forked from OSchip/llvm-project
1727 lines
69 KiB
C++
1727 lines
69 KiB
C++
//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides C++ code generation targeting the Itanium C++ ABI. The class
|
|
// in this file generates structures that follow the Itanium C++ ABI, which is
|
|
// documented at:
|
|
// http://www.codesourcery.com/public/cxx-abi/abi.html
|
|
// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
|
|
//
|
|
// It also supports the closely-related ARM ABI, documented at:
|
|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCXXABI.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CGVTables.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Value.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
class ItaniumCXXABI : public CodeGen::CGCXXABI {
|
|
/// VTables - All the vtables which have been defined.
|
|
llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
|
|
|
|
protected:
|
|
bool UseARMMethodPtrABI;
|
|
bool UseARMGuardVarABI;
|
|
|
|
ItaniumMangleContext &getMangleContext() {
|
|
return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext());
|
|
}
|
|
|
|
public:
|
|
ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
|
|
bool UseARMMethodPtrABI = false,
|
|
bool UseARMGuardVarABI = false) :
|
|
CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
|
|
UseARMGuardVarABI(UseARMGuardVarABI) { }
|
|
|
|
bool classifyReturnType(CGFunctionInfo &FI) const override;
|
|
|
|
RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override {
|
|
// Structures with either a non-trivial destructor or a non-trivial
|
|
// copy constructor are always indirect.
|
|
// FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
|
|
// special members.
|
|
if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
|
|
return RAA_Indirect;
|
|
return RAA_Default;
|
|
}
|
|
|
|
bool isZeroInitializable(const MemberPointerType *MPT) override;
|
|
|
|
llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
|
|
|
|
llvm::Value *
|
|
EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
|
|
const Expr *E,
|
|
llvm::Value *&This,
|
|
llvm::Value *MemFnPtr,
|
|
const MemberPointerType *MPT) override;
|
|
|
|
llvm::Value *
|
|
EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
|
|
llvm::Value *Base,
|
|
llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) override;
|
|
|
|
llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
|
|
const CastExpr *E,
|
|
llvm::Value *Src) override;
|
|
llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
|
|
llvm::Constant *Src) override;
|
|
|
|
llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
|
|
|
|
llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
|
|
llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
|
|
CharUnits offset) override;
|
|
llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
|
|
llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
|
|
CharUnits ThisAdjustment);
|
|
|
|
llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
|
|
llvm::Value *L, llvm::Value *R,
|
|
const MemberPointerType *MPT,
|
|
bool Inequality) override;
|
|
|
|
llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
|
|
llvm::Value *Addr,
|
|
const MemberPointerType *MPT) override;
|
|
|
|
llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF, llvm::Value *ptr,
|
|
QualType type) override;
|
|
|
|
llvm::Value *
|
|
GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
|
|
const CXXRecordDecl *ClassDecl,
|
|
const CXXRecordDecl *BaseClassDecl) override;
|
|
|
|
void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType T, CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) override;
|
|
|
|
void EmitCXXConstructors(const CXXConstructorDecl *D) override;
|
|
|
|
void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
|
|
CXXDtorType T, CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) override;
|
|
|
|
bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
|
|
CXXDtorType DT) const override {
|
|
// Itanium does not emit any destructor variant as an inline thunk.
|
|
// Delegating may occur as an optimization, but all variants are either
|
|
// emitted with external linkage or as linkonce if they are inline and used.
|
|
return false;
|
|
}
|
|
|
|
void EmitCXXDestructors(const CXXDestructorDecl *D) override;
|
|
|
|
void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
|
|
FunctionArgList &Params) override;
|
|
|
|
void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
|
|
|
|
unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
|
|
const CXXConstructorDecl *D,
|
|
CXXCtorType Type, bool ForVirtualBase,
|
|
bool Delegating,
|
|
CallArgList &Args) override;
|
|
|
|
void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
|
|
CXXDtorType Type, bool ForVirtualBase,
|
|
bool Delegating, llvm::Value *This) override;
|
|
|
|
void emitVTableDefinitions(CodeGenVTables &CGVT,
|
|
const CXXRecordDecl *RD) override;
|
|
|
|
llvm::Value *getVTableAddressPointInStructor(
|
|
CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
|
|
BaseSubobject Base, const CXXRecordDecl *NearestVBase,
|
|
bool &NeedsVirtualOffset) override;
|
|
|
|
llvm::Constant *
|
|
getVTableAddressPointForConstExpr(BaseSubobject Base,
|
|
const CXXRecordDecl *VTableClass) override;
|
|
|
|
llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
|
|
CharUnits VPtrOffset) override;
|
|
|
|
llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
|
|
llvm::Value *This,
|
|
llvm::Type *Ty) override;
|
|
|
|
void EmitVirtualDestructorCall(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *Dtor,
|
|
CXXDtorType DtorType, SourceLocation CallLoc,
|
|
llvm::Value *This) override;
|
|
|
|
void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
|
|
|
|
void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD,
|
|
bool ReturnAdjustment) override {
|
|
// Allow inlining of thunks by emitting them with available_externally
|
|
// linkage together with vtables when needed.
|
|
if (ForVTable)
|
|
Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
|
|
}
|
|
|
|
llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
|
|
const ThisAdjustment &TA) override;
|
|
|
|
llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
|
|
const ReturnAdjustment &RA) override;
|
|
|
|
StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; }
|
|
StringRef GetDeletedVirtualCallName() override
|
|
{ return "__cxa_deleted_virtual"; }
|
|
|
|
CharUnits getArrayCookieSizeImpl(QualType elementType) override;
|
|
llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements,
|
|
const CXXNewExpr *expr,
|
|
QualType ElementType) override;
|
|
llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
|
|
llvm::Value *allocPtr,
|
|
CharUnits cookieSize) override;
|
|
|
|
void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
|
|
llvm::GlobalVariable *DeclPtr,
|
|
bool PerformInit) override;
|
|
void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
|
|
llvm::Constant *dtor, llvm::Constant *addr) override;
|
|
|
|
llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
|
|
llvm::GlobalVariable *Var);
|
|
void EmitThreadLocalInitFuncs(
|
|
llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
|
|
llvm::Function *InitFunc) override;
|
|
LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
|
|
QualType LValType) override;
|
|
|
|
bool NeedsVTTParameter(GlobalDecl GD) override;
|
|
};
|
|
|
|
class ARMCXXABI : public ItaniumCXXABI {
|
|
public:
|
|
ARMCXXABI(CodeGen::CodeGenModule &CGM) :
|
|
ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
|
|
/* UseARMGuardVarABI = */ true) {}
|
|
|
|
bool HasThisReturn(GlobalDecl GD) const override {
|
|
return (isa<CXXConstructorDecl>(GD.getDecl()) || (
|
|
isa<CXXDestructorDecl>(GD.getDecl()) &&
|
|
GD.getDtorType() != Dtor_Deleting));
|
|
}
|
|
|
|
void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV,
|
|
QualType ResTy) override;
|
|
|
|
CharUnits getArrayCookieSizeImpl(QualType elementType) override;
|
|
llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements,
|
|
const CXXNewExpr *expr,
|
|
QualType ElementType) override;
|
|
llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, llvm::Value *allocPtr,
|
|
CharUnits cookieSize) override;
|
|
};
|
|
|
|
class iOS64CXXABI : public ARMCXXABI {
|
|
public:
|
|
iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) {}
|
|
|
|
// ARM64 libraries are prepared for non-unique RTTI.
|
|
bool shouldRTTIBeUnique() override { return false; }
|
|
};
|
|
}
|
|
|
|
CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
|
|
switch (CGM.getTarget().getCXXABI().getKind()) {
|
|
// For IR-generation purposes, there's no significant difference
|
|
// between the ARM and iOS ABIs.
