llvm-project/llvm/lib/Target/AArch64/AArch64SchedM1.td

369 lines
17 KiB
TableGen

//=- AArch64SchedM1.td - Samsung Exynos-M1 Scheduling Defs ---*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Samsung Exynos-M1 to support
// instruction scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// The Exynos-M1 is a traditional superscalar microprocessor with a
// 4-wide in-order stage for decode and dispatch and a wider issue stage.
// The execution units and loads and stores are out-of-order.
def ExynosM1Model : SchedMachineModel {
let IssueWidth = 4; // Up to 4 uops per cycle.
let MicroOpBufferSize = 96; // ROB size.
let LoopMicroOpBufferSize = 24; // Based on the instruction queue size.
let LoadLatency = 4; // Optimistic load cases.
let MispredictPenalty = 14; // Minimum branch misprediction penalty.
let CompleteModel = 0; // Use the default model otherwise.
}
//===----------------------------------------------------------------------===//
// Define each kind of processor resource and number available on the Exynos-M1,
// which has 9 pipelines, each with its own queue with out-of-order dispatch.
def M1UnitA : ProcResource<2>; // Simple integer
def M1UnitC : ProcResource<1>; // Simple and complex integer
def M1UnitB : ProcResource<2>; // Branch
def M1UnitL : ProcResource<1>; // Load
def M1UnitS : ProcResource<1>; // Store
def M1PipeF0 : ProcResource<1>; // FP #0
def M1PipeF1 : ProcResource<1>; // FP #1
let Super = M1PipeF0 in {
def M1UnitFMAC : ProcResource<1>; // FP multiplication
def M1UnitFCVT : ProcResource<1>; // FP conversion
def M1UnitNAL0 : ProcResource<1>; // Simple vector.
def M1UnitNMISC : ProcResource<1>; // Miscellanea
def M1UnitNCRYPT : ProcResource<1>; // Cryptographic
}
let Super = M1PipeF1 in {
def M1UnitFADD : ProcResource<1>; // Simple FP
let BufferSize = 1 in
def M1UnitFVAR : ProcResource<1>; // FP division & square root (serialized)
def M1UnitNAL1 : ProcResource<1>; // Simple vector.
def M1UnitFST : ProcResource<1>; // FP store
}
let SchedModel = ExynosM1Model in {
def M1UnitALU : ProcResGroup<[M1UnitA,
M1UnitC]>; // All simple integer.
def M1UnitNALU : ProcResGroup<[M1UnitNAL0,
M1UnitNAL1]>; // All simple vector.
}
let SchedModel = ExynosM1Model in {
//===----------------------------------------------------------------------===//
// Coarse scheduling model for the Exynos-M1.
// Branch instructions.
// TODO: Non-conditional direct branches take zero cycles and units.
def : WriteRes<WriteBr, [M1UnitB]> { let Latency = 1; }
def : WriteRes<WriteBrReg, [M1UnitC]> { let Latency = 1; }
// TODO: Branch and link is much different.
// Arithmetic and logical integer instructions.
def : WriteRes<WriteI, [M1UnitALU]> { let Latency = 1; }
// TODO: Shift over 3 and some extensions take 2 cycles.
def : WriteRes<WriteISReg, [M1UnitALU]> { let Latency = 1; }
def : WriteRes<WriteIEReg, [M1UnitALU]> { let Latency = 1; }
def : WriteRes<WriteIS, [M1UnitALU]> { let Latency = 1; }
// Move instructions.
def : WriteRes<WriteImm, [M1UnitALU]> { let Latency = 1; }
// Divide and multiply instructions.
// TODO: Division blocks the divider inside C.
def : WriteRes<WriteID32, [M1UnitC]> { let Latency = 13; }
def : WriteRes<WriteID64, [M1UnitC]> { let Latency = 21; }
// TODO: Long multiplication take 5 cycles and also the ALU.
// TODO: Multiplication with accumulation can be advanced.
def : WriteRes<WriteIM32, [M1UnitC]> { let Latency = 3; }
// TODO: 64-bit multiplication has a throughput of 1/2.
def : WriteRes<WriteIM64, [M1UnitC]> { let Latency = 4; }
// Miscellaneous instructions.
def : WriteRes<WriteExtr, [M1UnitALU,
M1UnitALU]> { let Latency = 2; }
// TODO: The latency for the post or pre register is 1 cycle.
def : WriteRes<WriteAdr, []> { let Latency = 0; }
// Load instructions.
def : WriteRes<WriteLD, [M1UnitL]> { let Latency = 4; }
// TODO: Extended address requires also the ALU.
