(1);
|
|
|
|
if (!Fn->hasLocalLinkage()) {
|
|
PrefixedFuncName.reset(new std::string(RawFuncName));
|
|
return;
|
|
}
|
|
|
|
// For local symbols, prepend the main file name to distinguish them.
|
|
// Do not include the full path in the file name since there's no guarantee
|
|
// that it will stay the same, e.g., if the files are checked out from
|
|
// version control in different locations.
|
|
PrefixedFuncName.reset(new std::string(CGM.getCodeGenOpts().MainFileName));
|
|
if (PrefixedFuncName->empty())
|
|
PrefixedFuncName->assign("<unknown>");
|
|
PrefixedFuncName->append(":");
|
|
PrefixedFuncName->append(RawFuncName);
|
|
}
|
|
|
|
static llvm::Function *getRegisterFunc(CodeGenModule &CGM) {
|
|
return CGM.getModule().getFunction("__llvm_profile_register_functions");
|
|
}
|
|
|
|
static llvm::BasicBlock *getOrInsertRegisterBB(CodeGenModule &CGM) {
|
|
// Don't do this for Darwin. compiler-rt uses linker magic.
|
|
if (CGM.getTarget().getTriple().isOSDarwin())
|
|
return nullptr;
|
|
|
|
// Only need to insert this once per module.
|
|
if (llvm::Function *RegisterF = getRegisterFunc(CGM))
|
|
return &RegisterF->getEntryBlock();
|
|
|
|
// Construct the function.
|
|
auto *VoidTy = llvm::Type::getVoidTy(CGM.getLLVMContext());
|
|
auto *RegisterFTy = llvm::FunctionType::get(VoidTy, false);
|
|
auto *RegisterF = llvm::Function::Create(RegisterFTy,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
"__llvm_profile_register_functions",
|
|
&CGM.getModule());
|
|
RegisterF->setUnnamedAddr(true);
|
|
if (CGM.getCodeGenOpts().DisableRedZone)
|
|
RegisterF->addFnAttr(llvm::Attribute::NoRedZone);
|
|
|
|
// Construct and return the entry block.
|
|
auto *BB = llvm::BasicBlock::Create(CGM.getLLVMContext(), "", RegisterF);
|
|
CGBuilderTy Builder(BB);
|
|
Builder.CreateRetVoid();
|
|
return BB;
|
|
}
|
|
|
|
static llvm::Constant *getOrInsertRuntimeRegister(CodeGenModule &CGM) {
|
|
auto *VoidTy = llvm::Type::getVoidTy(CGM.getLLVMContext());
|
|
auto *VoidPtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
|
|
auto *RuntimeRegisterTy = llvm::FunctionType::get(VoidTy, VoidPtrTy, false);
|
|
return CGM.getModule().getOrInsertFunction("__llvm_profile_register_function",
|
|
RuntimeRegisterTy);
|
|
}
|
|
|
|
static bool isMachO(const CodeGenModule &CGM) {
|
|
return CGM.getTarget().getTriple().isOSBinFormatMachO();
|
|
}
|
|
|
|
static StringRef getCountersSection(const CodeGenModule &CGM) {
|
|
return isMachO(CGM) ? "__DATA,__llvm_prf_cnts" : "__llvm_prf_cnts";
|
|
}
|
|
|
|
static StringRef getNameSection(const CodeGenModule &CGM) {
|
|
return isMachO(CGM) ? "__DATA,__llvm_prf_names" : "__llvm_prf_names";
|
|
}
|
|
|
|
static StringRef getDataSection(const CodeGenModule &CGM) {
|
|
return isMachO(CGM) ? "__DATA,__llvm_prf_data" : "__llvm_prf_data";
|
|
}
|
|
|
|
llvm::GlobalVariable *CodeGenPGO::buildDataVar() {
|
|
// Create name variable.
|
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
auto *VarName = llvm::ConstantDataArray::getString(Ctx, getFuncName(),
|
|
false);
|
|
auto *Name = new llvm::GlobalVariable(CGM.getModule(), VarName->getType(),
|
|
true, VarLinkage, VarName,
|
|
getFuncVarName("name"));
|
|
Name->setSection(getNameSection(CGM));
|
|
Name->setAlignment(1);
|
|
|
|
// Create data variable.
|
|
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
|
|
auto *Int64Ty = llvm::Type::getInt64Ty(Ctx);
|
|
auto *Int8PtrTy = llvm::Type::getInt8PtrTy(Ctx);
|
|
auto *Int64PtrTy = llvm::Type::getInt64PtrTy(Ctx);
|
|
llvm::Type *DataTypes[] = {
|
|
Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int64PtrTy
|
|
};
|
|
auto *DataTy = llvm::StructType::get(Ctx, makeArrayRef(DataTypes));
|
|
llvm::Constant *DataVals[] = {
|
|
llvm::ConstantInt::get(Int32Ty, getFuncName().size()),
|
|
llvm::ConstantInt::get(Int32Ty, NumRegionCounters),
|
|
llvm::ConstantInt::get(Int64Ty, FunctionHash),
|
|
llvm::ConstantExpr::getBitCast(Name, Int8PtrTy),
|
|
llvm::ConstantExpr::getBitCast(RegionCounters, Int64PtrTy)
|
|
};
|
|
auto *Data =
|
|
new llvm::GlobalVariable(CGM.getModule(), DataTy, true, VarLinkage,
|
|
llvm::ConstantStruct::get(DataTy, DataVals),
|
|
getFuncVarName("data"));
|
|
|
|
// All the data should be packed into an array in its own section.
