forked from OSchip/llvm-project
764 lines
27 KiB
C++
764 lines
27 KiB
C++
//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
///
|
||
/// \file
|
||
/// The goal of hot/cold splitting is to improve the memory locality of code.
|
||
/// The splitting pass does this by identifying cold blocks and moving them into
|
||
/// separate functions.
|
||
///
|
||
/// When the splitting pass finds a cold block (referred to as "the sink"), it
|
||
/// grows a maximal cold region around that block. The maximal region contains
|
||
/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
|
||
/// cold as the sink. Once a region is found, it's split out of the original
|
||
/// function provided it's profitable to do so.
|
||
///
|
||
/// [*] In practice, there is some added complexity because some blocks are not
|
||
/// safe to extract.
|
||
///
|
||
/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
|
||
/// TODO: Reorder outlined functions.
|
||
///
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "llvm/ADT/PostOrderIterator.h"
|
||
#include "llvm/ADT/SmallVector.h"
|
||
#include "llvm/ADT/Statistic.h"
|
||
#include "llvm/Analysis/AliasAnalysis.h"
|
||
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
||
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
||
#include "llvm/Analysis/CFG.h"
|
||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
#include "llvm/Analysis/PostDominators.h"
|
||
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
#include "llvm/IR/BasicBlock.h"
|
||
#include "llvm/IR/CFG.h"
|
||
#include "llvm/IR/CallSite.h"
|
||
#include "llvm/IR/DataLayout.h"
|
||
#include "llvm/IR/DiagnosticInfo.h"
|
||
#include "llvm/IR/Dominators.h"
|
||
#include "llvm/IR/Function.h"
|
||
#include "llvm/IR/Instruction.h"
|
||
#include "llvm/IR/Instructions.h"
|
||
#include "llvm/IR/IntrinsicInst.h"
|
||
#include "llvm/IR/Metadata.h"
|
||
#include "llvm/IR/Module.h"
|
||
#include "llvm/IR/PassManager.h"
|
||
#include "llvm/IR/Type.h"
|
||
#include "llvm/IR/Use.h"
|
||
#include "llvm/IR/User.h"
|
||
#include "llvm/IR/Value.h"
|
||
#include "llvm/Pass.h"
|
||
#include "llvm/Support/BlockFrequency.h"
|
||
#include "llvm/Support/BranchProbability.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "llvm/Transforms/IPO.h"
|
||
#include "llvm/Transforms/IPO/HotColdSplitting.h"
|
||
#include "llvm/Transforms/Scalar.h"
|
||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||
#include "llvm/Transforms/Utils/Cloning.h"
|
||
#include "llvm/Transforms/Utils/CodeExtractor.h"
|
||
#include "llvm/Transforms/Utils/Local.h"
|
||
#include "llvm/Transforms/Utils/ValueMapper.h"
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
|
||
#define DEBUG_TYPE "hotcoldsplit"
|
||
|
||
STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
|
||
STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
|
||
|
||
using namespace llvm;
|
||
|
||
static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
|
||
cl::init(true), cl::Hidden);
|
||
|
||
static cl::opt<int>
|
||
SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
|
||
cl::desc("Base penalty for splitting cold code (as a "
|
||
"multiple of TCC_Basic)"));
|
||
|
||
namespace {
|
||
|
||
/// A sequence of basic blocks.
|
||
///
|
||
/// A 0-sized SmallVector is slightly cheaper to move than a std::vector.
|
||
using BlockSequence = SmallVector<BasicBlock *, 0>;
|
||
|
||
// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
|
||
// this function unless you modify the MBB version as well.
|
||
//
|
||
/// A no successor, non-return block probably ends in unreachable and is cold.
|
||
/// Also consider a block that ends in an indirect branch to be a return block,
|
||
/// since many targets use plain indirect branches to return.
|
||
bool blockEndsInUnreachable(const BasicBlock &BB) {
|
||
if (!succ_empty(&BB))
|
||
return false;
|
||
if (BB.empty())
|
||
return true;
|
||
const Instruction *I = BB.getTerminator();
|
||
return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
|
||
}
|
||
|
||
bool unlikelyExecuted(BasicBlock &BB) {
|
||
// Exception handling blocks are unlikely executed.