|
|
case TargetCXXABI::GenericARM:
|
|
case TargetCXXABI::iOS:
|
|
return new ARMCXXABI(CGM);
|
|
|
|
case TargetCXXABI::iOS64:
|
|
return new iOS64CXXABI(CGM);
|
|
|
|
// Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
|
|
// include the other 32-bit ARM oddities: constructor/destructor return values
|
|
// and array cookies.
|
|
case TargetCXXABI::GenericAArch64:
|
|
return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
|
|
/* UseARMGuardVarABI = */ true);
|
|
|
|
case TargetCXXABI::GenericItanium:
|
|
if (CGM.getContext().getTargetInfo().getTriple().getArch()
|
|
== llvm::Triple::le32) {
|
|
// For PNaCl, use ARM-style method pointers so that PNaCl code
|
|
// does not assume anything about the alignment of function
|
|
// pointers.
|
|
return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
|
|
/* UseARMGuardVarABI = */ false);
|
|
}
|
|
return new ItaniumCXXABI(CGM);
|
|
|
|
case TargetCXXABI::Microsoft:
|
|
llvm_unreachable("Microsoft ABI is not Itanium-based");
|
|
}
|
|
llvm_unreachable("bad ABI kind");
|
|
}
|
|
|
|
llvm::Type *
|
|
ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
|
|
if (MPT->isMemberDataPointer())
|
|
return CGM.PtrDiffTy;
|
|
return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, NULL);
|
|
}
|
|
|
|
/// In the Itanium and ARM ABIs, method pointers have the form:
|
|
/// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
|
|
///
|
|
/// In the Itanium ABI:
|
|
/// - method pointers are virtual if (memptr.ptr & 1) is nonzero
|
|
/// - the this-adjustment is (memptr.adj)
|
|
/// - the virtual offset is (memptr.ptr - 1)
|
|
///
|
|
/// In the ARM ABI:
|
|
/// - method pointers are virtual if (memptr.adj & 1) is nonzero
|
|
/// - the this-adjustment is (memptr.adj >> 1)
|
|
/// - the virtual offset is (memptr.ptr)
|
|
/// ARM uses 'adj' for the virtual flag because Thumb functions
|
|
/// may be only single-byte aligned.
|
|
///
|
|
/// If the member is virtual, the adjusted 'this' pointer points
|
|
/// to a vtable pointer from which the virtual offset is applied.
|
|
///
|
|
/// If the member is non-virtual, memptr.ptr is the address of
|
|
/// the function to call.
|
|
llvm::Value *ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
|
|
CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
|
|
llvm::Value *MemFnPtr, const MemberPointerType *MPT) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
const FunctionProtoType *FPT =
|
|
MPT->getPointeeType()->getAs<FunctionProtoType>();
|
|
const CXXRecordDecl *RD =
|
|
cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
|
|
|
|
llvm::FunctionType *FTy =
|
|
CGM.getTypes().GetFunctionType(
|
|
CGM.getTypes().arrangeCXXMethodType(RD, FPT));
|
|
|
|
llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
|
|
|
|
llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
|
|
llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
|
|
llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
|
|
|
|
// Extract memptr.adj, which is in the second field.
|
|
llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
|
|
|
|
// Compute the true adjustment.
|
|
llvm::Value *Adj = RawAdj;
|
|
if (UseARMMethodPtrABI)
|
|
Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
|
|
|
|
// Apply the adjustment and cast back to the original struct type
|
|
// for consistency.
|
|
llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
|
|
Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
|
|
This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
|
|
|
|
// Load the function pointer.
|
|
llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
|
|
|
|
// If the LSB in the function pointer is 1, the function pointer points to
|
|
// a virtual function.
|
|
llvm::Value *IsVirtual;
|
|
if (UseARMMethodPtrABI)
|
|
IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
|
|
else
|
|
IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
|
|
IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
|
|
Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
|
|
|
|
// In the virtual path, the adjustment left 'This' pointing to the
|
|
// vtable of the correct base subobject. The "function pointer" is an
|
|
// offset within the vtable (+1 for the virtual flag on non-ARM).
|
|
CGF.EmitBlock(FnVirtual);
|
|
|
|
// Cast the adjusted this to a pointer to vtable pointer and load.
|
|
llvm::Type *VTableTy = Builder.getInt8PtrTy();
|
|
llvm::Value *VTable = CGF.GetVTablePtr(This, VTableTy);
|
|
|
|
// Apply the offset.
|
|
llvm::Value *VTableOffset = FnAsInt;
|
|
if (!UseARMMethodPtrABI)
|
|
VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
|
|
VTable = Builder.CreateGEP(VTable, VTableOffset);
|
|
|
|
// Load the virtual function to call.
|
|
VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
|
|
llvm::Value *VirtualFn = Builder.CreateLoad(VTable, "memptr.virtualfn");
|
|
CGF.EmitBranch(FnEnd);
|
|
|
|
// In the non-virtual path, the function pointer is actually a
|
|
// function pointer.
|
|
CGF.EmitBlock(FnNonVirtual);
|
|
llvm::Value *NonVirtualFn =
|
|
Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
|
|
|
|
// We're done.
|
|
CGF.EmitBlock(FnEnd);
|
|
llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
|
|
Callee->addIncoming(VirtualFn, FnVirtual);
|
|
Callee->addIncoming(NonVirtualFn, FnNonVirtual);
|
|
return Callee;
|
|
}
|
|
|
|
/// Compute an l-value by applying the given pointer-to-member to a
|
|
/// base object.
|
|
llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(
|
|
CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) {
|
|
assert(MemPtr->getType() == CGM.PtrDiffTy);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
unsigned AS = Base->getType()->getPointerAddressSpace();
|
|
|
|
// Cast to char*.
|
|
Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
|
|
|
|
// Apply the offset, which we assume is non-null.
|
|
llvm::Value *Addr = Builder.CreateInBoundsGEP(Base, MemPtr, "memptr.offset");
|
|
|
|
// Cast the address to the appropriate pointer type, adopting the
|
|
// address space of the base pointer.
|
|
llvm::Type *PType
|
|
= CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
|
|
return Builder.CreateBitCast(Addr, PType);
|
|
}
|
|
|
|
/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
|
|
/// conversion.
|
|
///
|
|
/// Bitcast conversions are always a no-op under Itanium.
|
|
///
|
|
/// Obligatory offset/adjustment diagram:
|
|
/// <-- offset --> <-- adjustment -->
|
|
/// |--------------------------|----------------------|--------------------|
|
|
/// ^Derived address point ^Base address point ^Member address point
|
|
///
|
|
/// So when converting a base member pointer to a derived member pointer,
|
|
/// we add the offset to the adjustment because the address point has
|
|
/// decreased; and conversely, when converting a derived MP to a base MP
|
|
/// we subtract the offset from the adjustment because the address point
|
|
/// has increased.
|
|
///
|
|
/// The standard forbids (at compile time) conversion to and from
|
|
/// virtual bases, which is why we don't have to consider them here.
|
|
///
|
|
/// The standard forbids (at run time) casting a derived MP to a base
|
|
/// MP when the derived MP does not point to a member of the base.
|
|
/// This is why -1 is a reasonable choice for null data member
|
|
/// pointers.
|
|
llvm::Value *
|
|
ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
|
|
const CastExpr *E,
|
|
llvm::Value *src) {
|
|
assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
|
|
E->getCastKind() == CK_BaseToDerivedMemberPointer ||
|
|
E->getCastKind() == CK_ReinterpretMemberPointer);
|
|
|
|
// Under Itanium, reinterprets don't require any additional processing.
|
|
if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
|
|
|
|
// Use constant emission if we can.