|
|
Data->setSection(getDataSection(CGM));
|
|
Data->setAlignment(8);
|
|
|
|
// Hide all these symbols so that we correctly get a copy for each
|
|
// executable. The profile format expects names and counters to be
|
|
// contiguous, so references into shared objects would be invalid.
|
|
if (!llvm::GlobalValue::isLocalLinkage(VarLinkage)) {
|
|
Name->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
Data->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
RegionCounters->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
}
|
|
|
|
// Make sure the data doesn't get deleted.
|
|
CGM.addUsedGlobal(Data);
|
|
return Data;
|
|
}
|
|
|
|
void CodeGenPGO::emitInstrumentationData() {
|
|
if (!RegionCounters)
|
|
return;
|
|
|
|
// Build the data.
|
|
auto *Data = buildDataVar();
|
|
|
|
// Register the data.
|
|
auto *RegisterBB = getOrInsertRegisterBB(CGM);
|
|
if (!RegisterBB)
|
|
return;
|
|
CGBuilderTy Builder(RegisterBB->getTerminator());
|
|
auto *VoidPtrTy = llvm::Type::getInt8PtrTy(CGM.getLLVMContext());
|
|
Builder.CreateCall(getOrInsertRuntimeRegister(CGM),
|
|
Builder.CreateBitCast(Data, VoidPtrTy));
|
|
}
|
|
|
|
llvm::Function *CodeGenPGO::emitInitialization(CodeGenModule &CGM) {
|
|
if (!CGM.getCodeGenOpts().ProfileInstrGenerate)
|
|
return nullptr;
|
|
|
|
assert(CGM.getModule().getFunction("__llvm_profile_init") == nullptr &&
|
|
"profile initialization already emitted");
|
|
|
|
// Get the function to call at initialization.
|
|
llvm::Constant *RegisterF = getRegisterFunc(CGM);
|
|
if (!RegisterF)
|
|
return nullptr;
|
|
|
|
// Create the initialization function.
|
|
auto *VoidTy = llvm::Type::getVoidTy(CGM.getLLVMContext());
|
|
auto *F = llvm::Function::Create(llvm::FunctionType::get(VoidTy, false),
|
|
llvm::GlobalValue::InternalLinkage,
|
|
"__llvm_profile_init", &CGM.getModule());
|
|
F->setUnnamedAddr(true);
|
|
F->addFnAttr(llvm::Attribute::NoInline);
|
|
if (CGM.getCodeGenOpts().DisableRedZone)
|
|
F->addFnAttr(llvm::Attribute::NoRedZone);
|
|
|
|
// Add the basic block and the necessary calls.
|
|
CGBuilderTy Builder(llvm::BasicBlock::Create(CGM.getLLVMContext(), "", F));
|
|
Builder.CreateCall(RegisterF);
|
|
Builder.CreateRetVoid();
|
|
|
|
return F;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Stable hasher for PGO region counters.
|
|
///
|
|
/// PGOHash produces a stable hash of a given function's control flow.
|
|
///
|
|
/// Changing the output of this hash will invalidate all previously generated
|
|
/// profiles -- i.e., don't do it.
|
|
///
|
|
/// \note When this hash does eventually change (years?), we still need to
|
|
/// support old hashes. We'll need to pull in the version number from the
|
|
/// profile data format and use the matching hash function.
|
|
class PGOHash {
|
|
uint64_t Working;
|
|
unsigned Count;
|
|
llvm::MD5 MD5;
|
|
|
|
static const int NumBitsPerType = 6;
|
|
static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType;
|
|
static const unsigned TooBig = 1u << NumBitsPerType;
|
|
|
|
public:
|
|
/// \brief Hash values for AST nodes.
|
|
///
|
|
/// Distinct values for AST nodes that have region counters attached.
|
|
///
|
|
/// These values must be stable. All new members must be added at the end,
|
|
/// and no members should be removed. Changing the enumeration value for an
|
|
/// AST node will affect the hash of every function that contains that node.
|
|
enum HashType : unsigned char {
|
|
None = 0,
|
|
LabelStmt = 1,
|
|
WhileStmt,
|
|
DoStmt,
|
|
ForStmt,
|
|
CXXForRangeStmt,
|
|
ObjCForCollectionStmt,
|
|
SwitchStmt,
|
|
CaseStmt,
|
|
DefaultStmt,
|
|
IfStmt,
|
|
CXXTryStmt,
|
|
CXXCatchStmt,
|
|
ConditionalOperator,
|
|
BinaryOperatorLAnd,
|
|
BinaryOperatorLOr,
|
|
BinaryConditionalOperator,
|
|
|
|
// Keep this last. It's for the static assert that follows.