|
||
if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
|
||
return true;
|
||
|
||
// The block is cold if it calls/invokes a cold function. However, do not
|
||
// mark sanitizer traps as cold.
|
||
for (Instruction &I : BB)
|
||
if (auto CS = CallSite(&I))
|
||
if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
|
||
return true;
|
||
|
||
// The block is cold if it has an unreachable terminator, unless it's
|
||
// preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
|
||
if (blockEndsInUnreachable(BB)) {
|
||
if (auto *CI =
|
||
dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
|
||
if (CI->hasFnAttr(Attribute::NoReturn))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// Check whether it's safe to outline \p BB.
|
||
static bool mayExtractBlock(const BasicBlock &BB) {
|
||
// EH pads are unsafe to outline because doing so breaks EH type tables. It
|
||
// follows that invoke instructions cannot be extracted, because CodeExtractor
|
||
// requires unwind destinations to be within the extraction region.
|
||
//
|
||
// Resumes that are not reachable from a cleanup landing pad are considered to
|
||
// be unreachable. It’s not safe to split them out either.
|
||
auto Term = BB.getTerminator();
|
||
return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
|
||
!isa<ResumeInst>(Term);
|
||
}
|
||
|
||
/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
|
||
/// If \p UpdateEntryCount is true (set when this is a new split function and
|
||
/// module has profile data), set entry count to 0 to ensure treated as cold.
|
||
/// Return true if the function is changed.
|
||
static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
|
||
assert(!F.hasOptNone() && "Can't mark this cold");
|
||
bool Changed = false;
|
||
if (!F.hasFnAttribute(Attribute::Cold)) {
|
||
F.addFnAttr(Attribute::Cold);
|
||
Changed = true;
|
||
}
|
||
if (!F.hasFnAttribute(Attribute::MinSize)) {
|
||
F.addFnAttr(Attribute::MinSize);
|
||
Changed = true;
|
||
}
|
||
if (UpdateEntryCount) {
|
||
// Set the entry count to 0 to ensure it is placed in the unlikely text
|
||
// section when function sections are enabled.
|
||
F.setEntryCount(0);
|
||
Changed = true;
|
||
}
|
||
|
||
return Changed;
|
||
}
|
||
|
||
class HotColdSplitting {
|
||
public:
|
||
HotColdSplitting(ProfileSummaryInfo *ProfSI,
|
||
function_ref<BlockFrequencyInfo *(Function &)> GBFI,
|
||
function_ref<TargetTransformInfo &(Function &)> GTTI,
|
||
std::function<OptimizationRemarkEmitter &(Function &)> *GORE,
|
||
function_ref<AssumptionCache *(Function &)> LAC)
|
||
: PSI(ProfSI), GetBFI(GBFI), GetTTI(GTTI), GetORE(GORE), LookupAC(LAC) {}
|
||
bool run(Module &M);
|
||
|
||
private:
|
||
bool isFunctionCold(const Function &F) const;
|
||
bool shouldOutlineFrom(const Function &F) const;
|
||
bool outlineColdRegions(Function &F, bool HasProfileSummary);
|
||
Function *extractColdRegion(const BlockSequence &Region, DominatorTree &DT,
|
||
BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
|
||
OptimizationRemarkEmitter &ORE,
|
||
AssumptionCache *AC, unsigned Count);
|
||
ProfileSummaryInfo *PSI;
|
||
function_ref<BlockFrequencyInfo *(Function &)> GetBFI;
|
||
function_ref<TargetTransformInfo &(Function &)> GetTTI;
|
||
std::function<OptimizationRemarkEmitter &(Function &)> *GetORE;
|
||
function_ref<AssumptionCache *(Function &)> LookupAC;
|
||
};
|
||
|
||
class HotColdSplittingLegacyPass : public ModulePass {
|
||
public:
|
||
static char ID;
|
||
HotColdSplittingLegacyPass() : ModulePass(ID) {
|
||
initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
|
||
}
|
||
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||
AU.addRequired<BlockFrequencyInfoWrapperPass>();
|
||
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||
AU.addUsedIfAvailable<AssumptionCacheTracker>();
|
||
}
|
||
|
||
bool runOnModule(Module &M) override;
|
||
};
|
||
|
||
} // end anonymous namespace
|
||
|
||
/// Check whether \p F is inherently cold.