def : WriteRes<WriteLDIdx, [M1UnitL]> { let Latency = 5; }
def : WriteRes<WriteLDHi, [M1UnitALU]> { let Latency = 4; }
// Store instructions.
def : WriteRes<WriteST, [M1UnitS]> { let Latency = 1; }
// TODO: Extended address requires also the ALU.
def : WriteRes<WriteSTIdx, [M1UnitS]> { let Latency = 1; }
def : WriteRes<WriteSTP, [M1UnitS]> { let Latency = 1; }
def : WriteRes<WriteSTX, [M1UnitS]> { let Latency = 1; }
// FP data instructions.
def : WriteRes<WriteF, [M1UnitFADD]> { let Latency = 3; }
// TODO: FCCMP is much different.
def : WriteRes<WriteFCmp, [M1UnitNMISC]> { let Latency = 4; }
// TODO: DP takes longer.
def : WriteRes<WriteFDiv, [M1UnitFVAR]> { let Latency = 15; }
// TODO: MACC takes longer.
def : WriteRes<WriteFMul, [M1UnitFMAC]> { let Latency = 4; }
// FP miscellaneous instructions.
// TODO: Conversion between register files is much different.
def : WriteRes<WriteFCvt, [M1UnitFCVT]> { let Latency = 3; }
def : WriteRes<WriteFImm, [M1UnitNALU]> { let Latency = 1; }
// TODO: Copy from FPR to GPR is much different.
def : WriteRes<WriteFCopy, [M1UnitS]> { let Latency = 4; }
// FP load instructions.
// TODO: ASIMD loads are much different.
def : WriteRes<WriteVLD, [M1UnitL]> { let Latency = 5; }
// FP store instructions.
// TODO: ASIMD stores are much different.
def : WriteRes<WriteVST, [M1UnitS, M1UnitFST]> { let Latency = 1; }
// ASIMD FP instructions.
// TODO: Other operations are much different.
def : WriteRes<WriteV, [M1UnitFADD]> { let Latency = 3; }
// Other miscellaneous instructions.
def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
def : WriteRes<WriteBarrier, []> { let Latency = 1; }
def : WriteRes<WriteHint, []> { let Latency = 1; }
def : WriteRes<WriteSys, []> { let Latency = 1; }
//===----------------------------------------------------------------------===//
// Generic fast forwarding.
// TODO: Add FP register forwarding rules.
def : ReadAdvance<ReadI, 0>;
def : ReadAdvance<ReadISReg, 0>;
def : ReadAdvance<ReadIEReg, 0>;
def : ReadAdvance<ReadIM, 0>;
// Integer multiply-accumulate.
// TODO: The forwarding for WriteIM64 saves actually 3 cycles.
def : ReadAdvance<ReadIMA, 2, [WriteIM32, WriteIM64]>;
def : ReadAdvance<ReadID, 0>;
def : ReadAdvance<ReadExtrHi, 0>;
def : ReadAdvance<ReadAdrBase, 0>;
def : ReadAdvance<ReadVLD, 0>;
//===----------------------------------------------------------------------===//
// Finer scheduling model for the Exynos-M1.
def M1WriteNEONA : SchedWriteRes<[M1UnitNALU,
M1UnitNALU,
M1UnitFADD]> { let Latency = 9; }
def M1WriteNEONB : SchedWriteRes<[M1UnitNALU,
M1UnitFST]> { let Latency = 5; }
def M1WriteNEONC : SchedWriteRes<[M1UnitNALU,
M1UnitFST]> { let Latency = 6; }
def M1WriteNEOND : SchedWriteRes<[M1UnitNALU,
M1UnitFST,
M1UnitL]> { let Latency = 10; }
def M1WriteNEONE : SchedWriteRes<[M1UnitFCVT,
M1UnitFST]> { let Latency = 8; }
def M1WriteNEONF : SchedWriteRes<[M1UnitFCVT,
M1UnitFST,
M1UnitL]> { let Latency = 13; }
def M1WriteNEONG : SchedWriteRes<[M1UnitNMISC,
M1UnitFST]> { let Latency = 6; }
def M1WriteNEONH : SchedWriteRes<[M1UnitNALU,
M1UnitFST]> { let Latency = 3; }
def M1WriteNEONI : SchedWriteRes<[M1UnitFST,
M1UnitL]> { let Latency = 9; }
def M1WriteNEONJ : SchedWriteRes<[M1UnitNMISC,
M1UnitFMAC]> { let Latency = 6; }
def M1WriteNEONK : SchedWriteRes<[M1UnitNMISC,
M1UnitFMAC]> { let Latency = 7; }
def M1WriteALU1 : SchedWriteRes<[M1UnitALU]> { let Latency = 1; }
def M1WriteB : SchedWriteRes<[M1UnitB]> { let Latency = 1; }
// FIXME: This is the worst case, conditional branch and link.