|
|
LastHashType
|
|
};
|
|
static_assert(LastHashType <= TooBig, "Too many types in HashType");
|
|
|
|
// TODO: When this format changes, take in a version number here, and use the
|
|
// old hash calculation for file formats that used the old hash.
|
|
PGOHash() : Working(0), Count(0) {}
|
|
void combine(HashType Type);
|
|
uint64_t finalize();
|
|
};
|
|
const int PGOHash::NumBitsPerType;
|
|
const unsigned PGOHash::NumTypesPerWord;
|
|
const unsigned PGOHash::TooBig;
|
|
|
|
/// A RecursiveASTVisitor that fills a map of statements to PGO counters.
|
|
struct MapRegionCounters : public RecursiveASTVisitor<MapRegionCounters> {
|
|
/// The next counter value to assign.
|
|
unsigned NextCounter;
|
|
/// The function hash.
|
|
PGOHash Hash;
|
|
/// The map of statements to counters.
|
|
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
|
|
|
|
MapRegionCounters(llvm::DenseMap<const Stmt *, unsigned> &CounterMap)
|
|
: NextCounter(0), CounterMap(CounterMap) {}
|
|
|
|
// Blocks and lambdas are handled as separate functions, so we need not
|
|
// traverse them in the parent context.
|
|
bool TraverseBlockExpr(BlockExpr *BE) { return true; }
|
|
bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
|
|
bool TraverseCapturedStmt(CapturedStmt *CS) { return true; }
|
|
|
|
bool VisitDecl(const Decl *D) {
|
|
switch (D->getKind()) {
|
|
default:
|
|
break;
|
|
case Decl::Function:
|
|
case Decl::CXXMethod:
|
|
case Decl::CXXConstructor:
|
|
case Decl::CXXDestructor:
|
|
case Decl::CXXConversion:
|
|
case Decl::ObjCMethod:
|
|
case Decl::Block:
|
|
case Decl::Captured:
|
|
CounterMap[D->getBody()] = NextCounter++;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VisitStmt(const Stmt *S) {
|
|
auto Type = getHashType(S);
|
|
if (Type == PGOHash::None)
|
|
return true;
|
|
|
|
CounterMap[S] = NextCounter++;
|
|
Hash.combine(Type);
|
|
return true;
|
|
}
|
|
PGOHash::HashType getHashType(const Stmt *S) {
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
break;
|
|
case Stmt::LabelStmtClass:
|
|
return PGOHash::LabelStmt;
|
|
case Stmt::WhileStmtClass:
|
|
return PGOHash::WhileStmt;
|
|
case Stmt::DoStmtClass:
|
|
return PGOHash::DoStmt;
|
|
case Stmt::ForStmtClass:
|
|
return PGOHash::ForStmt;
|
|
case Stmt::CXXForRangeStmtClass:
|
|
return PGOHash::CXXForRangeStmt;
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return PGOHash::ObjCForCollectionStmt;
|
|
case Stmt::SwitchStmtClass:
|
|
return PGOHash::SwitchStmt;
|
|
case Stmt::CaseStmtClass:
|
|
return PGOHash::CaseStmt;
|
|
case Stmt::DefaultStmtClass:
|
|
return PGOHash::DefaultStmt;
|
|
case Stmt::IfStmtClass:
|
|
return PGOHash::IfStmt;
|
|
case Stmt::CXXTryStmtClass:
|
|
return PGOHash::CXXTryStmt;
|
|
case Stmt::CXXCatchStmtClass:
|
|
return PGOHash::CXXCatchStmt;
|
|
case Stmt::ConditionalOperatorClass:
|
|
return PGOHash::ConditionalOperator;
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
return PGOHash::BinaryConditionalOperator;
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(S);
|
|
if (BO->getOpcode() == BO_LAnd)
|
|
return PGOHash::BinaryOperatorLAnd;
|
|
if (BO->getOpcode() == BO_LOr)
|
|
return PGOHash::BinaryOperatorLOr;
|
|
break;
|
|
}
|
|
}
|
|
return PGOHash::None;
|
|
}
|
|
};
|
|
|
|
/// A StmtVisitor that propagates the raw counts through the AST and
|
|
/// records the count at statements where the value may change.
|
|
struct ComputeRegionCounts : public ConstStmtVisitor<ComputeRegionCounts> {
|
|
/// PGO state.
|
|
CodeGenPGO &PGO;
|
|
|
|
/// A flag that is set when the current count should be recorded on the
|
|
/// next statement, such as at the exit of a loop.
|
|
bool RecordNextStmtCount;
|
|
|
|
/// The map of statements to count values.
|
|
llvm::DenseMap<const Stmt *, uint64_t> &CountMap;
|
|
|
|
/// BreakContinueStack - Keep counts of breaks and continues inside loops.