|
||
bool HotColdSplitting::isFunctionCold(const Function &F) const {
|
||
if (F.hasFnAttribute(Attribute::Cold))
|
||
return true;
|
||
|
||
if (F.getCallingConv() == CallingConv::Cold)
|
||
return true;
|
||
|
||
if (PSI->isFunctionEntryCold(&F))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
// Returns false if the function should not be considered for hot-cold split
|
||
// optimization.
|
||
bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
|
||
if (F.hasFnAttribute(Attribute::AlwaysInline))
|
||
return false;
|
||
|
||
if (F.hasFnAttribute(Attribute::NoInline))
|
||
return false;
|
||
|
||
if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
|
||
F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
|
||
F.hasFnAttribute(Attribute::SanitizeThread) ||
|
||
F.hasFnAttribute(Attribute::SanitizeMemory))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/// Get the benefit score of outlining \p Region.
|
||
static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
|
||
TargetTransformInfo &TTI) {
|
||
// Sum up the code size costs of non-terminator instructions. Tight coupling
|
||
// with \ref getOutliningPenalty is needed to model the costs of terminators.
|
||
int Benefit = 0;
|
||
for (BasicBlock *BB : Region)
|
||
for (Instruction &I : BB->instructionsWithoutDebug())
|
||
if (&I != BB->getTerminator())
|
||
Benefit +=
|
||
TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
|
||
|
||
return Benefit;
|
||
}
|
||
|
||
/// Get the penalty score for outlining \p Region.
|
||
static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
|
||
unsigned NumInputs, unsigned NumOutputs) {
|
||
int Penalty = SplittingThreshold;
|
||
LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
|
||
|
||
// If the splitting threshold is set at or below zero, skip the usual
|
||
// profitability check.
|
||
if (SplittingThreshold <= 0)
|
||
return Penalty;
|
||
|
||
// The typical code size cost for materializing an argument for the outlined
|
||
// call.
|
||
LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
|
||
const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
|
||
Penalty += CostForArgMaterialization * NumInputs;
|
||
|
||
// The typical code size cost for an output alloca, its associated store, and
|
||
// its associated reload.
|
||
LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
|
||
const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
|
||
Penalty += CostForRegionOutput * NumOutputs;
|
||
|
||
// Find the number of distinct exit blocks for the region. Use a conservative
|
||
// check to determine whether control returns from the region.
|
||
bool NoBlocksReturn = true;
|
||
SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
|
||
for (BasicBlock *BB : Region) {
|
||
// If a block has no successors, only assume it does not return if it's
|
||
// unreachable.
|
||
if (succ_empty(BB)) {
|
||
NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
|
||
continue;
|
||
}
|
||
|
||
for (BasicBlock *SuccBB : successors(BB)) {
|
||
if (find(Region, SuccBB) == Region.end()) {
|
||
NoBlocksReturn = false;
|
||
SuccsOutsideRegion.insert(SuccBB);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Apply a `noreturn` bonus.
|
||
if (NoBlocksReturn) {
|
||
LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
|
||
<< " non-returning terminators\n");
|
||
Penalty -= Region.size();
|
||
}
|
||
|
||
// Apply a penalty for having more than one successor outside of the region.
|
||
// This penalty accounts for the switch needed in the caller.
|
||
if (!SuccsOutsideRegion.empty()) {
|
||
LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
|
||
<< " non-region successors\n");
|
||
Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
|
||
}
|
||
|
||
return Penalty;
|
||
}
|
||
|
||
Function *HotColdSplitting::extractColdRegion(const BlockSequence &Region,
|
||
DominatorTree &DT,
|
||
BlockFrequencyInfo *BFI,
|
||
TargetTransformInfo &TTI,
|
||
OptimizationRemarkEmitter &ORE,
|
||
AssumptionCache *AC,
|
||
unsigned Count) {
|
||
assert(!Region.empty());
|
||
|
||
// TODO: Pass BFI and BPI to update profile information.
