llvm-project/llvm/lib/Target/X86/MCTargetDesc/X86AsmBackend.cpp

830 lines
27 KiB
C++

//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCMachObjectWriter.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Option to allow disabling arithmetic relaxation to workaround PR9807, which
// is useful when running bitwise comparison experiments on Darwin. We should be
// able to remove this once PR9807 is resolved.
static cl::opt<bool>
MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
cl::desc("Disable relaxation of arithmetic instruction for X86"));
static unsigned getFixupKindLog2Size(unsigned Kind) {
switch (Kind) {
default:
llvm_unreachable("invalid fixup kind!");
case FK_PCRel_1:
case FK_SecRel_1:
case FK_Data_1:
return 0;
case FK_PCRel_2:
case FK_SecRel_2:
case FK_Data_2:
return 1;
case FK_PCRel_4:
case X86::reloc_riprel_4byte:
case X86::reloc_riprel_4byte_movq_load:
case X86::reloc_signed_4byte:
case X86::reloc_global_offset_table:
case FK_SecRel_4:
case FK_Data_4:
return 2;
case FK_PCRel_8:
case FK_SecRel_8:
case FK_Data_8:
case X86::reloc_global_offset_table8:
return 3;
}
}
namespace {
class X86ELFObjectWriter : public MCELFObjectTargetWriter {
public:
X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
bool HasRelocationAddend, bool foobar)
: MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
};
class X86AsmBackend : public MCAsmBackend {
const StringRef CPU;
bool HasNopl;
const uint64_t MaxNopLength;
public:
X86AsmBackend(const Target &T, StringRef CPU)
: MCAsmBackend(), CPU(CPU), MaxNopLength(CPU == "slm" ? 7 : 15) {
HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
CPU != "c3" && CPU != "c3-2";
}
unsigned getNumFixupKinds() const override {
return X86::NumTargetFixupKinds;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
{ "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
{ "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
{ "reloc_signed_4byte", 0, 4 * 8, 0},
{ "reloc_global_offset_table", 0, 4 * 8, 0}
};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value, bool IsPCRel) const override {
unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
assert(Fixup.getOffset() + Size <= DataSize &&
"Invalid fixup offset!");
// Check that uppper bits are either all zeros or all ones.
// Specifically ignore overflow/underflow as long as the leakage is
// limited to the lower bits. This is to remain compatible with
// other assemblers.
assert(isIntN(Size * 8 + 1, Value) &&
"Value does not fit in the Fixup field");
for (unsigned i = 0; i != Size; ++i)
Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
}
bool mayNeedRelaxation(const MCInst &Inst) const override;
bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const override;
void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
};
} // end anonymous namespace
static unsigned getRelaxedOpcodeBranch(unsigned Op) {
switch (Op) {
default:
return Op;
case X86::JAE_1: return X86::JAE_4;
case X86::JA_1: return X86::JA_4;
case X86::JBE_1: return X86::JBE_4;
case X86::JB_1: return X86::JB_4;
case X86::JE_1: return X86::JE_4;
case X86::JGE_1: return X86::JGE_4;
case X86::JG_1: return X86::JG_4;
case X86::JLE_1: return X86::JLE_4;
case X86::JL_1: return X86::JL_4;
case X86::JMP_1: return X86::JMP_4;
case X86::JNE_1: return X86::JNE_4;
case X86::JNO_1: return X86::JNO_4;
case X86::JNP_1: return X86::JNP_4;
case X86::JNS_1: return X86::JNS_4;
case X86::JO_1: return X86::JO_4;
case X86::JP_1: return X86::JP_4;
case X86::JS_1: return X86::JS_4;
}
}
static unsigned getRelaxedOpcodeArith(unsigned Op) {
switch (Op) {
default:
return Op;
// IMUL
