llvm-project/compiler-rt/lib/lsan/lsan_interceptors.cc

296 lines
8.9 KiB
C++

//=-- lsan_interceptors.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Interceptors for standalone LSan.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_interception.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "lsan.h"
#include "lsan_allocator.h"
#include "lsan_thread.h"
using namespace __lsan;
extern "C" {
int pthread_attr_init(void *attr);
int pthread_attr_destroy(void *attr);
int pthread_attr_getdetachstate(void *attr, int *v);
int pthread_key_create(unsigned *key, void (*destructor)(void* v));
int pthread_setspecific(unsigned key, const void *v);
}
#define GET_STACK_TRACE \
StackTrace stack; \
{ \
uptr stack_top = 0, stack_bottom = 0; \
ThreadContext *t; \
bool fast = common_flags()->fast_unwind_on_malloc; \
if (fast && (t = CurrentThreadContext())) { \
stack_top = t->stack_end(); \
stack_bottom = t->stack_begin(); \
} \
stack.Unwind(__sanitizer::common_flags()->malloc_context_size, \
StackTrace::GetCurrentPc(), GET_CURRENT_FRAME(), 0, \
stack_top, stack_bottom, fast); \
}
#define ENSURE_LSAN_INITED do { \
CHECK(!lsan_init_is_running); \
if (!lsan_inited) \
__lsan_init(); \
} while (0)
///// Malloc/free interceptors. /////
const bool kAlwaysClearMemory = true;
namespace std {
struct nothrow_t;
}
INTERCEPTOR(void*, malloc, uptr size) {
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
return Allocate(stack, size, 1, kAlwaysClearMemory);
}
INTERCEPTOR(void, free, void *p) {
ENSURE_LSAN_INITED;
Deallocate(p);
}
INTERCEPTOR(void*, calloc, uptr nmemb, uptr size) {
if (lsan_init_is_running) {
// Hack: dlsym calls calloc before REAL(calloc) is retrieved from dlsym.
const uptr kCallocPoolSize = 1024;
static uptr calloc_memory_for_dlsym[kCallocPoolSize];
static uptr allocated;
uptr size_in_words = ((nmemb * size) + kWordSize - 1) / kWordSize;
void *mem = (void*)&calloc_memory_for_dlsym[allocated];
allocated += size_in_words;
CHECK(allocated < kCallocPoolSize);
return mem;
}
if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
size *= nmemb;
return Allocate(stack, size, 1, true);
}
INTERCEPTOR(void*, realloc, void *q, uptr size) {
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
return Reallocate(stack, q, size, 1);
}
INTERCEPTOR(void*, memalign, uptr alignment, uptr size) {
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
return Allocate(stack, size, alignment, kAlwaysClearMemory);
}
INTERCEPTOR(int, posix_memalign, void **memptr, uptr alignment, uptr size) {
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
*memptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
// FIXME: Return ENOMEM if user requested more than max alloc size.
return 0;
}
INTERCEPTOR(void*, valloc, uptr size) {
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
if (size == 0)
size = GetPageSizeCached();
return Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory);
}
INTERCEPTOR(uptr, malloc_usable_size, void *ptr) {
ENSURE_LSAN_INITED;
return GetMallocUsableSize(ptr);
}
struct fake_mallinfo {
int x[10];
};
INTERCEPTOR(struct fake_mallinfo, mallinfo, void) {
struct fake_mallinfo res;
internal_memset(&res, 0, sizeof(res));
return res;
}
INTERCEPTOR(int, mallopt, int cmd, int value) {
return -1;
}
INTERCEPTOR(void*, pvalloc, uptr size) {
ENSURE_LSAN_INITED;
GET_STACK_TRACE;
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
}
return Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory);
}
INTERCEPTOR(void, cfree, void *p) ALIAS("free");
#define OPERATOR_NEW_BODY \
ENSURE_LSAN_INITED; \
GET_STACK_TRACE; \
return Allocate(stack, size, 1, kAlwaysClearMemory);
INTERCEPTOR_ATTRIBUTE
void *operator new(uptr size) { OPERATOR_NEW_BODY; }
INTERCEPTOR_ATTRIBUTE
void *operator new[](uptr size) { OPERATOR_NEW_BODY; }
INTERCEPTOR_ATTRIBUTE
void *operator new(uptr size, std::nothrow_t const&) { OPERATOR_NEW_BODY; }
INTERCEPTOR_ATTRIBUTE
void *operator new[](uptr size, std::nothrow_t const&) { OPERATOR_NEW_BODY; }
#define OPERATOR_DELETE_BODY \
ENSURE_LSAN_INITED; \
Deallocate(ptr);
INTERCEPTOR_ATTRIBUTE
void operator delete(void *ptr) throw() { OPERATOR_DELETE_BODY; }
INTERCEPTOR_ATTRIBUTE
void operator delete[](void *ptr) throw() { OPERATOR_DELETE_BODY; }
INTERCEPTOR_ATTRIBUTE
void operator delete(void *ptr, std::nothrow_t const&) { OPERATOR_DELETE_BODY; }
INTERCEPTOR_ATTRIBUTE
void operator delete[](void *ptr, std::nothrow_t const &) {
OPERATOR_DELETE_BODY;
}
// We need this to intercept the __libc_memalign calls that are used to
// allocate dynamic TLS space in ld-linux.so.