|
||
CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
|
||
/* BPI */ nullptr, AC, /* AllowVarArgs */ false,
|
||
/* AllowAlloca */ false,
|
||
/* Suffix */ "cold." + std::to_string(Count));
|
||
|
||
// Perform a simple cost/benefit analysis to decide whether or not to permit
|
||
// splitting.
|
||
SetVector<Value *> Inputs, Outputs, Sinks;
|
||
CE.findInputsOutputs(Inputs, Outputs, Sinks);
|
||
int OutliningBenefit = getOutliningBenefit(Region, TTI);
|
||
int OutliningPenalty =
|
||
getOutliningPenalty(Region, Inputs.size(), Outputs.size());
|
||
LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
|
||
<< ", penalty = " << OutliningPenalty << "\n");
|
||
if (OutliningBenefit <= OutliningPenalty)
|
||
return nullptr;
|
||
|
||
Function *OrigF = Region[0]->getParent();
|
||
if (Function *OutF = CE.extractCodeRegion()) {
|
||
User *U = *OutF->user_begin();
|
||
CallInst *CI = cast<CallInst>(U);
|
||
CallSite CS(CI);
|
||
NumColdRegionsOutlined++;
|
||
if (TTI.useColdCCForColdCall(*OutF)) {
|
||
OutF->setCallingConv(CallingConv::Cold);
|
||
CS.setCallingConv(CallingConv::Cold);
|
||
}
|
||
CI->setIsNoInline();
|
||
|
||
markFunctionCold(*OutF, BFI != nullptr);
|
||
|
||
LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
|
||
ORE.emit([&]() {
|
||
return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
|
||
&*Region[0]->begin())
|
||
<< ore::NV("Original", OrigF) << " split cold code into "
|
||
<< ore::NV("Split", OutF);
|
||
});
|
||
return OutF;
|
||
}
|
||
|
||
ORE.emit([&]() {
|
||
return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
|
||
&*Region[0]->begin())
|
||
<< "Failed to extract region at block "
|
||
<< ore::NV("Block", Region.front());
|
||
});
|
||
return nullptr;
|
||
}
|
||
|
||
/// A pair of (basic block, score).
|
||
using BlockTy = std::pair<BasicBlock *, unsigned>;
|
||
|
||
namespace {
|
||
/// A maximal outlining region. This contains all blocks post-dominated by a
|
||
/// sink block, the sink block itself, and all blocks dominated by the sink.
|
||
/// If sink-predecessors and sink-successors cannot be extracted in one region,
|
||
/// the static constructor returns a list of suitable extraction regions.
|
||
class OutliningRegion {
|
||
/// A list of (block, score) pairs. A block's score is non-zero iff it's a
|
||
/// viable sub-region entry point. Blocks with higher scores are better entry
|
||
/// points (i.e. they are more distant ancestors of the sink block).
|
||
SmallVector<BlockTy, 0> Blocks = {};
|
||
|
||
/// The suggested entry point into the region. If the region has multiple
|
||
/// entry points, all blocks within the region may not be reachable from this
|
||
/// entry point.
|
||
BasicBlock *SuggestedEntryPoint = nullptr;
|
||
|
||
/// Whether the entire function is cold.
|
||
bool EntireFunctionCold = false;
|
||
|
||
/// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
|
||
static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
|
||
return mayExtractBlock(BB) ? Score : 0;
|
||
}
|
||
|
||
/// These scores should be lower than the score for predecessor blocks,
|
||
/// because regions starting at predecessor blocks are typically larger.
|
||
static constexpr unsigned ScoreForSuccBlock = 1;
|
||
static constexpr unsigned ScoreForSinkBlock = 1;
|
||
|
||
OutliningRegion(const OutliningRegion &) = delete;
|
||
OutliningRegion &operator=(const OutliningRegion &) = delete;
|
||
|
||
public:
|
||
OutliningRegion() = default;
|
||
OutliningRegion(OutliningRegion &&) = default;
|
||
OutliningRegion &operator=(OutliningRegion &&) = default;
|
||
|
||
static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
|
||
const DominatorTree &DT,
|
||
const PostDominatorTree &PDT) {
|
||
std::vector<OutliningRegion> Regions;
|
||
SmallPtrSet<BasicBlock *, 4> RegionBlocks;
|
||
|
||
Regions.emplace_back();
|
||
OutliningRegion *ColdRegion = &Regions.back();
|
||
|
||
auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
|
||
RegionBlocks.insert(BB);
|
||
ColdRegion->Blocks.emplace_back(BB, Score);
|
||
};
|
||
|
||
// The ancestor farthest-away from SinkBB, and also post-dominated by it.