|
|
struct BreakContinue {
|
|
uint64_t BreakCount;
|
|
uint64_t ContinueCount;
|
|
BreakContinue() : BreakCount(0), ContinueCount(0) {}
|
|
};
|
|
SmallVector<BreakContinue, 8> BreakContinueStack;
|
|
|
|
ComputeRegionCounts(llvm::DenseMap<const Stmt *, uint64_t> &CountMap,
|
|
CodeGenPGO &PGO)
|
|
: PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {}
|
|
|
|
void RecordStmtCount(const Stmt *S) {
|
|
if (RecordNextStmtCount) {
|
|
CountMap[S] = PGO.getCurrentRegionCount();
|
|
RecordNextStmtCount = false;
|
|
}
|
|
}
|
|
|
|
void VisitStmt(const Stmt *S) {
|
|
RecordStmtCount(S);
|
|
for (Stmt::const_child_range I = S->children(); I; ++I) {
|
|
if (*I)
|
|
this->Visit(*I);
|
|
}
|
|
}
|
|
|
|
void VisitFunctionDecl(const FunctionDecl *D) {
|
|
// Counter tracks entry to the function body.
|
|
RegionCounter Cnt(PGO, D->getBody());
|
|
Cnt.beginRegion();
|
|
CountMap[D->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(D->getBody());
|
|
}
|
|
|
|
// Skip lambda expressions. We visit these as FunctionDecls when we're
|
|
// generating them and aren't interested in the body when generating a
|
|
// parent context.
|
|
void VisitLambdaExpr(const LambdaExpr *LE) {}
|
|
|
|
void VisitCapturedDecl(const CapturedDecl *D) {
|
|
// Counter tracks entry to the capture body.
|
|
RegionCounter Cnt(PGO, D->getBody());
|
|
Cnt.beginRegion();
|
|
CountMap[D->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(D->getBody());
|
|
}
|
|
|
|
void VisitObjCMethodDecl(const ObjCMethodDecl *D) {
|
|
// Counter tracks entry to the method body.
|
|
RegionCounter Cnt(PGO, D->getBody());
|
|
Cnt.beginRegion();
|
|
CountMap[D->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(D->getBody());
|
|
}
|
|
|
|
void VisitBlockDecl(const BlockDecl *D) {
|
|
// Counter tracks entry to the block body.
|
|
RegionCounter Cnt(PGO, D->getBody());
|
|
Cnt.beginRegion();
|
|
CountMap[D->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(D->getBody());
|
|
}
|
|
|
|
void VisitReturnStmt(const ReturnStmt *S) {
|
|
RecordStmtCount(S);
|
|
if (S->getRetValue())
|
|
Visit(S->getRetValue());
|
|
PGO.setCurrentRegionUnreachable();
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitGotoStmt(const GotoStmt *S) {
|
|
RecordStmtCount(S);
|
|
PGO.setCurrentRegionUnreachable();
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitLabelStmt(const LabelStmt *S) {
|
|
RecordNextStmtCount = false;
|
|
// Counter tracks the block following the label.
|
|
RegionCounter Cnt(PGO, S);
|
|
Cnt.beginRegion();
|
|
CountMap[S] = PGO.getCurrentRegionCount();
|
|
Visit(S->getSubStmt());
|
|
}
|
|
|
|
void VisitBreakStmt(const BreakStmt *S) {
|
|
RecordStmtCount(S);
|
|
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
|
|
BreakContinueStack.back().BreakCount += PGO.getCurrentRegionCount();
|
|
PGO.setCurrentRegionUnreachable();
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitContinueStmt(const ContinueStmt *S) {
|
|
RecordStmtCount(S);
|
|
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
|
|
BreakContinueStack.back().ContinueCount += PGO.getCurrentRegionCount();
|
|
PGO.setCurrentRegionUnreachable();
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitWhileStmt(const WhileStmt *S) {
|
|
RecordStmtCount(S);
|
|
// Counter tracks the body of the loop.
|
|
RegionCounter Cnt(PGO, S);
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
// Visit the body region first so the break/continue adjustments can be
|
|
// included when visiting the condition.
|
|
Cnt.beginRegion();
|
|
CountMap[S->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getBody());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
// ...then go back and propagate counts through the condition. The count
|
|
// at the start of the condition is the sum of the incoming edges,
|
|
// the backedge from the end of the loop body, and the edges from
|
|
// continue statements.
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
Cnt.setCurrentRegionCount(Cnt.getParentCount() +
|
|
Cnt.getAdjustedCount() + BC.ContinueCount);
|
|
CountMap[S->getCond()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getCond());
|
|
Cnt.adjustForControlFlow();
|
|
Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitDoStmt(const DoStmt *S) {
|
|
RecordStmtCount(S);
|
|
// Counter tracks the body of the loop.
|
|
RegionCounter Cnt(PGO, S);
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
Cnt.beginRegion(/*AddIncomingFallThrough=*/true);
|
|
CountMap[S->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getBody());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
// The count at the start of the condition is equal to the count at the
|
|
// end of the body. The adjusted count does not include either the
|
|
// fall-through count coming into the loop or the continue count, so add
|
|
// both of those separately. This is coincidentally the same equation as
|
|
// with while loops but for different reasons.