|
|
if (isa<llvm::Constant>(src))
|
|
return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
|
|
|
|
llvm::Constant *adj = getMemberPointerAdjustment(E);
|
|
if (!adj) return src;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
|
|
|
|
const MemberPointerType *destTy =
|
|
E->getType()->castAs<MemberPointerType>();
|
|
|
|
// For member data pointers, this is just a matter of adding the
|
|
// offset if the source is non-null.
|
|
if (destTy->isMemberDataPointer()) {
|
|
llvm::Value *dst;
|
|
if (isDerivedToBase)
|
|
dst = Builder.CreateNSWSub(src, adj, "adj");
|
|
else
|
|
dst = Builder.CreateNSWAdd(src, adj, "adj");
|
|
|
|
// Null check.
|
|
llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
|
|
llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
|
|
return Builder.CreateSelect(isNull, src, dst);
|
|
}
|
|
|
|
// The this-adjustment is left-shifted by 1 on ARM.
|
|
if (UseARMMethodPtrABI) {
|
|
uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
|
|
offset <<= 1;
|
|
adj = llvm::ConstantInt::get(adj->getType(), offset);
|
|
}
|
|
|
|
llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
|
|
llvm::Value *dstAdj;
|
|
if (isDerivedToBase)
|
|
dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
|
|
else
|
|
dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
|
|
|
|
return Builder.CreateInsertValue(src, dstAdj, 1);
|
|
}
|
|
|
|
llvm::Constant *
|
|
ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
|
|
llvm::Constant *src) {
|
|
assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
|
|
E->getCastKind() == CK_BaseToDerivedMemberPointer ||
|
|
E->getCastKind() == CK_ReinterpretMemberPointer);
|
|
|
|
// Under Itanium, reinterprets don't require any additional processing.
|
|
if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
|
|
|
|
// If the adjustment is trivial, we don't need to do anything.
|
|
llvm::Constant *adj = getMemberPointerAdjustment(E);
|
|
if (!adj) return src;
|
|
|
|
bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
|
|
|
|
const MemberPointerType *destTy =
|
|
E->getType()->castAs<MemberPointerType>();
|
|
|
|
// For member data pointers, this is just a matter of adding the
|
|
// offset if the source is non-null.
|
|
if (destTy->isMemberDataPointer()) {
|
|
// null maps to null.
|
|
if (src->isAllOnesValue()) return src;
|
|
|
|
if (isDerivedToBase)
|
|
return llvm::ConstantExpr::getNSWSub(src, adj);
|
|
else
|
|
return llvm::ConstantExpr::getNSWAdd(src, adj);
|
|
}
|
|
|
|
// The this-adjustment is left-shifted by 1 on ARM.
|
|
if (UseARMMethodPtrABI) {
|
|
uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
|
|
offset <<= 1;
|
|
adj = llvm::ConstantInt::get(adj->getType(), offset);
|
|
}
|
|
|
|
llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
|
|
llvm::Constant *dstAdj;
|
|
if (isDerivedToBase)
|
|
dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
|
|
else
|
|
dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
|
|
|
|
return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
|
|
}
|
|
|
|
llvm::Constant *
|
|
ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
|
|
// Itanium C++ ABI 2.3:
|
|
// A NULL pointer is represented as -1.
|
|
if (MPT->isMemberDataPointer())
|
|
return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
|
|
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
|
|
llvm::Constant *Values[2] = { Zero, Zero };
|
|
return llvm::ConstantStruct::getAnon(Values);
|
|
}
|
|
|
|
llvm::Constant *
|
|
ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
|
|
CharUnits offset) {
|
|
// Itanium C++ ABI 2.3:
|
|
// A pointer to data member is an offset from the base address of
|
|
// the class object containing it, represented as a ptrdiff_t
|
|
return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
|
|
}
|
|
|
|
llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
|
|
return BuildMemberPointer(MD, CharUnits::Zero());
|
|
}
|
|
|
|
llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
|
|
CharUnits ThisAdjustment) {
|
|
assert(MD->isInstance() && "Member function must not be static!");
|
|
MD = MD->getCanonicalDecl();
|
|
|
|
CodeGenTypes &Types = CGM.getTypes();
|
|
|
|
// Get the function pointer (or index if this is a virtual function).
|
|
llvm::Constant *MemPtr[2];
|
|
if (MD->isVirtual()) {
|
|
uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD);
|
|
|
|
const ASTContext &Context = getContext();
|
|
CharUnits PointerWidth =
|
|
Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
|
|
uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
|
|
|
|
if (UseARMMethodPtrABI) {
|
|
// ARM C++ ABI 3.2.1:
|
|
// This ABI specifies that adj contains twice the this
|
|
// adjustment, plus 1 if the member function is virtual. The
|
|
// least significant bit of adj then makes exactly the same
|
|
// discrimination as the least significant bit of ptr does for
|
|
// Itanium.
|
|
MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
|
|
MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
|
|
2 * ThisAdjustment.getQuantity() + 1);
|
|
} else {
|
|
// Itanium C++ ABI 2.3:
|
|
// For a virtual function, [the pointer field] is 1 plus the
|
|
// virtual table offset (in bytes) of the function,
|
|
// represented as a ptrdiff_t.
|
|
MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
|
|
MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
|
|
ThisAdjustment.getQuantity());
|
|
}
|
|
} else {
|
|
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
|
llvm::Type *Ty;
|
|
// Check whether the function has a computable LLVM signature.
|
|
if (Types.isFuncTypeConvertible(FPT)) {
|
|
// The function has a computable LLVM signature; use the correct type.
|
|
Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
|
|
} else {
|
|
// Use an arbitrary non-function type to tell GetAddrOfFunction that the
|
|
// function type is incomplete.
|
|
Ty = CGM.PtrDiffTy;
|
|
}
|
|
llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
|
|
|
|
MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
|
|
MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
|
|
(UseARMMethodPtrABI ? 2 : 1) *
|
|
ThisAdjustment.getQuantity());
|
|
}
|
|
|
|
return llvm::ConstantStruct::getAnon(MemPtr);
|
|
}
|
|
|
|
llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
|
|
QualType MPType) {
|
|
const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
|
|
const ValueDecl *MPD = MP.getMemberPointerDecl();
|
|
if (!MPD)
|
|
return EmitNullMemberPointer(MPT);
|
|
|
|
CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
|
|
return BuildMemberPointer(MD, ThisAdjustment);
|
|
|
|
CharUnits FieldOffset =
|
|
getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
|
|
return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
|
|
}
|
|
|
|
/// The comparison algorithm is pretty easy: the member pointers are
|
|
/// the same if they're either bitwise identical *or* both null.
|
|
///
|
|
/// ARM is different here only because null-ness is more complicated.
|
|
llvm::Value *
|
|
ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
|
|
llvm::Value *L,
|
|
llvm::Value *R,
|
|
const MemberPointerType *MPT,
|
|
bool Inequality) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::ICmpInst::Predicate Eq;
|
|
llvm::Instruction::BinaryOps And, Or;
|
|
if (Inequality) {
|
|
Eq = llvm::ICmpInst::ICMP_NE;
|
|
And = llvm::Instruction::Or;
|
|
Or = llvm::Instruction::And;
|
|
} else {
|
|
Eq = llvm::ICmpInst::ICMP_EQ;
|
|
And = llvm::Instruction::And;
|
|
Or = llvm::Instruction::Or;
|
|
}
|
|
|
|
// Member data pointers are easy because there's a unique null
|
|
// value, so it just comes down to bitwise equality.
|
|
if (MPT->isMemberDataPointer())
|
|
return Builder.CreateICmp(Eq, L, R);
|
|
|
|
// For member function pointers, the tautologies are more complex.
|
|
// The Itanium tautology is:
|
|
// (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
|
|
// The ARM tautology is:
|
|
// (L == R) <==> (L.ptr == R.ptr &&
|
|
// (L.adj == R.adj ||
|
|
// (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
|
|
// The inequality tautologies have exactly the same structure, except
|
|
// applying De Morgan's laws.
|
|
|
|
llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
|
|
llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
|
|
|
|
// This condition tests whether L.ptr == R.ptr. This must always be
|
|
// true for equality to hold.
|
|
llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
|
|
|
|
// This condition, together with the assumption that L.ptr == R.ptr,
|
|
// tests whether the pointers are both null. ARM imposes an extra
|
|
// condition.