|
||
unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
|
||
ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
|
||
unsigned BestScore = SinkScore;
|
||
|
||
// Visit SinkBB's ancestors using inverse DFS.
|
||
auto PredIt = ++idf_begin(&SinkBB);
|
||
auto PredEnd = idf_end(&SinkBB);
|
||
while (PredIt != PredEnd) {
|
||
BasicBlock &PredBB = **PredIt;
|
||
bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
|
||
|
||
// If the predecessor is cold and has no predecessors, the entire
|
||
// function must be cold.
|
||
if (SinkPostDom && pred_empty(&PredBB)) {
|
||
ColdRegion->EntireFunctionCold = true;
|
||
return Regions;
|
||
}
|
||
|
||
// If SinkBB does not post-dominate a predecessor, do not mark the
|
||
// predecessor (or any of its predecessors) cold.
|
||
if (!SinkPostDom || !mayExtractBlock(PredBB)) {
|
||
PredIt.skipChildren();
|
||
continue;
|
||
}
|
||
|
||
// Keep track of the post-dominated ancestor farthest away from the sink.
|
||
// The path length is always >= 2, ensuring that predecessor blocks are
|
||
// considered as entry points before the sink block.
|
||
unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
|
||
if (PredScore > BestScore) {
|
||
ColdRegion->SuggestedEntryPoint = &PredBB;
|
||
BestScore = PredScore;
|
||
}
|
||
|
||
addBlockToRegion(&PredBB, PredScore);
|
||
++PredIt;
|
||
}
|
||
|
||
// If the sink can be added to the cold region, do so. It's considered as
|
||
// an entry point before any sink-successor blocks.
|
||
//
|
||
// Otherwise, split cold sink-successor blocks using a separate region.
|
||
// This satisfies the requirement that all extraction blocks other than the
|
||
// first have predecessors within the extraction region.
|
||
if (mayExtractBlock(SinkBB)) {
|
||
addBlockToRegion(&SinkBB, SinkScore);
|
||
} else {
|
||
Regions.emplace_back();
|
||
ColdRegion = &Regions.back();
|
||
BestScore = 0;
|
||
}
|
||
|
||
// Find all successors of SinkBB dominated by SinkBB using DFS.
|
||
auto SuccIt = ++df_begin(&SinkBB);
|
||
auto SuccEnd = df_end(&SinkBB);
|
||
while (SuccIt != SuccEnd) {
|
||
BasicBlock &SuccBB = **SuccIt;
|
||
bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
|
||
|
||
// Don't allow the backwards & forwards DFSes to mark the same block.
|
||
bool DuplicateBlock = RegionBlocks.count(&SuccBB);
|
||
|
||
// If SinkBB does not dominate a successor, do not mark the successor (or
|
||
// any of its successors) cold.
|
||
if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
|
||
SuccIt.skipChildren();
|
||
continue;
|
||
}
|
||
|
||
unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
|
||
if (SuccScore > BestScore) {
|
||
ColdRegion->SuggestedEntryPoint = &SuccBB;
|
||
BestScore = SuccScore;
|
||
}
|
||
|
||
addBlockToRegion(&SuccBB, SuccScore);
|
||
++SuccIt;
|
||
}
|
||
|
||
return Regions;
|
||
}
|
||
|
||
/// Whether this region has nothing to extract.
|
||
bool empty() const { return !SuggestedEntryPoint; }
|
||
|
||
/// The blocks in this region.
|
||
ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
|
||
|
||
/// Whether the entire function containing this region is cold.
|
||
bool isEntireFunctionCold() const { return EntireFunctionCold; }
|
||
|
||
/// Remove a sub-region from this region and return it as a block sequence.
|
||
BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
|
||
assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
|
||
|
||
// Remove blocks dominated by the suggested entry point from this region.