INTERCEPTOR(void *, __libc_memalign, uptr align, uptr s) ALIAS("memalign");
///// Thread initialization and finalization. /////
static unsigned g_thread_finalize_key;
static void thread_finalize(void *v) {
uptr iter = (uptr)v;
if (iter > 1) {
if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
Report("LeakSanitizer: failed to set thread key.\n");
Die();
}
return;
}
ThreadFinish();
}
struct ThreadParam {
void *(*callback)(void *arg);
void *param;
atomic_uintptr_t tid;
};
extern "C" void *__lsan_thread_start_func(void *arg) {
ThreadParam *p = (ThreadParam*)arg;
void* (*callback)(void *arg) = p->callback;
void *param = p->param;
// Wait until the last iteration to maximize the chance that we are the last
// destructor to run.
if (pthread_setspecific(g_thread_finalize_key,
(void*)kPthreadDestructorIterations)) {
Report("LeakSanitizer: failed to set thread key.\n");
Die();
}
int tid = 0;
while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
internal_sched_yield();
atomic_store(&p->tid, 0, memory_order_release);
SetCurrentThread(tid);
ThreadStart(tid, GetTid());
return callback(param);
}
INTERCEPTOR(int, pthread_create, void *th, void *attr,
void *(*callback)(void *), void *param) {
ENSURE_LSAN_INITED;
EnsureMainThreadIDIsCorrect();
__sanitizer_pthread_attr_t myattr;
if (attr == 0) {
pthread_attr_init(&myattr);
attr = &myattr;
}
AdjustStackSize(attr);
int detached = 0;
pthread_attr_getdetachstate(attr, &detached);
ThreadParam p;
p.callback = callback;
p.param = param;
atomic_store(&p.tid, 0, memory_order_relaxed);
int res = REAL(pthread_create)(th, attr, __lsan_thread_start_func, &p);
if (res == 0) {
int tid = ThreadCreate(GetCurrentThread(), *(uptr *)th, detached);
CHECK_NE(tid, 0);
atomic_store(&p.tid, tid, memory_order_release);
while (atomic_load(&p.tid, memory_order_acquire) != 0)
internal_sched_yield();
}
if (attr == &myattr)
pthread_attr_destroy(&myattr);
return res;
}
INTERCEPTOR(int, pthread_join, void *th, void **ret) {
ENSURE_LSAN_INITED;
int tid = ThreadTid((uptr)th);
int res = REAL(pthread_join)(th, ret);
if (res == 0)
ThreadJoin(tid);
return res;
}
namespace __lsan {
void InitializeInterceptors() {
INTERCEPT_FUNCTION(malloc);
INTERCEPT_FUNCTION(free);
INTERCEPT_FUNCTION(cfree);
INTERCEPT_FUNCTION(calloc);
INTERCEPT_FUNCTION(realloc);
INTERCEPT_FUNCTION(memalign);
INTERCEPT_FUNCTION(posix_memalign);
INTERCEPT_FUNCTION(__libc_memalign);
INTERCEPT_FUNCTION(valloc);
INTERCEPT_FUNCTION(pvalloc);
INTERCEPT_FUNCTION(malloc_usable_size);
INTERCEPT_FUNCTION(mallinfo);
INTERCEPT_FUNCTION(mallopt);
INTERCEPT_FUNCTION(pthread_create);
INTERCEPT_FUNCTION(pthread_join);
if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
Report("LeakSanitizer: failed to create thread key.\n");
Die();
}
}
} // namespace __lsan