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
|
|
llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
|
|
|
|
// This condition tests whether L.adj == R.adj. If this isn't
|
|
// true, the pointers are unequal unless they're both null.
|
|
llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
|
|
llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
|
|
llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
|
|
|
|
// Null member function pointers on ARM clear the low bit of Adj,
|
|
// so the zero condition has to check that neither low bit is set.
|
|
if (UseARMMethodPtrABI) {
|
|
llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
|
|
|
|
// Compute (l.adj | r.adj) & 1 and test it against zero.
|
|
llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
|
|
llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
|
|
llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
|
|
"cmp.or.adj");
|
|
EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
|
|
}
|
|
|
|
// Tie together all our conditions.
|
|
llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
|
|
Result = Builder.CreateBinOp(And, PtrEq, Result,
|
|
Inequality ? "memptr.ne" : "memptr.eq");
|
|
return Result;
|
|
}
|
|
|
|
llvm::Value *
|
|
ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
|
|
llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
/// For member data pointers, this is just a check against -1.
|
|
if (MPT->isMemberDataPointer()) {
|
|
assert(MemPtr->getType() == CGM.PtrDiffTy);
|
|
llvm::Value *NegativeOne =
|
|
llvm::Constant::getAllOnesValue(MemPtr->getType());
|
|
return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
|
|
}
|
|
|
|
// In Itanium, a member function pointer is not null if 'ptr' is not null.
|
|
llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
|
|
|
|
llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
|
|
llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
|
|
|
|
// On ARM, a member function pointer is also non-null if the low bit of 'adj'
|
|
// (the virtual bit) is set.
|
|
if (UseARMMethodPtrABI) {
|
|
llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
|
|
llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
|
|
llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
|
|
llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
|
|
"memptr.isvirtual");
|
|
Result = Builder.CreateOr(Result, IsVirtual);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
|
|
const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
|
|
if (!RD)
|
|
return false;
|
|
|
|
// Return indirectly if we have a non-trivial copy ctor or non-trivial dtor.
|
|
// FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
|
|
// special members.
|
|
if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) {
|
|
FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// The Itanium ABI requires non-zero initialization only for data
|
|
/// member pointers, for which '0' is a valid offset.
|
|
bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
|
|
return MPT->getPointeeType()->isFunctionType();
|
|
}
|
|
|
|
/// The Itanium ABI always places an offset to the complete object
|
|
/// at entry -2 in the vtable.
|
|
llvm::Value *ItaniumCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
|
|
llvm::Value *ptr,
|
|
QualType type) {
|
|
// Grab the vtable pointer as an intptr_t*.
|
|
llvm::Value *vtable = CGF.GetVTablePtr(ptr, CGF.IntPtrTy->getPointerTo());
|
|
|
|
// Track back to entry -2 and pull out the offset there.
|
|
llvm::Value *offsetPtr =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(vtable, -2, "complete-offset.ptr");
|
|
llvm::LoadInst *offset = CGF.Builder.CreateLoad(offsetPtr);
|
|
offset->setAlignment(CGF.PointerAlignInBytes);
|
|
|
|
// Apply the offset.
|
|
ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
|
|
return CGF.Builder.CreateInBoundsGEP(ptr, offset);
|
|
}
|
|
|
|
llvm::Value *
|
|
ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
|
|
llvm::Value *This,
|
|
const CXXRecordDecl *ClassDecl,
|
|
const CXXRecordDecl *BaseClassDecl) {
|
|
llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy);
|
|
CharUnits VBaseOffsetOffset =
|
|
CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl,
|
|
BaseClassDecl);
|
|
|
|
llvm::Value *VBaseOffsetPtr =
|
|
CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
|
|
"vbase.offset.ptr");
|
|
VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
|
|
CGM.PtrDiffTy->getPointerTo());
|
|
|
|
llvm::Value *VBaseOffset =
|
|
CGF.Builder.CreateLoad(VBaseOffsetPtr, "vbase.offset");
|
|
|
|
return VBaseOffset;
|
|
}
|
|
|
|
/// The generic ABI passes 'this', plus a VTT if it's initializing a
|
|
/// base subobject.
|
|
void
|
|
ItaniumCXXABI::BuildConstructorSignature(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType Type, CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) {
|
|
ASTContext &Context = getContext();
|
|
|
|
// All parameters are already in place except VTT, which goes after 'this'.
|
|
// These are Clang types, so we don't need to worry about sret yet.
|
|
|
|
// Check if we need to add a VTT parameter (which has type void **).
|
|
if (Type == Ctor_Base && Ctor->getParent()->getNumVBases() != 0)
|
|
ArgTys.insert(ArgTys.begin() + 1,
|
|
Context.getPointerType(Context.VoidPtrTy));
|
|
}
|
|
|
|
void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
|
|
// Just make sure we're in sync with TargetCXXABI.
|
|
assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
|
|
|
|
// The constructor used for constructing this as a base class;
|
|
// ignores virtual bases.
|
|
CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
|
|
|
|
// The constructor used for constructing this as a complete class;
|
|
// constucts the virtual bases, then calls the base constructor.
|
|
if (!D->getParent()->isAbstract()) {
|
|
// We don't need to emit the complete ctor if the class is abstract.
|
|
CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
|
|
}
|
|
}
|
|
|
|
/// The generic ABI passes 'this', plus a VTT if it's destroying a
|
|
/// base subobject.
|
|
void ItaniumCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
|
|
CXXDtorType Type,
|
|
CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) {
|
|
ASTContext &Context = getContext();
|
|
|
|
// 'this' parameter is already there, as well as 'this' return if
|
|
// HasThisReturn(GlobalDecl(Dtor, Type)) is true
|
|
|
|
// Check if we need to add a VTT parameter (which has type void **).
|
|
if (Type == Dtor_Base && Dtor->getParent()->getNumVBases() != 0)
|
|
ArgTys.push_back(Context.getPointerType(Context.VoidPtrTy));
|
|
}
|
|
|
|
void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
|
|
// The destructor used for destructing this as a base class; ignores
|
|
// virtual bases.
|
|
CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
|
|
|
|
// The destructor used for destructing this as a most-derived class;
|
|
// call the base destructor and then destructs any virtual bases.
|
|
CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
|
|
|
|
// The destructor in a virtual table is always a 'deleting'
|
|
// destructor, which calls the complete destructor and then uses the
|
|
// appropriate operator delete.
|
|
if (D->isVirtual())
|
|
CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
|
|
}
|
|
|
|
void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
|
|
QualType &ResTy,
|
|
FunctionArgList &Params) {
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
|
|
assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
|
|
|
|
// Check if we need a VTT parameter as well.
|
|
if (NeedsVTTParameter(CGF.CurGD)) {
|
|
ASTContext &Context = getContext();
|
|
|
|
// FIXME: avoid the fake decl
|
|
QualType T = Context.getPointerType(Context.VoidPtrTy);
|
|
ImplicitParamDecl *VTTDecl
|
|
= ImplicitParamDecl::Create(Context, nullptr, MD->getLocation(),
|
|
&Context.Idents.get("vtt"), T);
|
|
Params.insert(Params.begin() + 1, VTTDecl);
|
|
getStructorImplicitParamDecl(CGF) = VTTDecl;
|
|
}
|
|
}
|
|
|
|
void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
|
|
/// Initialize the 'this' slot.