|
||
// During the removal, identify the next best entry point into the region.
|
||
// Ensure that the first extracted block is the suggested entry point.
|
||
BlockSequence SubRegion = {SuggestedEntryPoint};
|
||
BasicBlock *NextEntryPoint = nullptr;
|
||
unsigned NextScore = 0;
|
||
auto RegionEndIt = Blocks.end();
|
||
auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
|
||
BasicBlock *BB = Block.first;
|
||
unsigned Score = Block.second;
|
||
bool InSubRegion =
|
||
BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
|
||
if (!InSubRegion && Score > NextScore) {
|
||
NextEntryPoint = BB;
|
||
NextScore = Score;
|
||
}
|
||
if (InSubRegion && BB != SuggestedEntryPoint)
|
||
SubRegion.push_back(BB);
|
||
return InSubRegion;
|
||
});
|
||
Blocks.erase(RegionStartIt, RegionEndIt);
|
||
|
||
// Update the suggested entry point.
|
||
SuggestedEntryPoint = NextEntryPoint;
|
||
|
||
return SubRegion;
|
||
}
|
||
};
|
||
} // namespace
|
||
|
||
bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
|
||
bool Changed = false;
|
||
|
||
// The set of cold blocks.
|
||
SmallPtrSet<BasicBlock *, 4> ColdBlocks;
|
||
|
||
// The worklist of non-intersecting regions left to outline.
|
||
SmallVector<OutliningRegion, 2> OutliningWorklist;
|
||
|
||
// Set up an RPO traversal. Experimentally, this performs better (outlines
|
||
// more) than a PO traversal, because we prevent region overlap by keeping
|
||
// the first region to contain a block.
|
||
ReversePostOrderTraversal<Function *> RPOT(&F);
|
||
|
||
// Calculate domtrees lazily. This reduces compile-time significantly.
|
||
std::unique_ptr<DominatorTree> DT;
|
||
std::unique_ptr<PostDominatorTree> PDT;
|
||
|
||
// Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
|
||
// reduces compile-time significantly. TODO: When we *do* use BFI, we should
|
||
// be able to salvage its domtrees instead of recomputing them.
|
||
BlockFrequencyInfo *BFI = nullptr;
|
||
if (HasProfileSummary)
|
||
BFI = GetBFI(F);
|
||
|
||
TargetTransformInfo &TTI = GetTTI(F);
|
||
OptimizationRemarkEmitter &ORE = (*GetORE)(F);
|
||
AssumptionCache *AC = LookupAC(F);
|
||
|
||
// Find all cold regions.
|
||
for (BasicBlock *BB : RPOT) {
|
||
// This block is already part of some outlining region.
|
||
if (ColdBlocks.count(BB))
|
||
continue;
|
||
|
||
bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
|
||
(EnableStaticAnalyis && unlikelyExecuted(*BB));
|
||
if (!Cold)
|
||
continue;
|
||
|
||
LLVM_DEBUG({
|
||
dbgs() << "Found a cold block:\n";
|
||
BB->dump();
|
||
});
|
||
|
||
if (!DT)
|
||
DT = std::make_unique<DominatorTree>(F);
|
||
if (!PDT)
|
||
PDT = std::make_unique<PostDominatorTree>(F);
|
||
|
||
auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
|
||
for (OutliningRegion &Region : Regions) {
|
||
if (Region.empty())
|
||
continue;
|
||
|
||
if (Region.isEntireFunctionCold()) {
|
||
LLVM_DEBUG(dbgs() << "Entire function is cold\n");
|
||
return markFunctionCold(F);
|
||
}
|
||
|
||
// If this outlining region intersects with another, drop the new region.
|
||
//
|
||
// TODO: It's theoretically possible to outline more by only keeping the
|
||
// largest region which contains a block, but the extra bookkeeping to do
|
||
// this is tricky/expensive.
|
||
bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
|
||
return !ColdBlocks.insert(Block.first).second;
|
||
});
|
||
if (RegionsOverlap)
|
||
continue;
|
||
|
||
OutliningWorklist.emplace_back(std::move(Region));
|
||
++NumColdRegionsFound;
|
||
}
|
||
}
|
||
|
||
// Outline single-entry cold regions, splitting up larger regions as needed.