|
|
Cnt.setCurrentRegionCount(Cnt.getParentCount() +
|
|
Cnt.getAdjustedCount() + BC.ContinueCount);
|
|
CountMap[S->getCond()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getCond());
|
|
Cnt.adjustForControlFlow();
|
|
Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitForStmt(const ForStmt *S) {
|
|
RecordStmtCount(S);
|
|
if (S->getInit())
|
|
Visit(S->getInit());
|
|
// Counter tracks the body of the loop.
|
|
RegionCounter Cnt(PGO, S);
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
// Visit the body region first. (This is basically the same as a while
|
|
// loop; see further comments in VisitWhileStmt.)
|
|
Cnt.beginRegion();
|
|
CountMap[S->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getBody());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
// The increment is essentially part of the body but it needs to include
|
|
// the count for all the continue statements.
|
|
if (S->getInc()) {
|
|
Cnt.setCurrentRegionCount(PGO.getCurrentRegionCount() +
|
|
BreakContinueStack.back().ContinueCount);
|
|
CountMap[S->getInc()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getInc());
|
|
Cnt.adjustForControlFlow();
|
|
}
|
|
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
// ...then go back and propagate counts through the condition.
|
|
if (S->getCond()) {
|
|
Cnt.setCurrentRegionCount(Cnt.getParentCount() +
|
|
Cnt.getAdjustedCount() +
|
|
BC.ContinueCount);
|
|
CountMap[S->getCond()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getCond());
|
|
Cnt.adjustForControlFlow();
|
|
}
|
|
Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
|
|
RecordStmtCount(S);
|
|
Visit(S->getRangeStmt());
|
|
Visit(S->getBeginEndStmt());
|
|
// Counter tracks the body of the loop.
|
|
RegionCounter Cnt(PGO, S);
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
// Visit the body region first. (This is basically the same as a while
|
|
// loop; see further comments in VisitWhileStmt.)
|
|
Cnt.beginRegion();
|
|
CountMap[S->getLoopVarStmt()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getLoopVarStmt());
|
|
Visit(S->getBody());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
// The increment is essentially part of the body but it needs to include
|
|
// the count for all the continue statements.
|
|
Cnt.setCurrentRegionCount(PGO.getCurrentRegionCount() +
|
|
BreakContinueStack.back().ContinueCount);
|
|
CountMap[S->getInc()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getInc());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
// ...then go back and propagate counts through the condition.
|
|
Cnt.setCurrentRegionCount(Cnt.getParentCount() +
|
|
Cnt.getAdjustedCount() +
|
|
BC.ContinueCount);
|
|
CountMap[S->getCond()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getCond());
|
|
Cnt.adjustForControlFlow();
|
|
Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
|
|
RecordStmtCount(S);
|
|
Visit(S->getElement());
|
|
// Counter tracks the body of the loop.
|
|
RegionCounter Cnt(PGO, S);
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
Cnt.beginRegion();
|
|
CountMap[S->getBody()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getBody());
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
Cnt.adjustForControlFlow();
|
|
Cnt.applyAdjustmentsToRegion(BC.BreakCount + BC.ContinueCount);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitSwitchStmt(const SwitchStmt *S) {
|
|
RecordStmtCount(S);
|
|
Visit(S->getCond());
|
|
PGO.setCurrentRegionUnreachable();
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
Visit(S->getBody());
|
|
// If the switch is inside a loop, add the continue counts.
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
if (!BreakContinueStack.empty())
|
|
BreakContinueStack.back().ContinueCount += BC.ContinueCount;
|
|
// Counter tracks the exit block of the switch.
|
|
RegionCounter ExitCnt(PGO, S);
|
|
ExitCnt.beginRegion();
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitCaseStmt(const CaseStmt *S) {
|
|
RecordNextStmtCount = false;
|
|
// Counter for this particular case. This counts only jumps from the
|
|
// switch header and does not include fallthrough from the case before
|
|
// this one.
|
|
RegionCounter Cnt(PGO, S);
|
|
Cnt.beginRegion(/*AddIncomingFallThrough=*/true);
|
|
CountMap[S] = Cnt.getCount();
|
|
RecordNextStmtCount = true;
|
|
Visit(S->getSubStmt());
|
|
}
|
|
|
|
void VisitDefaultStmt(const DefaultStmt *S) {
|
|
RecordNextStmtCount = false;
|
|
// Counter for this default case. This does not include fallthrough from
|
|
// the previous case.
|
|
RegionCounter Cnt(PGO, S);
|
|
Cnt.beginRegion(/*AddIncomingFallThrough=*/true);
|
|
CountMap[S] = Cnt.getCount();
|
|
RecordNextStmtCount = true;
|
|
Visit(S->getSubStmt());
|
|
}
|
|
|
|
void VisitIfStmt(const IfStmt *S) {
|
|
RecordStmtCount(S);
|
|
// Counter tracks the "then" part of an if statement. The count for
|
|
// the "else" part, if it exists, will be calculated from this counter.