|
|
EmitThisParam(CGF);
|
|
|
|
/// Initialize the 'vtt' slot if needed.
|
|
if (getStructorImplicitParamDecl(CGF)) {
|
|
getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad(
|
|
CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt");
|
|
}
|
|
|
|
/// If this is a function that the ABI specifies returns 'this', initialize
|
|
/// the return slot to 'this' at the start of the function.
|
|
///
|
|
/// Unlike the setting of return types, this is done within the ABI
|
|
/// implementation instead of by clients of CGCXXABI because:
|
|
/// 1) getThisValue is currently protected
|
|
/// 2) in theory, an ABI could implement 'this' returns some other way;
|
|
/// HasThisReturn only specifies a contract, not the implementation
|
|
if (HasThisReturn(CGF.CurGD))
|
|
CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
|
|
}
|
|
|
|
unsigned ItaniumCXXABI::addImplicitConstructorArgs(
|
|
CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
|
|
bool ForVirtualBase, bool Delegating, CallArgList &Args) {
|
|
if (!NeedsVTTParameter(GlobalDecl(D, Type)))
|
|
return 0;
|
|
|
|
// Insert the implicit 'vtt' argument as the second argument.
|
|
llvm::Value *VTT =
|
|
CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating);
|
|
QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
|
|
Args.insert(Args.begin() + 1,
|
|
CallArg(RValue::get(VTT), VTTTy, /*needscopy=*/false));
|
|
return 1; // Added one arg.
|
|
}
|
|
|
|
void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *DD,
|
|
CXXDtorType Type, bool ForVirtualBase,
|
|
bool Delegating, llvm::Value *This) {
|
|
GlobalDecl GD(DD, Type);
|
|
llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating);
|
|
QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
|
|
|
|
llvm::Value *Callee = nullptr;
|
|
if (getContext().getLangOpts().AppleKext)
|
|
Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent());
|
|
|
|
if (!Callee)
|
|
Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
|
|
|
|
// FIXME: Provide a source location here.
|
|
CGF.EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
|
|
VTT, VTTTy, nullptr, nullptr);
|
|
}
|
|
|
|
void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
|
|
const CXXRecordDecl *RD) {
|
|
llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits());
|
|
if (VTable->hasInitializer())
|
|
return;
|
|
|
|
ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
|
|
const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
|
|
llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
|
|
|
|
// Create and set the initializer.
|
|
llvm::Constant *Init = CGVT.CreateVTableInitializer(
|
|
RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(),
|
|
VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks());
|
|
VTable->setInitializer(Init);
|
|
|
|
// Set the correct linkage.
|
|
VTable->setLinkage(Linkage);
|
|
|
|
// Set the right visibility.
|
|
CGM.setGlobalVisibility(VTable, RD);
|
|
|
|
// If this is the magic class __cxxabiv1::__fundamental_type_info,
|
|
// we will emit the typeinfo for the fundamental types. This is the
|
|
// same behaviour as GCC.
|
|
const DeclContext *DC = RD->getDeclContext();
|
|
if (RD->getIdentifier() &&
|
|
RD->getIdentifier()->isStr("__fundamental_type_info") &&
|
|
isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() &&
|
|
cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
|
|
DC->getParent()->isTranslationUnit())
|
|
CGM.EmitFundamentalRTTIDescriptors();
|
|
}
|
|
|
|
llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor(
|
|
CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
|
|
bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CGF.CurGD);
|
|
NeedsVirtualOffset = (NeedsVTTParam && NearestVBase);
|
|
|
|
llvm::Value *VTableAddressPoint;
|
|
if (NeedsVTTParam && (Base.getBase()->getNumVBases() || NearestVBase)) {
|
|
// Get the secondary vpointer index.
|
|
uint64_t VirtualPointerIndex =
|
|
CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
|
|
|
|
/// Load the VTT.
|
|
llvm::Value *VTT = CGF.LoadCXXVTT();
|
|
if (VirtualPointerIndex)
|
|
VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
|
|
|
|
// And load the address point from the VTT.
|
|
VTableAddressPoint = CGF.Builder.CreateLoad(VTT);
|
|
} else {
|
|
llvm::Constant *VTable =
|
|
CGM.getCXXABI().getAddrOfVTable(VTableClass, CharUnits());
|
|
uint64_t AddressPoint = CGM.getItaniumVTableContext()
|
|
.getVTableLayout(VTableClass)
|
|
.getAddressPoint(Base);
|
|
VTableAddressPoint =
|
|
CGF.Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
|
|
}
|
|
|
|
return VTableAddressPoint;
|
|
}
|
|
|
|
llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr(
|
|
BaseSubobject Base, const CXXRecordDecl *VTableClass) {
|
|
llvm::Constant *VTable = getAddrOfVTable(VTableClass, CharUnits());
|
|
|
|
// Find the appropriate vtable within the vtable group.
|
|
uint64_t AddressPoint = CGM.getItaniumVTableContext()
|
|
.getVTableLayout(VTableClass)
|
|
.getAddressPoint(Base);
|
|
llvm::Value *Indices[] = {
|
|
llvm::ConstantInt::get(CGM.Int64Ty, 0),
|
|
llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
|
|
};
|
|
|
|
return llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Indices);
|
|
}
|
|
|
|
llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
|
|
CharUnits VPtrOffset) {
|
|
assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets");
|
|
|
|
llvm::GlobalVariable *&VTable = VTables[RD];
|
|
if (VTable)
|
|
return VTable;
|
|
|
|
// Queue up this v-table for possible deferred emission.
|
|
CGM.addDeferredVTable(RD);
|
|
|
|
SmallString<256> OutName;
|
|
llvm::raw_svector_ostream Out(OutName);
|
|
getMangleContext().mangleCXXVTable(RD, Out);
|
|
Out.flush();
|
|
StringRef Name = OutName.str();
|
|
|
|
ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
|
|
llvm::ArrayType *ArrayType = llvm::ArrayType::get(
|
|
CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents());
|
|
|
|
VTable = CGM.CreateOrReplaceCXXRuntimeVariable(
|
|
Name, ArrayType, llvm::GlobalValue::ExternalLinkage);
|
|
VTable->setUnnamedAddr(true);
|
|
|
|
if (RD->hasAttr<DLLImportAttr>())
|
|
VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
|
|
else if (RD->hasAttr<DLLExportAttr>())
|
|
VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
|
|
return VTable;
|
|
}
|
|
|
|
llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
|
|
GlobalDecl GD,
|
|
llvm::Value *This,
|
|
llvm::Type *Ty) {
|
|
GD = GD.getCanonicalDecl();
|
|
Ty = Ty->getPointerTo()->getPointerTo();
|
|
llvm::Value *VTable = CGF.GetVTablePtr(This, Ty);
|
|
|
|
uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD);
|
|
llvm::Value *VFuncPtr =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn");
|
|
return CGF.Builder.CreateLoad(VFuncPtr);
|
|
}
|
|
|
|
void ItaniumCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *Dtor,
|
|
CXXDtorType DtorType,
|
|
SourceLocation CallLoc,
|
|
llvm::Value *This) {
|
|
assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
|
|
|
|
const CGFunctionInfo *FInfo
|
|
= &CGM.getTypes().arrangeCXXDestructor(Dtor, DtorType);
|
|
llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
|
|
llvm::Value *Callee =
|
|
getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty);
|
|
|
|
CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This,
|
|
/*ImplicitParam=*/nullptr, QualType(), nullptr,
|
|
nullptr);
|
|
}
|
|
|
|
void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
|
|
CodeGenVTables &VTables = CGM.getVTables();
|
|
llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
|
|
VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD);
|
|
}
|
|
|
|
static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF,
|
|
llvm::Value *Ptr,
|
|
int64_t NonVirtualAdjustment,
|
|
int64_t VirtualAdjustment,
|
|
bool IsReturnAdjustment) {
|
|
if (!NonVirtualAdjustment && !VirtualAdjustment)
|
|
return Ptr;
|
|
|
|
llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
|
|
llvm::Value *V = CGF.Builder.CreateBitCast(Ptr, Int8PtrTy);
|
|
|
|
if (NonVirtualAdjustment && !IsReturnAdjustment) {
|
|
// Perform the non-virtual adjustment for a base-to-derived cast.
