forked from OSchip/llvm-project
452 lines
16 KiB
C++
452 lines
16 KiB
C++
//===--- TargetInfo.cpp - Information about Target machine ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInfo and TargetInfoImpl interfaces.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/AST/Builtins.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <set>
|
|
using namespace clang;
|
|
|
|
void TargetInfoImpl::ANCHOR() {} // out-of-line virtual method for class.
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FIXME: These are temporary hacks, they should revector into the
|
|
// TargetInfoImpl.
|
|
|
|
void TargetInfo::getFloatInfo(uint64_t &Size, unsigned &Align,
|
|
const llvm::fltSemantics *&Format,
|
|
SourceLocation Loc) {
|
|
Align = 32; // FIXME: implement correctly.
|
|
Size = 32;
|
|
Format = &llvm::APFloat::IEEEsingle;
|
|
}
|
|
void TargetInfo::getDoubleInfo(uint64_t &Size, unsigned &Align,
|
|
const llvm::fltSemantics *&Format,
|
|
SourceLocation Loc) {
|
|
Size = Align = 64; // FIXME: implement correctly.
|
|
Format = &llvm::APFloat::IEEEdouble;
|
|
}
|
|
void TargetInfo::getLongDoubleInfo(uint64_t &Size, unsigned &Align,
|
|
const llvm::fltSemantics *&Format,
|
|
SourceLocation Loc) {
|
|
Size = Align = 64; // FIXME: implement correctly.
|
|
Format = &llvm::APFloat::IEEEdouble;
|
|
//Size = 80; Align = 32; // FIXME: implement correctly.
|
|
//Format = &llvm::APFloat::x87DoubleExtended;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const char* TargetInfo::getTargetTriple() const {
|
|
return PrimaryTarget->getTargetTriple();
|
|
}
|
|
|
|
const char *TargetInfo::getTargetPrefix() const {
|
|
return PrimaryTarget->getTargetPrefix();
|
|
}
|
|
|
|
/// DiagnoseNonPortability - When a use of a non-portable target feature is
|
|
/// used, this method emits the diagnostic and marks the translation unit as
|
|
/// non-portable.
|
|
void TargetInfo::DiagnoseNonPortability(SourceLocation Loc, unsigned DiagKind) {
|
|
NonPortable = true;
|
|
if (Diag && Loc.isValid()) Diag->Report(Loc, DiagKind);
|
|
}
|
|
|
|
/// GetTargetDefineMap - Get the set of target #defines in an associative
|
|
/// collection for easy lookup.
|
|
static void GetTargetDefineMap(const TargetInfoImpl *Target,
|
|
llvm::StringMap<std::string> &Map) {
|
|
std::vector<char> Defines;
|
|
Defines.reserve(4096);
|
|
Target->getTargetDefines(Defines);
|
|
|
|
for (const char *DefStr = &Defines[0], *E = DefStr+Defines.size();
|
|
DefStr != E;) {
|
|
// Skip the '#define ' portion.
|
|
assert(memcmp(DefStr, "#define ", strlen("#define ")) == 0 &&
|
|
"#define didn't start with #define!");
|
|
DefStr += strlen("#define ");
|
|
|
|
// Find the divider between the key and value.
|
|
const char *SpacePos = strchr(DefStr, ' ');
|
|
|
|
std::string &Entry = Map.GetOrCreateValue(DefStr, SpacePos).getValue();
|
|
|
|
const char *EndPos = strchr(SpacePos+1, '\n');
|
|
Entry = std::string(SpacePos+1, EndPos);
|
|
DefStr = EndPos+1;
|
|
}
|
|
}
|
|
|
|
/// getTargetDefines - Appends the target-specific #define values for this
|
|
/// target set to the specified buffer.
|
|
void TargetInfo::getTargetDefines(std::vector<char> &Buffer) {
|
|
// If we have no secondary targets, be a bit more efficient.
|
|
if (SecondaryTargets.empty()) {
|
|
PrimaryTarget->getTargetDefines(Buffer);
|
|
return;
|
|
}
|
|
|
|
// This is tricky in the face of secondary targets. Specifically,
|
|
// target-specific #defines that are present and identical across all
|
|
// secondary targets are turned into #defines, #defines that are present in
|
|
// the primary target but are missing or different in the secondary targets
|
|
// are turned into #define_target, and #defines that are not defined in the
|
|
// primary, but are defined in a secondary are turned into
|
|
// #define_other_target. This allows the preprocessor to correctly track uses
|
|
// of target-specific macros.
|
|
|
|
// Get the set of primary #defines.