case X86::IMUL16rri8: return X86::IMUL16rri;
case X86::IMUL16rmi8: return X86::IMUL16rmi;
case X86::IMUL32rri8: return X86::IMUL32rri;
case X86::IMUL32rmi8: return X86::IMUL32rmi;
case X86::IMUL64rri8: return X86::IMUL64rri32;
case X86::IMUL64rmi8: return X86::IMUL64rmi32;
// AND
case X86::AND16ri8: return X86::AND16ri;
case X86::AND16mi8: return X86::AND16mi;
case X86::AND32ri8: return X86::AND32ri;
case X86::AND32mi8: return X86::AND32mi;
case X86::AND64ri8: return X86::AND64ri32;
case X86::AND64mi8: return X86::AND64mi32;
// OR
case X86::OR16ri8: return X86::OR16ri;
case X86::OR16mi8: return X86::OR16mi;
case X86::OR32ri8: return X86::OR32ri;
case X86::OR32mi8: return X86::OR32mi;
case X86::OR64ri8: return X86::OR64ri32;
case X86::OR64mi8: return X86::OR64mi32;
// XOR
case X86::XOR16ri8: return X86::XOR16ri;
case X86::XOR16mi8: return X86::XOR16mi;
case X86::XOR32ri8: return X86::XOR32ri;
case X86::XOR32mi8: return X86::XOR32mi;
case X86::XOR64ri8: return X86::XOR64ri32;
case X86::XOR64mi8: return X86::XOR64mi32;
// ADD
case X86::ADD16ri8: return X86::ADD16ri;
case X86::ADD16mi8: return X86::ADD16mi;
case X86::ADD32ri8: return X86::ADD32ri;
case X86::ADD32mi8: return X86::ADD32mi;
case X86::ADD64ri8: return X86::ADD64ri32;
case X86::ADD64mi8: return X86::ADD64mi32;
// SUB
case X86::SUB16ri8: return X86::SUB16ri;
case X86::SUB16mi8: return X86::SUB16mi;
case X86::SUB32ri8: return X86::SUB32ri;
case X86::SUB32mi8: return X86::SUB32mi;
case X86::SUB64ri8: return X86::SUB64ri32;
case X86::SUB64mi8: return X86::SUB64mi32;
// CMP
case X86::CMP16ri8: return X86::CMP16ri;
case X86::CMP16mi8: return X86::CMP16mi;
case X86::CMP32ri8: return X86::CMP32ri;
case X86::CMP32mi8: return X86::CMP32mi;
case X86::CMP64ri8: return X86::CMP64ri32;
case X86::CMP64mi8: return X86::CMP64mi32;
// PUSH
case X86::PUSH32i8: return X86::PUSHi32;
case X86::PUSH16i8: return X86::PUSHi16;
case X86::PUSH64i8: return X86::PUSH64i32;
case X86::PUSH64i16: return X86::PUSH64i32;
}
}
static unsigned getRelaxedOpcode(unsigned Op) {
unsigned R = getRelaxedOpcodeArith(Op);
if (R != Op)
return R;
return getRelaxedOpcodeBranch(Op);
}
bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
// Branches can always be relaxed.
if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
return true;
if (MCDisableArithRelaxation)
return false;
// Check if this instruction is ever relaxable.
if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
return false;
// Check if it has an expression and is not RIP relative.
bool hasExp = false;
bool hasRIP = false;
for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
const MCOperand &Op = Inst.getOperand(i);
if (Op.isExpr())
hasExp = true;
if (Op.isReg() && Op.getReg() == X86::RIP)
hasRIP = true;
}
// FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
// how we do relaxations?
return hasExp && !hasRIP;
}
bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
uint64_t Value,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
// Relax if the value is too big for a (signed) i8.
return int64_t(Value) != int64_t(int8_t(Value));
}
// FIXME: Can tblgen help at all here to verify there aren't other instructions
// we can relax?
void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
// The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
if (RelaxedOp == Inst.getOpcode()) {
SmallString<256> Tmp;
raw_svector_ostream OS(Tmp);
Inst.dump_pretty(OS);
OS << "\n";
report_fatal_error("unexpected instruction to relax: " + OS.str());
}
Res = Inst;
Res.setOpcode(RelaxedOp);
}
/// \brief Write a sequence of optimal nops to the output, covering \p Count
/// bytes.