|
|
V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
|
|
}
|
|
|
|
if (VirtualAdjustment) {
|
|
llvm::Type *PtrDiffTy =
|
|
CGF.ConvertType(CGF.getContext().getPointerDiffType());
|
|
|
|
// Perform the virtual adjustment.
|
|
llvm::Value *VTablePtrPtr =
|
|
CGF.Builder.CreateBitCast(V, Int8PtrTy->getPointerTo());
|
|
|
|
llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
|
|
|
|
llvm::Value *OffsetPtr =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
|
|
|
|
OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
|
|
|
|
// Load the adjustment offset from the vtable.
|
|
llvm::Value *Offset = CGF.Builder.CreateLoad(OffsetPtr);
|
|
|
|
// Adjust our pointer.
|
|
V = CGF.Builder.CreateInBoundsGEP(V, Offset);
|
|
}
|
|
|
|
if (NonVirtualAdjustment && IsReturnAdjustment) {
|
|
// Perform the non-virtual adjustment for a derived-to-base cast.
|
|
V = CGF.Builder.CreateConstInBoundsGEP1_64(V, NonVirtualAdjustment);
|
|
}
|
|
|
|
// Cast back to the original type.
|
|
return CGF.Builder.CreateBitCast(V, Ptr->getType());
|
|
}
|
|
|
|
llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF,
|
|
llvm::Value *This,
|
|
const ThisAdjustment &TA) {
|
|
return performTypeAdjustment(CGF, This, TA.NonVirtual,
|
|
TA.Virtual.Itanium.VCallOffsetOffset,
|
|
/*IsReturnAdjustment=*/false);
|
|
}
|
|
|
|
llvm::Value *
|
|
ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
|
|
const ReturnAdjustment &RA) {
|
|
return performTypeAdjustment(CGF, Ret, RA.NonVirtual,
|
|
RA.Virtual.Itanium.VBaseOffsetOffset,
|
|
/*IsReturnAdjustment=*/true);
|
|
}
|
|
|
|
void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
|
|
RValue RV, QualType ResultType) {
|
|
if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
|
|
return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
|
|
|
|
// Destructor thunks in the ARM ABI have indeterminate results.
|
|
llvm::Type *T =
|
|
cast<llvm::PointerType>(CGF.ReturnValue->getType())->getElementType();
|
|
RValue Undef = RValue::get(llvm::UndefValue::get(T));
|
|
return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
|
|
}
|
|
|
|
/************************** Array allocation cookies **************************/
|
|
|
|
CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
|
|
// The array cookie is a size_t; pad that up to the element alignment.
|
|
// The cookie is actually right-justified in that space.
|
|
return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
|
|
CGM.getContext().getTypeAlignInChars(elementType));
|
|
}
|
|
|
|
llvm::Value *ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements,
|
|
const CXXNewExpr *expr,
|
|
QualType ElementType) {
|
|
assert(requiresArrayCookie(expr));
|
|
|
|
unsigned AS = NewPtr->getType()->getPointerAddressSpace();
|
|
|
|
ASTContext &Ctx = getContext();
|
|
QualType SizeTy = Ctx.getSizeType();
|
|
CharUnits SizeSize = Ctx.getTypeSizeInChars(SizeTy);
|
|
|
|
// The size of the cookie.
|
|
CharUnits CookieSize =
|
|
std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
|
|
assert(CookieSize == getArrayCookieSizeImpl(ElementType));
|
|
|
|
// Compute an offset to the cookie.
|
|
llvm::Value *CookiePtr = NewPtr;
|
|
CharUnits CookieOffset = CookieSize - SizeSize;
|
|
if (!CookieOffset.isZero())
|
|
CookiePtr = CGF.Builder.CreateConstInBoundsGEP1_64(CookiePtr,
|
|
CookieOffset.getQuantity());
|
|
|
|
// Write the number of elements into the appropriate slot.
|
|
llvm::Value *NumElementsPtr
|
|
= CGF.Builder.CreateBitCast(CookiePtr,
|
|
CGF.ConvertType(SizeTy)->getPointerTo(AS));
|
|
CGF.Builder.CreateStore(NumElements, NumElementsPtr);
|
|
|
|
// Finally, compute a pointer to the actual data buffer by skipping
|
|
// over the cookie completely.
|
|
return CGF.Builder.CreateConstInBoundsGEP1_64(NewPtr,
|
|
CookieSize.getQuantity());
|
|
}
|
|
|
|
llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
|
|
llvm::Value *allocPtr,
|
|
CharUnits cookieSize) {
|
|
// The element size is right-justified in the cookie.
|
|
llvm::Value *numElementsPtr = allocPtr;
|
|
CharUnits numElementsOffset =
|
|
cookieSize - CharUnits::fromQuantity(CGF.SizeSizeInBytes);
|
|
if (!numElementsOffset.isZero())
|
|
numElementsPtr =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(numElementsPtr,
|
|
numElementsOffset.getQuantity());
|
|
|
|
unsigned AS = allocPtr->getType()->getPointerAddressSpace();
|
|
numElementsPtr =
|
|
CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
|
|
return CGF.Builder.CreateLoad(numElementsPtr);
|
|
}
|
|
|
|
CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
|
|
// ARM says that the cookie is always:
|
|
// struct array_cookie {
|
|
// std::size_t element_size; // element_size != 0
|
|
// std::size_t element_count;
|
|
// };
|
|
// But the base ABI doesn't give anything an alignment greater than
|
|
// 8, so we can dismiss this as typical ABI-author blindness to
|
|
// actual language complexity and round up to the element alignment.
|
|
return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
|
|
CGM.getContext().getTypeAlignInChars(elementType));
|
|
}
|
|
|
|
llvm::Value *ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
|
|
llvm::Value *newPtr,
|
|
llvm::Value *numElements,
|
|
const CXXNewExpr *expr,
|
|
QualType elementType) {
|
|
assert(requiresArrayCookie(expr));
|
|
|
|
// NewPtr is a char*, but we generalize to arbitrary addrspaces.
|
|
unsigned AS = newPtr->getType()->getPointerAddressSpace();
|
|
|
|
// The cookie is always at the start of the buffer.
|
|
llvm::Value *cookie = newPtr;
|
|
|
|
// The first element is the element size.
|
|
cookie = CGF.Builder.CreateBitCast(cookie, CGF.SizeTy->getPointerTo(AS));
|
|
llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
|
|
getContext().getTypeSizeInChars(elementType).getQuantity());
|
|
CGF.Builder.CreateStore(elementSize, cookie);
|
|
|
|
// The second element is the element count.
|
|
cookie = CGF.Builder.CreateConstInBoundsGEP1_32(cookie, 1);
|
|
CGF.Builder.CreateStore(numElements, cookie);
|
|
|
|
// Finally, compute a pointer to the actual data buffer by skipping
|
|
// over the cookie completely.
|
|
CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
|
|
return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
|
|
cookieSize.getQuantity());
|
|
}
|
|
|
|
llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
|
|
llvm::Value *allocPtr,
|
|
CharUnits cookieSize) {
|
|
// The number of elements is at offset sizeof(size_t) relative to
|
|
// the allocated pointer.