|
|
llvm::StringMap<std::string> PrimaryDefines;
|
|
GetTargetDefineMap(PrimaryTarget, PrimaryDefines);
|
|
|
|
// Get the sets of secondary #defines.
|
|
llvm::StringMap<std::string> *SecondaryDefines
|
|
= new llvm::StringMap<std::string>[SecondaryTargets.size()];
|
|
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i)
|
|
GetTargetDefineMap(SecondaryTargets[i], SecondaryDefines[i]);
|
|
|
|
// Loop over all defines in the primary target, processing them until we run
|
|
// out.
|
|
for (llvm::StringMap<std::string>::iterator PDI =
|
|
PrimaryDefines.begin(), E = PrimaryDefines.end(); PDI != E; ++PDI) {
|
|
std::string DefineName(PDI->getKeyData(),
|
|
PDI->getKeyData() + PDI->getKeyLength());
|
|
std::string DefineValue = PDI->getValue();
|
|
|
|
// Check to see whether all secondary targets have this #define and whether
|
|
// it is to the same value. Remember if not, but remove the #define from
|
|
// their collection in any case if they have it.
|
|
bool isPortable = true;
|
|
|
|
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
|
|
llvm::StringMap<std::string>::iterator I =
|
|
SecondaryDefines[i].find(&DefineName[0],
|
|
&DefineName[0]+DefineName.size());
|
|
if (I == SecondaryDefines[i].end()) {
|
|
// Secondary target doesn't have this #define.
|
|
isPortable = false;
|
|
} else {
|
|
// Secondary target has this define, remember if it disagrees.
|
|
if (isPortable)
|
|
isPortable = I->getValue() == DefineValue;
|
|
// Remove it from the secondary target unconditionally.
|
|
SecondaryDefines[i].erase(I);
|
|
}
|
|
}
|
|
|
|
// If this define is non-portable, turn it into #define_target, otherwise
|
|
// just use #define.
|
|
const char *Command = isPortable ? "#define " : "#define_target ";
|
|
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
|
|
|
|
// Insert "defname defvalue\n".
|
|
Buffer.insert(Buffer.end(), DefineName.begin(), DefineName.end());
|
|
Buffer.push_back(' ');
|
|
Buffer.insert(Buffer.end(), DefineValue.begin(), DefineValue.end());
|
|
Buffer.push_back('\n');
|
|
}
|
|
|
|
// Now that all of the primary target's defines have been handled and removed
|
|
// from the secondary target's define sets, go through the remaining secondary
|
|
// target's #defines and taint them.
|
|
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
|
|
llvm::StringMap<std::string> &Defs = SecondaryDefines[i];
|
|
while (!Defs.empty()) {
|
|
const char *DefStart = Defs.begin()->getKeyData();
|
|
const char *DefEnd = DefStart + Defs.begin()->getKeyLength();
|
|
|
|
// Insert "#define_other_target defname".
|
|
const char *Command = "#define_other_target ";
|
|
Buffer.insert(Buffer.end(), Command, Command+strlen(Command));
|
|
Buffer.insert(Buffer.end(), DefStart, DefEnd);
|
|
Buffer.push_back('\n');
|
|
|
|
// If any other secondary targets have this same define, remove it from
|
|
// them to avoid duplicate #define_other_target directives.
|
|
for (unsigned j = i+1; j != e; ++j) {
|
|
llvm::StringMap<std::string>::iterator I =
|
|
SecondaryDefines[j].find(DefStart, DefEnd);
|
|
if (I != SecondaryDefines[j].end())
|
|
SecondaryDefines[j].erase(I);
|
|
}
|
|
Defs.erase(Defs.begin());
|
|
}
|
|
}
|
|
|
|
delete[] SecondaryDefines;
|
|
}
|
|
|
|
/// ComputeWCharWidth - Determine the width of the wchar_t type for the primary
|
|
/// target, diagnosing whether this is non-portable across the secondary
|
|
/// targets.
|
|
void TargetInfo::ComputeWCharInfo(SourceLocation Loc) {
|
|
PrimaryTarget->getWCharInfo(WCharWidth, WCharAlign);
|
|
|
|
// Check whether this is portable across the secondary targets if the T-U is
|
|
// portable so far.
|
|
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
|
|
unsigned Width, Align;
|
|
SecondaryTargets[i]->getWCharInfo(Width, Align);
|
|
if (Width != WCharWidth || Align != WCharAlign)
|
|
return DiagnoseNonPortability(Loc, diag::port_wchar_t);
|
|
}
|
|
}
|
|
|
|
|
|
/// getTargetBuiltins - Return information about target-specific builtins for
|
|
/// the current primary target, and info about which builtins are non-portable
|
|
/// across the current set of primary and secondary targets.