|
|
RegionCounter Cnt(PGO, S);
|
|
Visit(S->getCond());
|
|
|
|
Cnt.beginRegion();
|
|
CountMap[S->getThen()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getThen());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
if (S->getElse()) {
|
|
Cnt.beginElseRegion();
|
|
CountMap[S->getElse()] = PGO.getCurrentRegionCount();
|
|
Visit(S->getElse());
|
|
Cnt.adjustForControlFlow();
|
|
}
|
|
Cnt.applyAdjustmentsToRegion(0);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitCXXTryStmt(const CXXTryStmt *S) {
|
|
RecordStmtCount(S);
|
|
Visit(S->getTryBlock());
|
|
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
|
|
Visit(S->getHandler(I));
|
|
// Counter tracks the continuation block of the try statement.
|
|
RegionCounter Cnt(PGO, S);
|
|
Cnt.beginRegion();
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
|
|
RecordNextStmtCount = false;
|
|
// Counter tracks the catch statement's handler block.
|
|
RegionCounter Cnt(PGO, S);
|
|
Cnt.beginRegion();
|
|
CountMap[S] = PGO.getCurrentRegionCount();
|
|
Visit(S->getHandlerBlock());
|
|
}
|
|
|
|
void VisitAbstractConditionalOperator(
|
|
const AbstractConditionalOperator *E) {
|
|
RecordStmtCount(E);
|
|
// Counter tracks the "true" part of a conditional operator. The
|
|
// count in the "false" part will be calculated from this counter.
|
|
RegionCounter Cnt(PGO, E);
|
|
Visit(E->getCond());
|
|
|
|
Cnt.beginRegion();
|
|
CountMap[E->getTrueExpr()] = PGO.getCurrentRegionCount();
|
|
Visit(E->getTrueExpr());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
Cnt.beginElseRegion();
|
|
CountMap[E->getFalseExpr()] = PGO.getCurrentRegionCount();
|
|
Visit(E->getFalseExpr());
|
|
Cnt.adjustForControlFlow();
|
|
|
|
Cnt.applyAdjustmentsToRegion(0);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitBinLAnd(const BinaryOperator *E) {
|
|
RecordStmtCount(E);
|
|
// Counter tracks the right hand side of a logical and operator.
|
|
RegionCounter Cnt(PGO, E);
|
|
Visit(E->getLHS());
|
|
Cnt.beginRegion();
|
|
CountMap[E->getRHS()] = PGO.getCurrentRegionCount();
|
|
Visit(E->getRHS());
|
|
Cnt.adjustForControlFlow();
|
|
Cnt.applyAdjustmentsToRegion(0);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
|
|
void VisitBinLOr(const BinaryOperator *E) {
|
|
RecordStmtCount(E);
|
|
// Counter tracks the right hand side of a logical or operator.
|
|
RegionCounter Cnt(PGO, E);
|
|
Visit(E->getLHS());
|
|
Cnt.beginRegion();
|
|
CountMap[E->getRHS()] = PGO.getCurrentRegionCount();
|
|
Visit(E->getRHS());
|
|
Cnt.adjustForControlFlow();
|
|
Cnt.applyAdjustmentsToRegion(0);
|
|
RecordNextStmtCount = true;
|
|
}
|
|
};
|
|
}
|
|
|
|
void PGOHash::combine(HashType Type) {
|
|
// Check that we never combine 0 and only have six bits.
|
|
assert(Type && "Hash is invalid: unexpected type 0");
|
|
assert(unsigned(Type) < TooBig && "Hash is invalid: too many types");
|
|
|
|
// Pass through MD5 if enough work has built up.
|
|
if (Count && Count % NumTypesPerWord == 0) {
|
|
using namespace llvm::support;
|
|
uint64_t Swapped = endian::byte_swap<uint64_t, little>(Working);
|
|
MD5.update(llvm::makeArrayRef((uint8_t *)&Swapped, sizeof(Swapped)));
|
|
Working = 0;
|
|
}
|
|
|
|
// Accumulate the current type.
|
|
++Count;
|
|
Working = Working << NumBitsPerType | Type;
|
|
}
|
|
|
|
uint64_t PGOHash::finalize() {
|
|
// Use Working as the hash directly if we never used MD5.
|
|
if (Count <= NumTypesPerWord)
|
|
// No need to byte swap here, since none of the math was endian-dependent.
|
|
// This number will be byte-swapped as required on endianness transitions,
|
|
// so we will see the same value on the other side.
|
|
return Working;
|
|
|
|
// Check for remaining work in Working.
|
|
if (Working)
|
|
MD5.update(Working);
|
|
|
|
// Finalize the MD5 and return the hash.
|
|
llvm::MD5::MD5Result Result;
|
|
MD5.final(Result);
|
|
using namespace llvm::support;
|
|
return endian::read<uint64_t, little, unaligned>(Result);
|
|
}
|
|
|
|
static void emitRuntimeHook(CodeGenModule &CGM) {
|
|
const char *const RuntimeVarName = "__llvm_profile_runtime";
|
|
const char *const RuntimeUserName = "__llvm_profile_runtime_user";
|
|
if (CGM.getModule().getGlobalVariable(RuntimeVarName))
|
|
return;
|
|
|
|
// Declare the runtime hook.