/// \return - true on success, false on failure
bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
static const uint8_t Nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 0(%[re]ax)
{0x0f, 0x1f, 0x40, 0x00},
// nopl 0(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopw 0(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
// nopl 0L(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
// nopl 0L(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw 0L(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
// nopw %cs:0L(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
};
// This CPU doesn't support long nops. If needed add more.
// FIXME: Can we get this from the subtarget somehow?
// FIXME: We could generated something better than plain 0x90.
if (!HasNopl) {
for (uint64_t i = 0; i < Count; ++i)
OW->Write8(0x90);
return true;
}
// 15 is the longest single nop instruction. Emit as many 15-byte nops as
// needed, then emit a nop of the remaining length.
do {
const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
for (uint8_t i = 0; i < Prefixes; i++)
OW->Write8(0x66);
const uint8_t Rest = ThisNopLength - Prefixes;
for (uint8_t i = 0; i < Rest; i++)
OW->Write8(Nops[Rest - 1][i]);
Count -= ThisNopLength;
} while (Count != 0);
return true;
}
/* *** */
namespace {
class ELFX86AsmBackend : public X86AsmBackend {
public:
uint8_t OSABI;
ELFX86AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: X86AsmBackend(T, CPU), OSABI(OSABI) {}
};
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
}
};
class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
ELF::EM_X86_64);
}
};
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
public:
ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
: ELFX86AsmBackend(T, OSABI, CPU) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
}
};
class WindowsX86AsmBackend : public X86AsmBackend {
bool Is64Bit;
public:
WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
: X86AsmBackend(T, CPU)
, Is64Bit(is64Bit) {
}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createX86WinCOFFObjectWriter(OS, Is64Bit);
}
};
namespace CU {
/// Compact unwind encoding values.
enum CompactUnwindEncodings {
/// [RE]BP based frame where [RE]BP is pused on the stack immediately after
/// the return address, then [RE]SP is moved to [RE]BP.
UNWIND_MODE_BP_FRAME = 0x01000000,
/// A frameless function with a small constant stack size.
UNWIND_MODE_STACK_IMMD = 0x02000000,
/// A frameless function with a large constant stack size.
UNWIND_MODE_STACK_IND = 0x03000000,
/// No compact unwind encoding is available.
UNWIND_MODE_DWARF = 0x04000000,
/// Mask for encoding the frame registers.
UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
/// Mask for encoding the frameless registers.
UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
};
} // end CU namespace
class DarwinX86AsmBackend : public X86AsmBackend {
const MCRegisterInfo &MRI;
/// \brief Number of registers that can be saved in a compact unwind encoding.
enum { CU_NUM_SAVED_REGS = 6 };
mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
bool Is64Bit;
unsigned OffsetSize; ///< Offset of a "push" instruction.
unsigned MoveInstrSize; ///< Size of a "move" instruction.
unsigned StackDivide; ///< Amount to adjust stack size by.
protected:
/// \brief Size of a "push" instruction for the given register.
unsigned PushInstrSize(unsigned Reg) const {
switch (Reg) {
case X86::EBX:
case X86::ECX:
case X86::EDX:
case X86::EDI:
case X86::ESI:
case X86::EBP:
case X86::RBX:
case X86::RBP:
return 1;
case X86::R12:
case X86::R13:
case X86::R14:
case X86::R15:
return 2;
}
return 1;
}
/// \brief Implementation of algorithm to generate the compact unwind encoding
/// for the CFI instructions.
uint32_t
generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
if (Instrs.empty()) return 0;
// Reset the saved registers.
unsigned SavedRegIdx = 0;
memset(SavedRegs, 0, sizeof(SavedRegs));
bool HasFP = false;
// Encode that we are using EBP/RBP as the frame pointer.
uint32_t CompactUnwindEncoding = 0;
unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
unsigned InstrOffset = 0;
unsigned StackAdjust = 0;
unsigned StackSize = 0;
unsigned PrevStackSize = 0;
unsigned NumDefCFAOffsets = 0;
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
const MCCFIInstruction &Inst = Instrs[i];
switch (Inst.getOperation()) {
default:
// Any other CFI directives indicate a frame that we aren't prepared
// to represent via compact unwind, so just bail out.
return 0;
case MCCFIInstruction::OpDefCfaRegister: {
// Defines a frame pointer. E.g.