|
|
void TargetInfo::getTargetBuiltins(const Builtin::Info *&Records,
|
|
unsigned &NumRecords,
|
|
std::vector<const char *> &NPortable) const {
|
|
// Get info about what actual builtins we will expose.
|
|
PrimaryTarget->getTargetBuiltins(Records, NumRecords);
|
|
if (SecondaryTargets.empty()) return;
|
|
|
|
// Compute the set of non-portable builtins.
|
|
|
|
// Start by computing a mapping from the primary target's builtins to their
|
|
// info records for efficient lookup.
|
|
llvm::StringMap<const Builtin::Info*> PrimaryRecs;
|
|
for (unsigned i = 0, e = NumRecords; i != e; ++i) {
|
|
const char *BIName = Records[i].Name;
|
|
PrimaryRecs.GetOrCreateValue(BIName, BIName+strlen(BIName)).getValue()
|
|
= Records+i;
|
|
}
|
|
|
|
for (unsigned i = 0, e = SecondaryTargets.size(); i != e; ++i) {
|
|
// Get the builtins for this secondary target.
|
|
const Builtin::Info *Records2nd;
|
|
unsigned NumRecords2nd;
|
|
SecondaryTargets[i]->getTargetBuiltins(Records2nd, NumRecords2nd);
|
|
|
|
// Remember all of the secondary builtin names.
|
|
std::set<std::string> BuiltinNames2nd;
|
|
|
|
for (unsigned j = 0, e = NumRecords2nd; j != e; ++j) {
|
|
BuiltinNames2nd.insert(Records2nd[j].Name);
|
|
|
|
// Check to see if the primary target has this builtin.
|
|
llvm::StringMap<const Builtin::Info*>::iterator I =
|
|
PrimaryRecs.find(Records2nd[j].Name,
|
|
Records2nd[j].Name+strlen(Records2nd[j].Name));
|
|
if (I != PrimaryRecs.end()) {
|
|
const Builtin::Info *PrimBI = I->getValue();
|
|
// If does. If they are not identical, mark the builtin as being
|
|
// non-portable.
|
|
if (Records2nd[j] != *PrimBI)
|
|
NPortable.push_back(PrimBI->Name);
|
|
} else {
|
|
// The primary target doesn't have this, it is non-portable.
|
|
NPortable.push_back(Records2nd[j].Name);
|
|
}
|
|
}
|
|
|
|
// Now that we checked all the secondary builtins, check to see if the
|
|
// primary target has any builtins that the secondary one doesn't. If so,
|
|
// then those are non-portable.
|
|
for (unsigned j = 0, e = NumRecords; j != e; ++j) {
|
|
if (!BuiltinNames2nd.count(Records[j].Name))
|
|
NPortable.push_back(Records[j].Name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// getVAListDeclaration - Return the declaration to use for
|
|
/// __builtin_va_list, which is target-specific.
|
|
const char *TargetInfo::getVAListDeclaration() const {
|
|
return PrimaryTarget->getVAListDeclaration();
|
|
}
|
|
|
|
/// isValidGCCRegisterName - Returns whether the passed in string
|
|
/// is a valid register name according to GCC. This is used by Sema for
|
|
/// inline asm statements.
|
|
bool TargetInfo::isValidGCCRegisterName(const char *Name) const {
|
|
const char * const *Names;
|
|
unsigned NumNames;
|
|
|
|
// Get rid of any register prefix.
|
|
if (Name[0] == '%' || Name[0] == '#')
|
|
Name++;
|
|
|
|
if (strcmp(Name, "memory") == 0 ||
|
|
strcmp(Name, "cc") == 0)
|
|
return true;
|
|
|
|
PrimaryTarget->getGCCRegNames(Names, NumNames);
|
|
|
|
// If we have a number it maps to an entry in the register name array.
|
|
if (isdigit(Name[0])) {
|
|
char *End;
|
|
int n = (int)strtol(Name, &End, 0);
|
|
if (*End == 0)
|
|
return n >= 0 && (unsigned)n < NumNames;
|
|
}
|
|
|
|
// Check register names.
|
|
for (unsigned i = 0; i < NumNames; i++) {
|
|
if (strcmp(Name, Names[i]) == 0)
|
|
return true;
|
|
}
|
|
|
|
// Now check aliases.