|
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
|
|
auto *Var = new llvm::GlobalVariable(CGM.getModule(), Int32Ty, false,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
nullptr, RuntimeVarName);
|
|
|
|
// Make a function that uses it.
|
|
auto *User = llvm::Function::Create(llvm::FunctionType::get(Int32Ty, false),
|
|
llvm::GlobalValue::LinkOnceODRLinkage,
|
|
RuntimeUserName, &CGM.getModule());
|
|
User->addFnAttr(llvm::Attribute::NoInline);
|
|
if (CGM.getCodeGenOpts().DisableRedZone)
|
|
User->addFnAttr(llvm::Attribute::NoRedZone);
|
|
CGBuilderTy Builder(llvm::BasicBlock::Create(CGM.getLLVMContext(), "", User));
|
|
auto *Load = Builder.CreateLoad(Var);
|
|
Builder.CreateRet(Load);
|
|
|
|
// Create a use of the function. Now the definition of the runtime variable
|
|
// should get pulled in, along with any static initializears.
|
|
CGM.addUsedGlobal(User);
|
|
}
|
|
|
|
void CodeGenPGO::assignRegionCounters(const Decl *D, llvm::Function *Fn) {
|
|
bool InstrumentRegions = CGM.getCodeGenOpts().ProfileInstrGenerate;
|
|
llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader();
|
|
if (!InstrumentRegions && !PGOReader)
|
|
return;
|
|
if (D->isImplicit())
|
|
return;
|
|
setFuncName(Fn);
|
|
|
|
// Set the linkage for variables based on the function linkage. Usually, we
|
|
// want to match it, but available_externally and extern_weak both have the
|
|
// wrong semantics.
|
|
VarLinkage = Fn->getLinkage();
|
|
switch (VarLinkage) {
|
|
case llvm::GlobalValue::ExternalWeakLinkage:
|
|
VarLinkage = llvm::GlobalValue::LinkOnceAnyLinkage;
|
|
break;
|
|
case llvm::GlobalValue::AvailableExternallyLinkage:
|
|
VarLinkage = llvm::GlobalValue::LinkOnceODRLinkage;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
mapRegionCounters(D);
|
|
if (InstrumentRegions) {
|
|
emitRuntimeHook(CGM);
|
|
emitCounterVariables();
|
|
}
|
|
if (PGOReader) {
|
|
loadRegionCounts(PGOReader);
|
|
computeRegionCounts(D);
|
|
applyFunctionAttributes(PGOReader, Fn);
|
|
}
|
|
}
|
|
|
|
void CodeGenPGO::mapRegionCounters(const Decl *D) {
|
|
RegionCounterMap.reset(new llvm::DenseMap<const Stmt *, unsigned>);
|
|
MapRegionCounters Walker(*RegionCounterMap);
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
|
|
Walker.TraverseDecl(const_cast<FunctionDecl *>(FD));
|
|
else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
|
|
Walker.TraverseDecl(const_cast<ObjCMethodDecl *>(MD));
|
|
else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
|
|
Walker.TraverseDecl(const_cast<BlockDecl *>(BD));
|
|
else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
|
|
Walker.TraverseDecl(const_cast<CapturedDecl *>(CD));
|
|
assert(Walker.NextCounter > 0 && "no entry counter mapped for decl");
|
|
NumRegionCounters = Walker.NextCounter;
|
|
FunctionHash = Walker.Hash.finalize();
|
|
}
|
|
|
|
void CodeGenPGO::computeRegionCounts(const Decl *D) {
|
|
StmtCountMap.reset(new llvm::DenseMap<const Stmt *, uint64_t>);
|
|
ComputeRegionCounts Walker(*StmtCountMap, *this);
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
|
|
Walker.VisitFunctionDecl(FD);
|
|
else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(D))
|
|
Walker.VisitObjCMethodDecl(MD);
|
|
else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(D))
|
|
Walker.VisitBlockDecl(BD);
|
|
else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(D))
|
|
Walker.VisitCapturedDecl(const_cast<CapturedDecl *>(CD));
|
|
}
|
|
|
|
void
|
|
CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader,
|
|
llvm::Function *Fn) {
|
|
if (!haveRegionCounts())
|
|
return;
|
|
|
|
uint64_t MaxFunctionCount = PGOReader->getMaximumFunctionCount();
|
|
uint64_t FunctionCount = getRegionCount(0);
|
|
if (FunctionCount >= (uint64_t)(0.3 * (double)MaxFunctionCount))
|
|
// Turn on InlineHint attribute for hot functions.
|
|
// FIXME: 30% is from preliminary tuning on SPEC, it may not be optimal.
|
|
Fn->addFnAttr(llvm::Attribute::InlineHint);
|
|
else if (FunctionCount <= (uint64_t)(0.01 * (double)MaxFunctionCount))
|
|
// Turn on Cold attribute for cold functions.
|
|
// FIXME: 1% is from preliminary tuning on SPEC, it may not be optimal.