def M1WriteBL : SchedWriteRes<[M1UnitB,
M1UnitALU]> { let Latency = 1; }
// FIXME: This is the worst case, when using LR.
def M1WriteBLR : SchedWriteRes<[M1UnitB,
M1UnitALU,
M1UnitALU]> { let Latency = 2; }
def M1WriteC1 : SchedWriteRes<[M1UnitC]> { let Latency = 1; }
def M1WriteC2 : SchedWriteRes<[M1UnitC]> { let Latency = 2; }
def M1WriteFADD3 : SchedWriteRes<[M1UnitFADD]> { let Latency = 3; }
def M1WriteFCVT3 : SchedWriteRes<[M1UnitFCVT]> { let Latency = 3; }
def M1WriteFCVT4 : SchedWriteRes<[M1UnitFCVT]> { let Latency = 4; }
def M1WriteFMAC4 : SchedWriteRes<[M1UnitFMAC]> { let Latency = 4; }
def M1WriteFMAC5 : SchedWriteRes<[M1UnitFMAC]> { let Latency = 5; }
def M1WriteFVAR15 : SchedWriteRes<[M1UnitFVAR]> { let Latency = 15; }
def M1WriteFVAR23 : SchedWriteRes<[M1UnitFVAR]> { let Latency = 23; }
def M1WriteNALU1 : SchedWriteRes<[M1UnitNALU]> { let Latency = 1; }
def M1WriteNALU2 : SchedWriteRes<[M1UnitNALU]> { let Latency = 2; }
def M1WriteNAL11 : SchedWriteRes<[M1UnitNAL1]> { let Latency = 1; }
def M1WriteNAL12 : SchedWriteRes<[M1UnitNAL1]> { let Latency = 2; }
def M1WriteNAL13 : SchedWriteRes<[M1UnitNAL1]> { let Latency = 3; }
def M1WriteNCRYPT1 : SchedWriteRes<[M1UnitNCRYPT]> { let Latency = 1; }
def M1WriteNCRYPT5 : SchedWriteRes<[M1UnitNCRYPT]> { let Latency = 5; }
def M1WriteNMISC1 : SchedWriteRes<[M1UnitNMISC]> { let Latency = 1; }
def M1WriteNMISC2 : SchedWriteRes<[M1UnitNMISC]> { let Latency = 2; }
def M1WriteNMISC3 : SchedWriteRes<[M1UnitNMISC]> { let Latency = 3; }
def M1WriteNMISC4 : SchedWriteRes<[M1UnitNMISC]> { let Latency = 4; }
def M1WriteS4 : SchedWriteRes<[M1UnitS]> { let Latency = 4; }
def M1WriteTB : SchedWriteRes<[M1UnitC,
M1UnitALU]> { let Latency = 2; }
// Branch instructions
def : InstRW<[M1WriteB ], (instrs Bcc)>;
def : InstRW<[M1WriteBL], (instrs BL)>;
def : InstRW<[M1WriteBLR], (instrs BLR)>;
def : InstRW<[M1WriteC1], (instregex "^CBN?Z[WX]")>;
def : InstRW<[M1WriteTB], (instregex "^TBN?Z[WX]")>;
// Arithmetic and logical integer instructions.
def : InstRW<[M1WriteALU1], (instrs COPY)>;
// Divide and multiply instructions.
// Miscellaneous instructions.
// Load instructions.
// Store instructions.
// FP data instructions.
def : InstRW<[M1WriteNALU1], (instregex "^F(ABS|NEG)[DS]r")>;
def : InstRW<[M1WriteFADD3], (instregex "^F(ADD|SUB)[DS]rr")>;
def : InstRW<[M1WriteNEONG], (instregex "^FCCMPE?[DS]rr")>;
def : InstRW<[M1WriteNMISC4], (instregex "^FCMPE?[DS]r")>;
def : InstRW<[M1WriteFVAR15], (instrs FDIVSrr)>;
def : InstRW<[M1WriteFVAR23], (instrs FDIVDrr)>;
def : InstRW<[M1WriteNMISC2], (instregex "^F(MAX|MIN).+rr")>;
def : InstRW<[M1WriteFMAC4], (instregex "^FN?MUL[DS]rr")>;
def : InstRW<[M1WriteFMAC5], (instregex "^FN?M(ADD|SUB)[DS]rrr")>;
def : InstRW<[M1WriteFCVT3], (instregex "^FRINT.+r")>;
def : InstRW<[M1WriteNEONH], (instregex "^FCSEL[DS]rrr")>;
def : InstRW<[M1WriteFVAR15], (instrs FSQRTSr)>;
def : InstRW<[M1WriteFVAR23], (instrs FSQRTDr)>;
// FP miscellaneous instructions.