//
// movq %rsp, %rbp
// L0:
// .cfi_def_cfa_register %rbp
//
HasFP = true;
assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
(Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
// Reset the counts.
memset(SavedRegs, 0, sizeof(SavedRegs));
StackAdjust = 0;
SavedRegIdx = 0;
InstrOffset += MoveInstrSize;
break;
}
case MCCFIInstruction::OpDefCfaOffset: {
// Defines a new offset for the CFA. E.g.
//
// With frame:
//
// pushq %rbp
// L0:
// .cfi_def_cfa_offset 16
//
// Without frame:
//
// subq $72, %rsp
// L0:
// .cfi_def_cfa_offset 80
//
PrevStackSize = StackSize;
StackSize = std::abs(Inst.getOffset()) / StackDivide;
++NumDefCFAOffsets;
break;
}
case MCCFIInstruction::OpOffset: {
// Defines a "push" of a callee-saved register. E.g.
//
// pushq %r15
// pushq %r14
// pushq %rbx
// L0:
// subq $120, %rsp
// L1:
// .cfi_offset %rbx, -40
// .cfi_offset %r14, -32
// .cfi_offset %r15, -24
//
if (SavedRegIdx == CU_NUM_SAVED_REGS)
// If there are too many saved registers, we cannot use a compact
// unwind encoding.
return CU::UNWIND_MODE_DWARF;
unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
SavedRegs[SavedRegIdx++] = Reg;
StackAdjust += OffsetSize;
InstrOffset += PushInstrSize(Reg);
break;
}
}
}
StackAdjust /= StackDivide;
if (HasFP) {
if ((StackAdjust & 0xFF) != StackAdjust)
// Offset was too big for a compact unwind encoding.
return CU::UNWIND_MODE_DWARF;
// Get the encoding of the saved registers when we have a frame pointer.
uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
} else {
// If the amount of the stack allocation is the size of a register, then
// we "push" the RAX/EAX register onto the stack instead of adjusting the
// stack pointer with a SUB instruction. We don't support the push of the
// RAX/EAX register with compact unwind. So we check for that situation
// here.
if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
StackSize - PrevStackSize == 1) ||
(Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
return CU::UNWIND_MODE_DWARF;
SubtractInstrIdx += InstrOffset;
++StackAdjust;
if ((StackSize & 0xFF) == StackSize) {
// Frameless stack with a small stack size.
CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
// Encode the stack size.
CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
} else {
if ((StackAdjust & 0x7) != StackAdjust)
// The extra stack adjustments are too big for us to handle.
return CU::UNWIND_MODE_DWARF;
// Frameless stack with an offset too large for us to encode compactly.
CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
// Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
// instruction.
CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
// Encode any extra stack stack adjustments (done via push
// instructions).
CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
}
// Encode the number of registers saved. (Reverse the list first.)
std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
// Get the encoding of the saved registers when we don't have a frame
// pointer.
uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
// Encode the register encoding.
CompactUnwindEncoding |=
RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
}
return CompactUnwindEncoding;
}
private:
/// \brief Get the compact unwind number for a given register. The number
/// corresponds to the enum lists in compact_unwind_encoding.h.
int getCompactUnwindRegNum(unsigned Reg) const {
static const uint16_t CU32BitRegs[7] = {
X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
};
static const uint16_t CU64BitRegs[] = {
X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
};
const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
if (*CURegs == Reg)
return Idx;
return -1;
}
/// \brief Return the registers encoded for a compact encoding with a frame
/// pointer.
uint32_t encodeCompactUnwindRegistersWithFrame() const {
// Encode the registers in the order they were saved --- 3-bits per
// register. The list of saved registers is assumed to be in reverse
// order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
uint32_t RegEnc = 0;
for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
unsigned Reg = SavedRegs[i];
if (Reg == 0) break;
int CURegNum = getCompactUnwindRegNum(Reg);
if (CURegNum == -1) return ~0U;
// Encode the 3-bit register number in order, skipping over 3-bits for
// each register.
RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
}
assert((RegEnc & 0x3FFFF) == RegEnc &&
"Invalid compact register encoding!");
return RegEnc;
}
/// \brief Create the permutation encoding used with frameless stacks. It is
/// passed the number of registers to be saved and an array of the registers
/// saved.
uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
// The saved registers are numbered from 1 to 6. In order to encode the
// order in which they were saved, we re-number them according to their
// place in the register order. The re-numbering is relative to the last
// re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
// that order:
//
// Orig Re-Num
// ---- ------
// 6 6
// 2 2
// 4 3
// 5 3
//
for (unsigned i = 0; i < RegCount; ++i) {
int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
if (CUReg == -1) return ~0U;
SavedRegs[i] = CUReg;
}
// Reverse the list.
std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
uint32_t RenumRegs[CU_NUM_SAVED_REGS];
for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
unsigned Countless = 0;
for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
if (SavedRegs[j] < SavedRegs[i])
++Countless;
RenumRegs[i] = SavedRegs[i] - Countless - 1;
}
// Take the renumbered values and encode them into a 10-bit number.
uint32_t permutationEncoding = 0;
switch (RegCount) {
case 6:
permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
+ 6 * RenumRegs[2] + 2 * RenumRegs[3]
+ RenumRegs[4];
break;
case 5:
permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
+ 6 * RenumRegs[3] + 2 * RenumRegs[4]
+ RenumRegs[5];
break;
case 4:
permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
+ 3 * RenumRegs[4] + RenumRegs[5];
break;
case 3:
permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
+ RenumRegs[5];
break;
case 2:
permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
break;
case 1:
permutationEncoding |= RenumRegs[5];
break;
}
assert((permutationEncoding & 0x3FF) == permutationEncoding &&
"Invalid compact register encoding!");
return permutationEncoding;
}
public:
DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
bool Is64Bit)
: X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
memset(SavedRegs, 0, sizeof(SavedRegs));
OffsetSize = Is64Bit ? 8 : 4;
MoveInstrSize = Is64Bit ? 3 : 2;
StackDivide = Is64Bit ? 8 : 4;
}
};
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
public:
DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
StringRef CPU)
: DarwinX86AsmBackend(T, MRI, CPU, false) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
MachO::CPU_TYPE_I386,
MachO::CPU_SUBTYPE_I386_ALL);
}
/// \brief Generate the compact unwind encoding for the CFI instructions.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
return generateCompactUnwindEncodingImpl(Instrs);
}
};
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
const MachO::CPUSubTypeX86 Subtype;
public:
DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
StringRef CPU, MachO::CPUSubTypeX86 st)
: DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
MachO::CPU_TYPE_X86_64, Subtype);
}
/// \brief Generate the compact unwind encoding for the CFI instructions.
uint32_t generateCompactUnwindEncoding(
ArrayRef<MCCFIInstruction> Instrs) const override {
return generateCompactUnwindEncodingImpl(Instrs);
}
};
} // end anonymous namespace
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT,
StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSBinFormatMachO())
return new DarwinX86_32AsmBackend(T, MRI, CPU);
if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
return new WindowsX86AsmBackend(T, false, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
return new ELFX86_32AsmBackend(T, OSABI, CPU);
}
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
const MCRegisterInfo &MRI,
StringRef TT,
StringRef CPU) {
Triple TheTriple(TT);
if (TheTriple.isOSBinFormatMachO()) {
MachO::CPUSubTypeX86 CS =
StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
.Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
.Default(MachO::CPU_SUBTYPE_X86_64_ALL);
return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
}
if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
return new WindowsX86AsmBackend(T, true, CPU);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
if (TheTriple.getEnvironment() == Triple::GNUX32)
return new ELFX86_X32AsmBackend(T, OSABI, CPU);
return new ELFX86_64AsmBackend(T, OSABI, CPU);
}