|
|
Fn->addFnAttr(llvm::Attribute::Cold);
|
|
}
|
|
|
|
void CodeGenPGO::emitCounterVariables() {
|
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
llvm::ArrayType *CounterTy = llvm::ArrayType::get(llvm::Type::getInt64Ty(Ctx),
|
|
NumRegionCounters);
|
|
RegionCounters =
|
|
new llvm::GlobalVariable(CGM.getModule(), CounterTy, false, VarLinkage,
|
|
llvm::Constant::getNullValue(CounterTy),
|
|
getFuncVarName("counters"));
|
|
RegionCounters->setAlignment(8);
|
|
RegionCounters->setSection(getCountersSection(CGM));
|
|
}
|
|
|
|
void CodeGenPGO::emitCounterIncrement(CGBuilderTy &Builder, unsigned Counter) {
|
|
if (!RegionCounters)
|
|
return;
|
|
llvm::Value *Addr =
|
|
Builder.CreateConstInBoundsGEP2_64(RegionCounters, 0, Counter);
|
|
llvm::Value *Count = Builder.CreateLoad(Addr, "pgocount");
|
|
Count = Builder.CreateAdd(Count, Builder.getInt64(1));
|
|
Builder.CreateStore(Count, Addr);
|
|
}
|
|
|
|
void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader) {
|
|
CGM.getPGOStats().Visited++;
|
|
RegionCounts.reset(new std::vector<uint64_t>);
|
|
uint64_t Hash;
|
|
if (PGOReader->getFunctionCounts(getFuncName(), Hash, *RegionCounts)) {
|
|
CGM.getPGOStats().Missing++;
|
|
RegionCounts.reset();
|
|
} else if (Hash != FunctionHash ||
|
|
RegionCounts->size() != NumRegionCounters) {
|
|
CGM.getPGOStats().Mismatched++;
|
|
RegionCounts.reset();
|
|
}
|
|
}
|
|
|
|
void CodeGenPGO::destroyRegionCounters() {
|
|
RegionCounterMap.reset();
|
|
StmtCountMap.reset();
|
|
RegionCounts.reset();
|
|
RegionCounters = nullptr;
|
|
}
|
|
|
|
/// \brief Calculate what to divide by to scale weights.
|
|
///
|
|
/// Given the maximum weight, calculate a divisor that will scale all the
|
|
/// weights to strictly less than UINT32_MAX.
|
|
static uint64_t calculateWeightScale(uint64_t MaxWeight) {
|
|
return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1;
|
|
}
|
|
|
|
/// \brief Scale an individual branch weight (and add 1).
|
|
///
|
|
/// Scale a 64-bit weight down to 32-bits using \c Scale.
|
|
///
|
|
/// According to Laplace's Rule of Succession, it is better to compute the
|
|
/// weight based on the count plus 1, so universally add 1 to the value.
|
|
///
|
|
/// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no
|
|
/// greater than \c Weight.
|
|
static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) {
|
|
assert(Scale && "scale by 0?");
|
|
uint64_t Scaled = Weight / Scale + 1;
|
|
assert(Scaled <= UINT32_MAX && "overflow 32-bits");
|
|
return Scaled;
|
|
}
|
|
|
|
llvm::MDNode *CodeGenPGO::createBranchWeights(uint64_t TrueCount,
|
|
uint64_t FalseCount) {
|
|
// Check for empty weights.
|
|
if (!TrueCount && !FalseCount)
|
|
return nullptr;
|
|
|
|
// Calculate how to scale down to 32-bits.
|
|
uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount));
|
|
|
|
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
|
|
return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale),
|
|
scaleBranchWeight(FalseCount, Scale));
|
|
}
|
|
|
|
llvm::MDNode *CodeGenPGO::createBranchWeights(ArrayRef<uint64_t> Weights) {
|
|
// We need at least two elements to create meaningful weights.
|
|
if (Weights.size() < 2)
|
|
return nullptr;
|
|
|
|
// Check for empty weights.
|
|
uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end());
|
|
if (MaxWeight == 0)
|
|
return nullptr;
|
|
|
|
// Calculate how to scale down to 32-bits.
|
|
uint64_t Scale = calculateWeightScale(MaxWeight);
|
|
|
|
SmallVector<uint32_t, 16> ScaledWeights;
|
|
ScaledWeights.reserve(Weights.size());
|
|
for (uint64_t W : Weights)
|
|
ScaledWeights.push_back(scaleBranchWeight(W, Scale));
|
|
|
|
llvm::MDBuilder MDHelper(CGM.getLLVMContext());
|
|
return MDHelper.createBranchWeights(ScaledWeights);
|
|
}
|
|
|
|
llvm::MDNode *CodeGenPGO::createLoopWeights(const Stmt *Cond,
|
|
RegionCounter &Cnt) {
|
|
if (!haveRegionCounts())
|
|
return nullptr;
|
|
uint64_t LoopCount = Cnt.getCount();
|
|
uint64_t CondCount = 0;
|
|
bool Found = getStmtCount(Cond, CondCount);
|
|
assert(Found && "missing expected loop condition count");
|
|
(void)Found;
|
|
if (CondCount == 0)
|
|
return nullptr;
|
|
return createBranchWeights(LoopCount,
|
|
std::max(CondCount, LoopCount) - LoopCount);
|
|
}
|