|
|
llvm::Value *numElementsPtr
|
|
= CGF.Builder.CreateConstInBoundsGEP1_64(allocPtr, CGF.SizeSizeInBytes);
|
|
|
|
unsigned AS = allocPtr->getType()->getPointerAddressSpace();
|
|
numElementsPtr =
|
|
CGF.Builder.CreateBitCast(numElementsPtr, CGF.SizeTy->getPointerTo(AS));
|
|
return CGF.Builder.CreateLoad(numElementsPtr);
|
|
}
|
|
|
|
/*********************** Static local initialization **************************/
|
|
|
|
static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
|
|
llvm::PointerType *GuardPtrTy) {
|
|
// int __cxa_guard_acquire(__guard *guard_object);
|
|
llvm::FunctionType *FTy =
|
|
llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
|
|
GuardPtrTy, /*isVarArg=*/false);
|
|
return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
|
|
llvm::AttributeSet::get(CGM.getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoUnwind));
|
|
}
|
|
|
|
static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
|
|
llvm::PointerType *GuardPtrTy) {
|
|
// void __cxa_guard_release(__guard *guard_object);
|
|
llvm::FunctionType *FTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
|
|
return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
|
|
llvm::AttributeSet::get(CGM.getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoUnwind));
|
|
}
|
|
|
|
static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
|
|
llvm::PointerType *GuardPtrTy) {
|
|
// void __cxa_guard_abort(__guard *guard_object);
|
|
llvm::FunctionType *FTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
|
|
return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
|
|
llvm::AttributeSet::get(CGM.getLLVMContext(),
|
|
llvm::AttributeSet::FunctionIndex,
|
|
llvm::Attribute::NoUnwind));
|
|
}
|
|
|
|
namespace {
|
|
struct CallGuardAbort : EHScopeStack::Cleanup {
|
|
llvm::GlobalVariable *Guard;
|
|
CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
|
|
Guard);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// The ARM code here follows the Itanium code closely enough that we
|
|
/// just special-case it at particular places.
|
|
void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
|
|
const VarDecl &D,
|
|
llvm::GlobalVariable *var,
|
|
bool shouldPerformInit) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
// We only need to use thread-safe statics for local non-TLS variables;
|
|
// global initialization is always single-threaded.
|
|
bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
|
|
D.isLocalVarDecl() && !D.getTLSKind();
|
|
|
|
// If we have a global variable with internal linkage and thread-safe statics
|
|
// are disabled, we can just let the guard variable be of type i8.
|
|
bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
|
|
|
|
llvm::IntegerType *guardTy;
|
|
if (useInt8GuardVariable) {
|
|
guardTy = CGF.Int8Ty;
|
|
} else {
|
|
// Guard variables are 64 bits in the generic ABI and size width on ARM
|
|
// (i.e. 32-bit on AArch32, 64-bit on AArch64).
|
|
guardTy = (UseARMGuardVarABI ? CGF.SizeTy : CGF.Int64Ty);
|
|
}
|
|
llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
|
|
|
|
// Create the guard variable if we don't already have it (as we
|
|
// might if we're double-emitting this function body).
|
|
llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
|
|
if (!guard) {
|
|
// Mangle the name for the guard.
|
|
SmallString<256> guardName;
|
|
{
|
|
llvm::raw_svector_ostream out(guardName);
|
|
getMangleContext().mangleStaticGuardVariable(&D, out);
|
|
out.flush();
|
|
}
|
|
|
|
// Create the guard variable with a zero-initializer.
|
|
// Just absorb linkage and visibility from the guarded variable.
|
|
guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
|
|
false, var->getLinkage(),
|
|
llvm::ConstantInt::get(guardTy, 0),
|
|
guardName.str());
|
|
guard->setVisibility(var->getVisibility());
|
|
// If the variable is thread-local, so is its guard variable.
|
|
guard->setThreadLocalMode(var->getThreadLocalMode());
|
|
|
|
CGM.setStaticLocalDeclGuardAddress(&D, guard);
|
|
}
|
|
|
|
// Test whether the variable has completed initialization.
|
|
//
|
|
// Itanium C++ ABI 3.3.2:
|
|
// The following is pseudo-code showing how these functions can be used:
|
|
// if (obj_guard.first_byte == 0) {
|
|
// if ( __cxa_guard_acquire (&obj_guard) ) {
|
|
// try {
|
|
// ... initialize the object ...;
|
|
// } catch (...) {
|
|
// __cxa_guard_abort (&obj_guard);
|
|
// throw;
|
|
// }
|
|
// ... queue object destructor with __cxa_atexit() ...;
|
|
// __cxa_guard_release (&obj_guard);
|
|
// }
|
|
// }
|
|
|
|
// Load the first byte of the guard variable.
|
|
llvm::LoadInst *LI =
|
|
Builder.CreateLoad(Builder.CreateBitCast(guard, CGM.Int8PtrTy));
|
|
LI->setAlignment(1);
|
|
|
|
// Itanium ABI:
|
|
// An implementation supporting thread-safety on multiprocessor
|
|
// systems must also guarantee that references to the initialized
|
|
// object do not occur before the load of the initialization flag.
|
|
//
|
|
// In LLVM, we do this by marking the load Acquire.
|
|
if (threadsafe)
|
|
LI->setAtomic(llvm::Acquire);
|
|
|
|
// For ARM, we should only check the first bit, rather than the entire byte:
|
|
//
|
|
// ARM C++ ABI 3.2.3.1:
|
|
// To support the potential use of initialization guard variables
|
|
// as semaphores that are the target of ARM SWP and LDREX/STREX
|
|
// synchronizing instructions we define a static initialization
|
|
// guard variable to be a 4-byte aligned, 4-byte word with the
|
|
// following inline access protocol.
|
|
// #define INITIALIZED 1
|
|
// if ((obj_guard & INITIALIZED) != INITIALIZED) {
|
|
// if (__cxa_guard_acquire(&obj_guard))
|
|
// ...
|
|
// }
|
|
//
|
|
// and similarly for ARM64:
|
|
//
|
|
// ARM64 C++ ABI 3.2.2:
|
|
// This ABI instead only specifies the value bit 0 of the static guard
|
|
// variable; all other bits are platform defined. Bit 0 shall be 0 when the
|
|
// variable is not initialized and 1 when it is.
|
|
llvm::Value *V =
|
|
(UseARMGuardVarABI && !useInt8GuardVariable)
|
|
? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1))
|
|
: LI;
|
|
llvm::Value *isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
|
|
|
|
llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
|
|
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
|
|
|
|
// Check if the first byte of the guard variable is zero.
|
|
Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
|
|
|
|
CGF.EmitBlock(InitCheckBlock);
|
|
|
|
// Variables used when coping with thread-safe statics and exceptions.
|
|
if (threadsafe) {
|
|
// Call __cxa_guard_acquire.
|
|
llvm::Value *V
|
|
= CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
|
|
|
|
llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
|
|
|
|
Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
|
|
InitBlock, EndBlock);
|
|
|
|
// Call __cxa_guard_abort along the exceptional edge.
|
|
CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
|
|
|
|
CGF.EmitBlock(InitBlock);
|
|
}
|
|
|
|
// Emit the initializer and add a global destructor if appropriate.
|
|
CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
|
|
|
|
if (threadsafe) {
|
|
// Pop the guard-abort cleanup if we pushed one.
|
|
CGF.PopCleanupBlock();
|
|
|
|
// Call __cxa_guard_release. This cannot throw.
|
|
CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guard);
|
|
} else {
|
|
Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guard);
|
|
}
|
|
|
|
CGF.EmitBlock(EndBlock);
|
|
}
|
|
|
|
/// Register a global destructor using __cxa_atexit.