def : InstRW<[M1WriteFCVT3], (instregex "^FCVT[DS][DS]r")>;
def : InstRW<[M1WriteNEONF], (instregex "^[FSU]CVT[AMNPZ][SU](_Int)?[SU]?[XW]?[DS]?[rds]i?")>;
def : InstRW<[M1WriteNEONE], (instregex "^[SU]CVTF[SU]")>;
def : InstRW<[M1WriteNALU1], (instregex "^FMOV[DS][ir]")>;
def : InstRW<[M1WriteS4], (instregex "^FMOV[WX][DS](High)?r")>;
def : InstRW<[M1WriteNEONI], (instregex "^FMOV[DS][WX](High)?r")>;
// FP load instructions.
// FP store instructions.
// ASIMD instructions.
def : InstRW<[M1WriteNMISC3], (instregex "^[SU]ABAL?v")>;
def : InstRW<[M1WriteNMISC1], (instregex "^[SU]ABDL?v")>;
def : InstRW<[M1WriteNMISC1], (instregex "^(SQ)?ABSv")>;
def : InstRW<[M1WriteNMISC1], (instregex "^SQNEGv")>;
def : InstRW<[M1WriteNALU1], (instregex "^(ADD|NEG|SUB)v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^[SU]?H(ADD|SUB)v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^[SU]?AD[AD](L|LP|P|W)V?2?v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^[SU]?SUB[LW]2?v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^R?(ADD|SUB)HN?2?v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^[SU]+Q(ADD|SUB)v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^[SU]RHADDv")>;
def : InstRW<[M1WriteNMISC1], (instregex "^CM(EQ|GE|GT|HI|HS|LE|LT)v")>;
def : InstRW<[M1WriteNALU1], (instregex "^CMTSTv")>;
def : InstRW<[M1WriteNALU1], (instregex "^(AND|BIC|EOR|MVNI|NOT|ORN|ORR)v")>;
def : InstRW<[M1WriteNMISC1], (instregex "^[SU](MIN|MAX)v")>;
def : InstRW<[M1WriteNMISC2], (instregex "^[SU](MIN|MAX)Pv")>;
def : InstRW<[M1WriteNMISC3], (instregex "^[SU](MIN|MAX)Vv")>;
def : InstRW<[M1WriteNMISC4], (instregex "^(MUL|SQR?DMULH)v")>;
def : InstRW<[M1WriteNMISC4], (instregex "^ML[AS]v")>;
def : InstRW<[M1WriteNMISC4], (instregex "^(S|U|SQD|SQRD)ML[AS][HL]v")>;
def : InstRW<[M1WriteNMISC4], (instregex "^(S|U|SQD)MULLv")>;
def : InstRW<[M1WriteNAL13], (instregex "^(S|SR|U|UR)SRAv")>;
def : InstRW<[M1WriteNALU1], (instregex "^[SU]?SH(L|LL|R)2?v")>;
def : InstRW<[M1WriteNALU1], (instregex "^S[LR]Iv")>;
def : InstRW<[M1WriteNAL13], (instregex "^[SU]?(Q|QR|R)?SHR(N|U|UN)?2?v")>;
def : InstRW<[M1WriteNAL13], (instregex "^[SU](Q|QR|R)SHLU?v")>;
// ASIMD FP instructions.