|
||
unsigned OutlinedFunctionID = 1;
|
||
while (!OutliningWorklist.empty()) {
|
||
OutliningRegion Region = OutliningWorklist.pop_back_val();
|
||
assert(!Region.empty() && "Empty outlining region in worklist");
|
||
do {
|
||
BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
|
||
LLVM_DEBUG({
|
||
dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
|
||
for (BasicBlock *BB : SubRegion)
|
||
BB->dump();
|
||
});
|
||
|
||
Function *Outlined = extractColdRegion(SubRegion, *DT, BFI, TTI, ORE, AC,
|
||
OutlinedFunctionID);
|
||
if (Outlined) {
|
||
++OutlinedFunctionID;
|
||
Changed = true;
|
||
}
|
||
} while (!Region.empty());
|
||
}
|
||
|
||
return Changed;
|
||
}
|
||
|
||
bool HotColdSplitting::run(Module &M) {
|
||
bool Changed = false;
|
||
bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
|
||
for (auto It = M.begin(), End = M.end(); It != End; ++It) {
|
||
Function &F = *It;
|
||
|
||
// Do not touch declarations.
|
||
if (F.isDeclaration())
|
||
continue;
|
||
|
||
// Do not modify `optnone` functions.
|
||
if (F.hasOptNone())
|
||
continue;
|
||
|
||
// Detect inherently cold functions and mark them as such.
|
||
if (isFunctionCold(F)) {
|
||
Changed |= markFunctionCold(F);
|
||
continue;
|
||
}
|
||
|
||
if (!shouldOutlineFrom(F)) {
|
||
LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
|
||
continue;
|
||
}
|
||
|
||
LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
|
||
Changed |= outlineColdRegions(F, HasProfileSummary);
|
||
}
|
||
return Changed;
|
||
}
|
||
|
||
bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
|
||
if (skipModule(M))
|
||
return false;
|
||
ProfileSummaryInfo *PSI =
|
||
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
||
auto GTTI = [this](Function &F) -> TargetTransformInfo & {
|
||
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||
};
|
||
auto GBFI = [this](Function &F) {
|
||
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
|
||
};
|
||
std::unique_ptr<OptimizationRemarkEmitter> ORE;
|
||
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
|
||
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
|
||
ORE.reset(new OptimizationRemarkEmitter(&F));
|
||
return *ORE.get();
|
||
};
|
||
auto LookupAC = [this](Function &F) -> AssumptionCache * {
|
||
if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
|
||
return ACT->lookupAssumptionCache(F);
|
||
return nullptr;
|
||
};
|
||
|
||
return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
|
||
}
|
||
|
||
PreservedAnalyses
|
||
HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
|
||
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
||
|
||
auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
|
||
return FAM.getCachedResult<AssumptionAnalysis>(F);
|
||
};
|
||
|
||
auto GBFI = [&FAM](Function &F) {
|
||
return &FAM.getResult<BlockFrequencyAnalysis>(F);
|
||
};
|
||
|
||
std::function<TargetTransformInfo &(Function &)> GTTI =
|
||
[&FAM](Function &F) -> TargetTransformInfo & {
|
||
return FAM.getResult<TargetIRAnalysis>(F);
|
||
};
|
||
|
||
std::unique_ptr<OptimizationRemarkEmitter> ORE;
|
||
std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
|
||
[&ORE](Function &F) -> OptimizationRemarkEmitter & {
|
||
ORE.reset(new OptimizationRemarkEmitter(&F));
|
||
return *ORE.get();
|
||
};
|
||
|
||
ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
|
||
|
||
if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
|
||
return PreservedAnalyses::none();
|
||
return PreservedAnalyses::all();
|
||
}
|
||
|
||
char HotColdSplittingLegacyPass::ID = 0;
|
||
INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
|
||
"Hot Cold Splitting", false, false)
|
||
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
||
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
|
||
INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
|
||
"Hot Cold Splitting", false, false)
|
||
|
||
ModulePass *llvm::createHotColdSplittingPass() {
|
||
return new HotColdSplittingLegacyPass();
|
||
}
|