|
|
static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
|
|
llvm::Constant *dtor,
|
|
llvm::Constant *addr,
|
|
bool TLS) {
|
|
const char *Name = "__cxa_atexit";
|
|
if (TLS) {
|
|
const llvm::Triple &T = CGF.getTarget().getTriple();
|
|
Name = T.isMacOSX() ? "_tlv_atexit" : "__cxa_thread_atexit";
|
|
}
|
|
|
|
// We're assuming that the destructor function is something we can
|
|
// reasonably call with the default CC. Go ahead and cast it to the
|
|
// right prototype.
|
|
llvm::Type *dtorTy =
|
|
llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
|
|
|
|
// extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
|
|
llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
|
|
llvm::FunctionType *atexitTy =
|
|
llvm::FunctionType::get(CGF.IntTy, paramTys, false);
|
|
|
|
// Fetch the actual function.
|
|
llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
|
|
if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
|
|
fn->setDoesNotThrow();
|
|
|
|
// Create a variable that binds the atexit to this shared object.
|
|
llvm::Constant *handle =
|
|
CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
|
|
|
|
llvm::Value *args[] = {
|
|
llvm::ConstantExpr::getBitCast(dtor, dtorTy),
|
|
llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
|
|
handle
|
|
};
|
|
CGF.EmitNounwindRuntimeCall(atexit, args);
|
|
}
|
|
|
|
/// Register a global destructor as best as we know how.
|
|
void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
|
|
const VarDecl &D,
|
|
llvm::Constant *dtor,
|
|
llvm::Constant *addr) {
|
|
// Use __cxa_atexit if available.
|
|
if (CGM.getCodeGenOpts().CXAAtExit)
|
|
return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
|
|
|
|
if (D.getTLSKind())
|
|
CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
|
|
|
|
// In Apple kexts, we want to add a global destructor entry.
|
|
// FIXME: shouldn't this be guarded by some variable?
|
|
if (CGM.getLangOpts().AppleKext) {
|
|
// Generate a global destructor entry.
|
|
return CGM.AddCXXDtorEntry(dtor, addr);
|
|
}
|
|
|
|
CGF.registerGlobalDtorWithAtExit(D, dtor, addr);
|
|
}
|
|
|
|
/// Get the appropriate linkage for the wrapper function. This is essentially
|
|
/// the weak form of the variable's linkage; every translation unit which wneeds
|
|
/// the wrapper emits a copy, and we want the linker to merge them.
|
|
static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage(
|
|
llvm::GlobalValue::LinkageTypes VarLinkage) {
|
|
// For internal linkage variables, we don't need an external or weak wrapper.
|
|
if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
|
|
return VarLinkage;
|
|
return llvm::GlobalValue::WeakODRLinkage;
|
|
}
|
|
|
|
llvm::Function *
|
|
ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
|
|
llvm::GlobalVariable *Var) {
|
|
// Mangle the name for the thread_local wrapper function.
|
|
SmallString<256> WrapperName;
|
|
{
|
|
llvm::raw_svector_ostream Out(WrapperName);
|
|
getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
|
|
Out.flush();
|
|
}
|
|
|
|
if (llvm::Value *V = Var->getParent()->getNamedValue(WrapperName))
|
|
return cast<llvm::Function>(V);
|
|
|
|
llvm::Type *RetTy = Var->getType();
|
|
if (VD->getType()->isReferenceType())
|
|
RetTy = RetTy->getPointerElementType();
|
|
|
|
llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
|
|
llvm::Function *Wrapper = llvm::Function::Create(
|
|
FnTy, getThreadLocalWrapperLinkage(
|
|
CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
|
|
WrapperName.str(), &CGM.getModule());
|
|
// Always resolve references to the wrapper at link time.
|
|
if (!Wrapper->hasLocalLinkage())
|
|
Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
return Wrapper;
|
|
}
|
|
|
|
void ItaniumCXXABI::EmitThreadLocalInitFuncs(
|
|
llvm::ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *> > Decls,
|
|
llvm::Function *InitFunc) {
|
|
for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
|
|
const VarDecl *VD = Decls[I].first;
|
|
llvm::GlobalVariable *Var = Decls[I].second;
|
|
|
|
// Mangle the name for the thread_local initialization function.
|
|
SmallString<256> InitFnName;
|
|
{
|
|
llvm::raw_svector_ostream Out(InitFnName);
|
|
getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
|
|
Out.flush();
|
|
}
|
|
|
|
// If we have a definition for the variable, emit the initialization
|
|
// function as an alias to the global Init function (if any). Otherwise,
|
|
// produce a declaration of the initialization function.
|
|
llvm::GlobalValue *Init = nullptr;
|
|
bool InitIsInitFunc = false;
|
|
if (VD->hasDefinition()) {
|
|
InitIsInitFunc = true;
|
|
if (InitFunc)
|
|
Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(),
|
|
InitFunc);
|
|
} else {
|
|
// Emit a weak global function referring to the initialization function.
|
|
// This function will not exist if the TU defining the thread_local
|
|
// variable in question does not need any dynamic initialization for
|
|
// its thread_local variables.
|
|
llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
|
|
Init = llvm::Function::Create(
|
|
FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
|
|
&CGM.getModule());
|
|
}
|
|
|
|
if (Init)
|
|
Init->setVisibility(Var->getVisibility());
|
|
|
|
llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
|
|
llvm::LLVMContext &Context = CGM.getModule().getContext();
|
|
llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
|
|
CGBuilderTy Builder(Entry);
|
|
if (InitIsInitFunc) {
|
|
if (Init)
|
|
Builder.CreateCall(Init);
|
|
} else {
|
|
// Don't know whether we have an init function. Call it if it exists.
|
|
llvm::Value *Have = Builder.CreateIsNotNull(Init);
|
|
llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
|
|
llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
|
|
Builder.CreateCondBr(Have, InitBB, ExitBB);
|
|
|
|
Builder.SetInsertPoint(InitBB);
|
|
Builder.CreateCall(Init);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB);
|
|
}
|
|
|
|
// For a reference, the result of the wrapper function is a pointer to
|
|
// the referenced object.
|
|
llvm::Value *Val = Var;
|
|
if (VD->getType()->isReferenceType()) {
|
|
llvm::LoadInst *LI = Builder.CreateLoad(Val);
|
|
LI->setAlignment(CGM.getContext().getDeclAlign(VD).getQuantity());
|
|
Val = LI;
|
|
}
|
|
|
|
Builder.CreateRet(Val);
|
|
}
|
|
}
|
|
|
|
LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
|
|
const VarDecl *VD,
|
|
QualType LValType) {
|
|
QualType T = VD->getType();
|
|
llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
|
|
llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
|
|
llvm::Function *Wrapper =
|
|
getOrCreateThreadLocalWrapper(VD, cast<llvm::GlobalVariable>(Val));
|
|
|
|
Val = CGF.Builder.CreateCall(Wrapper);
|
|
|
|
LValue LV;
|
|
if (VD->getType()->isReferenceType())
|
|
LV = CGF.MakeNaturalAlignAddrLValue(Val, LValType);
|
|
else
|
|
LV = CGF.MakeAddrLValue(Val, LValType, CGF.getContext().getDeclAlign(VD));
|
|
// FIXME: need setObjCGCLValueClass?
|
|
return LV;
|
|
}
|
|
|
|
/// Return whether the given global decl needs a VTT parameter, which it does
|
|
/// if it's a base constructor or destructor with virtual bases.
|
|
bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
|
|
|
|
// We don't have any virtual bases, just return early.
|
|
if (!MD->getParent()->getNumVBases())
|
|
return false;
|
|
|
|
// Check if we have a base constructor.
|
|
if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
|
|
return true;
|
|
|
|
// Check if we have a base destructor.
|
|
if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
|
|
return true;
|
|
|
|
return false;
|
|
}
|