def : InstRW<[M1WriteNALU1], (instregex "^F(ABS|NEG)v")>;
def : InstRW<[M1WriteNMISC3], (instregex "^F(ABD|ADD|SUB)v")>;
def : InstRW<[M1WriteNEONA], (instregex "^FADDP")>;
def : InstRW<[M1WriteNMISC1], (instregex "^F(AC|CM)(EQ|GE|GT|LE|LT)v[^1]")>;
def : InstRW<[M1WriteFCVT3], (instregex "^[FVSU]CVTX?[AFLMNPZ][SU]?(_Int)?v")>;
def : InstRW<[M1WriteFVAR15], (instregex "FDIVv.f32")>;
def : InstRW<[M1WriteFVAR23], (instregex "FDIVv2f64")>;
def : InstRW<[M1WriteFVAR15], (instregex "FSQRTv.f32")>;
def : InstRW<[M1WriteFVAR23], (instregex "FSQRTv2f64")>;
def : InstRW<[M1WriteNMISC1], (instregex "^F(MAX|MIN)(NM)?V?v")>;
def : InstRW<[M1WriteNMISC2], (instregex "^F(MAX|MIN)(NM)?Pv")>;
def : InstRW<[M1WriteNEONJ], (instregex "^FMULX?v.i")>;
def : InstRW<[M1WriteFMAC4], (instregex "^FMULX?v.f")>;
def : InstRW<[M1WriteNEONK], (instregex "^FML[AS]v.i")>;
def : InstRW<[M1WriteFMAC5], (instregex "^FML[AS]v.f")>;
def : InstRW<[M1WriteFCVT3], (instregex "^FRINT[AIMNPXZ]v")>;
// ASIMD miscellaneous instructions.
def : InstRW<[M1WriteNALU1], (instregex "^RBITv")>;
def : InstRW<[M1WriteNAL11], (instregex "^(BIF|BIT|BSL)v")>;
def : InstRW<[M1WriteNALU1], (instregex "^CPY")>;
def : InstRW<[M1WriteNEONB], (instregex "^DUPv.+gpr")>;
def : InstRW<[M1WriteNALU1], (instregex "^DUPv.+lane")>;
def : InstRW<[M1WriteNAL13], (instregex "^[SU]?Q?XTU?Nv")>;
def : InstRW<[M1WriteNEONC], (instregex "^INSv.+gpr")>;
def : InstRW<[M1WriteFCVT4], (instregex "^[FU](RECP|RSQRT)Ev")>;
def : InstRW<[M1WriteNMISC1], (instregex "^[FU](RECP|RSQRT)Xv")>;
def : InstRW<[M1WriteFMAC5], (instregex "^F(RECP|RSQRT)Sv")>;
def : InstRW<[M1WriteNALU1], (instregex "^REV(16|32|64)v")>;
def : InstRW<[M1WriteNAL11], (instregex "^TB[LX]v8i8One")>;
def : InstRW<[WriteSequence<[M1WriteNAL11], 2>],
(instregex "^TB[LX]v8i8Two")>;
def : InstRW<[WriteSequence<[M1WriteNAL11], 3>],
(instregex "^TB[LX]v8i8Three")>;
def : InstRW<[WriteSequence<[M1WriteNAL11], 4>],
(instregex "^TB[LX]v8i8Four")>;
def : InstRW<[M1WriteNAL12], (instregex "^TB[LX]v16i8One")>;
def : InstRW<[WriteSequence<[M1WriteNAL12], 2>],
(instregex "^TB[LX]v16i8Two")>;
def : InstRW<[WriteSequence<[M1WriteNAL12], 3>],
(instregex "^TB[LX]v16i8Three")>;
def : InstRW<[WriteSequence<[M1WriteNAL12], 4>],
(instregex "^TB[LX]v16i8Four")>;
def : InstRW<[M1WriteNEOND], (instregex "^[SU]MOVv")>;
def : InstRW<[M1WriteNALU1], (instregex "^INSv.+lane")>;
def : InstRW<[M1WriteNALU1], (instregex "^(TRN|UZP)[12](v8i8|v4i16|v2i32)")>;
def : InstRW<[M1WriteNALU2], (instregex "^(TRN|UZP)[12](v16i8|v8i16|v4i32|v2i64)")>;
def : InstRW<[M1WriteNALU1], (instregex "^ZIP[12]v")>;
// ASIMD load instructions.
// ASIMD store instructions.
// Cryptography instructions.
def M1WriteAES : SchedWriteRes<[M1UnitNCRYPT]> { let Latency = 1; }
def M1ReadAES : SchedReadAdvance<1, [M1WriteAES]>;
def : InstRW<[M1WriteAES, M1ReadAES], (instregex "^AES")>;
def : InstRW<[M1WriteNCRYPT1], (instregex "^PMUL")>;
def : InstRW<[M1WriteNCRYPT1], (instregex "^SHA1(H|SU)")>;
def : InstRW<[M1WriteNCRYPT5], (instregex "^SHA1[CMP]")>;
def : InstRW<[M1WriteNCRYPT1], (instregex "^SHA256SU0")>;
def : InstRW<[M1WriteNCRYPT5], (instregex "^SHA256(H|SU1)")>;
// CRC instructions.
def : InstRW<[M1WriteC2], (instregex "^CRC32")>;
} // SchedModel = ExynosM1Model