|
|
const TargetInfoImpl::GCCRegAlias *Aliases;
|
|
unsigned NumAliases;
|
|
|
|
PrimaryTarget->getGCCRegAliases(Aliases, NumAliases);
|
|
for (unsigned i = 0; i < NumAliases; i++) {
|
|
for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
|
|
if (!Aliases[i].Aliases[j])
|
|
break;
|
|
if (strcmp(Aliases[i].Aliases[j], Name) == 0)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const char *TargetInfo::getNormalizedGCCRegisterName(const char *Name) const
|
|
{
|
|
assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
|
|
|
|
const char * const *Names;
|
|
unsigned NumNames;
|
|
|
|
PrimaryTarget->getGCCRegNames(Names, NumNames);
|
|
|
|
// First, check if we have a number.
|
|
if (isdigit(Name[0])) {
|
|
char *End;
|
|
int n = (int)strtol(Name, &End, 0);
|
|
if (*End == 0) {
|
|
assert(n >= 0 && (unsigned)n < NumNames &&
|
|
"Out of bounds register number!");
|
|
return Names[n];
|
|
}
|
|
}
|
|
|
|
// Now check aliases.
|
|
const TargetInfoImpl::GCCRegAlias *Aliases;
|
|
unsigned NumAliases;
|
|
|
|
PrimaryTarget->getGCCRegAliases(Aliases, NumAliases);
|
|
for (unsigned i = 0; i < NumAliases; i++) {
|
|
for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
|
|
if (!Aliases[i].Aliases[j])
|
|
break;
|
|
if (strcmp(Aliases[i].Aliases[j], Name) == 0)
|
|
return Aliases[i].Register;
|
|
}
|
|
}
|
|
|
|
return Name;
|
|
}
|
|
|
|
bool TargetInfo::validateOutputConstraint(const char *Name,
|
|
ConstraintInfo &info) const
|
|
{
|
|
// An output constraint must start with '=' or '+'
|
|
if (*Name != '=' && *Name != '+')
|
|
return false;
|
|
|
|
if (*Name == '+')
|
|
info = CI_ReadWrite;
|
|
else
|
|
info = CI_None;
|
|
|
|
Name++;
|
|
while (*Name) {
|
|
switch (*Name) {
|
|
default:
|
|
if (!PrimaryTarget->validateAsmConstraint(*Name, info)) {
|
|
// FIXME: This assert is in place temporarily
|
|
// so we can add more constraints as we hit it.
|
|
// Eventually, an unknown constraint should just be treated as 'g'.
|
|
assert(0 && "Unknown output constraint type!");
|
|
}
|
|
case '&': // early clobber.
|
|
break;
|
|
case 'r': // general register.
|
|
info = (ConstraintInfo)(info|CI_AllowsRegister);
|
|
break;
|
|
case 'm': // memory operand.
|
|
info = (ConstraintInfo)(info|CI_AllowsMemory);
|
|
break;
|
|
case 'g': // general register, memory operand or immediate integer.
|
|
info = (ConstraintInfo)(info|CI_AllowsMemory|CI_AllowsRegister);
|
|
break;
|
|
}
|
|
|
|
Name++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TargetInfo::validateInputConstraint(const char *Name,
|
|
unsigned NumOutputs,
|
|
ConstraintInfo &info) const
|
|
{
|
|
while (*Name) {
|
|
switch (*Name) {
|
|
default:
|
|
// Check if we have a matching constraint
|
|
if (*Name >= '0' && *Name <= '9') {
|
|
unsigned i = *Name - '0';
|
|
|
|
// Check if matching constraint is out of bounds.
|
|
if (i >= NumOutputs)
|
|
return false;
|
|
} else if (!PrimaryTarget->validateAsmConstraint(*Name, info)) {
|
|
// FIXME: This assert is in place temporarily
|
|
// so we can add more constraints as we hit it.
|
|
// Eventually, an unknown constraint should just be treated as 'g'.
|
|
assert(0 && "Unknown input constraint type!");
|
|
}
|
|
case '%': // commutative
|
|
// FIXME: Fail if % is used with the last operand.
|
|
break;
|
|
case 'i': // immediate integer.
|
|
break;
|
|
case 'r': // general register.
|
|
info = (ConstraintInfo)(info|CI_AllowsRegister);
|
|
break;
|
|
case 'm': // memory operand.
|
|
info = (ConstraintInfo)(info|CI_AllowsMemory);
|
|
break;
|
|
case 'g': // general register, memory operand or immediate integer.
|
|
info = (ConstraintInfo)(info|CI_AllowsMemory|CI_AllowsRegister);
|
|
break;
|
|
}
|
|
|
|
Name++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
const char *TargetInfo::getClobbers() const
|
|
{
|
|
return PrimaryTarget->getClobbers();
|
|
}
|
|
|
|
|