forked from OSchip/llvm-project
292 lines
8.3 KiB
C++
292 lines
8.3 KiB
C++
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes implement wrappers around llvm::Value in order to
|
|
// fully represent the range of values for C L- and R- values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef CLANG_CODEGEN_CGVALUE_H
|
|
#define CLANG_CODEGEN_CGVALUE_H
|
|
|
|
#include "clang/AST/Type.h"
|
|
|
|
namespace llvm {
|
|
class Constant;
|
|
class Value;
|
|
}
|
|
|
|
namespace clang {
|
|
class ObjCPropertyRefExpr;
|
|
class ObjCKVCRefExpr;
|
|
|
|
namespace CodeGen {
|
|
|
|
/// RValue - This trivial value class is used to represent the result of an
|
|
/// expression that is evaluated. It can be one of three things: either a
|
|
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
|
|
/// address of an aggregate value in memory.
|
|
class RValue {
|
|
llvm::Value *V1, *V2;
|
|
// TODO: Encode this into the low bit of pointer for more efficient
|
|
// return-by-value.
|
|
enum { Scalar, Complex, Aggregate } Flavor;
|
|
|
|
// FIXME: Aggregate rvalues need to retain information about whether they are
|
|
// volatile or not.
|
|
public:
|
|
|
|
bool isScalar() const { return Flavor == Scalar; }
|
|
bool isComplex() const { return Flavor == Complex; }
|
|
bool isAggregate() const { return Flavor == Aggregate; }
|
|
|
|
/// getScalar() - Return the Value* of this scalar value.
|
|
llvm::Value *getScalarVal() const {
|
|
assert(isScalar() && "Not a scalar!");
|
|
return V1;
|
|
}
|
|
|
|
/// getComplexVal - Return the real/imag components of this complex value.
|
|
///
|
|
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
|
|
return std::pair<llvm::Value *, llvm::Value *>(V1, V2);
|
|
}
|
|
|
|
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
|
|
llvm::Value *getAggregateAddr() const {
|
|
assert(isAggregate() && "Not an aggregate!");
|
|
return V1;
|
|
}
|
|
|
|
static RValue get(llvm::Value *V) {
|
|
RValue ER;
|
|
ER.V1 = V;
|
|
ER.Flavor = Scalar;
|
|
return ER;
|
|
}
|
|
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
|
|
RValue ER;
|
|
ER.V1 = V1;
|
|
ER.V2 = V2;
|
|
ER.Flavor = Complex;
|
|
return ER;
|
|
}
|
|
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
|
|
RValue ER;
|
|
ER.V1 = C.first;
|
|
ER.V2 = C.second;
|
|
ER.Flavor = Complex;
|
|
return ER;
|
|
}
|
|
static RValue getAggregate(llvm::Value *V) {
|
|
RValue ER;
|
|
ER.V1 = V;
|
|
ER.Flavor = Aggregate;
|
|
return ER;
|
|
}
|
|
};
|
|
|
|
|
|
/// LValue - This represents an lvalue references. Because C/C++ allow
|
|
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
|
|
/// bitrange.
|
|
class LValue {
|
|
// FIXME: alignment?
|
|
|
|
enum {
|
|
Simple, // This is a normal l-value, use getAddress().
|
|
VectorElt, // This is a vector element l-value (V[i]), use getVector*
|
|
BitField, // This is a bitfield l-value, use getBitfield*.
|
|
ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
|
|
PropertyRef, // This is an Objective-C property reference, use
|
|
// getPropertyRefExpr
|
|
KVCRef // This is an objective-c 'implicit' property ref,
|
|
// use getKVCRefExpr
|
|
} LVType;
|
|
|
|
enum ObjCType {
|
|
None = 0, // object with no gc attribute.
|
|
Weak, // __weak object expression
|
|
Strong // __strong object expression
|
|
};
|
|
|
|
llvm::Value *V;
|
|
|
|
union {
|
|
// Index into a vector subscript: V[i]
|
|
llvm::Value *VectorIdx;
|
|
|
|
// ExtVector element subset: V.xyx
|
|
llvm::Constant *VectorElts;
|
|
|
|
// BitField start bit and size
|
|
struct {
|
|
unsigned short StartBit;
|
|
unsigned short Size;
|
|
bool IsSigned;
|
|
} BitfieldData;
|
|
|
|
// Obj-C property reference expression
|
|
const ObjCPropertyRefExpr *PropertyRefExpr;
|
|
// ObjC 'implicit' property reference expression
|
|
const ObjCKVCRefExpr *KVCRefExpr;
|
|
};
|
|
|
|
bool Volatile:1;
|
|
// FIXME: set but never used, what effect should it have?
|
|
bool Restrict:1;
|
|
|
|
// objective-c's ivar
|
|
bool Ivar:1;
|
|
|
|
// objective-c's gc attributes
|
|
unsigned ObjCType : 2;
|
|
|
|
|
|
private:
|
|
static void SetQualifiers(unsigned Qualifiers, LValue& R) {
|
|
R.Volatile = (Qualifiers&QualType::Volatile)!=0;
|
|
R.Restrict = (Qualifiers&QualType::Restrict)!=0;
|
|
// FIXME: Convenient place to set objc flags to 0. This
|
|
// should really be done in a user-defined constructor instead.
|
|
R.ObjCType = None;
|
|
R.Ivar = false;
|
|
}
|
|
|
|
public:
|
|
bool isSimple() const { return LVType == Simple; }
|
|
bool isVectorElt() const { return LVType == VectorElt; }
|
|
bool isBitfield() const { return LVType == BitField; }
|
|
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
|
|
bool isPropertyRef() const { return LVType == PropertyRef; }
|
|
bool isKVCRef() const { return LVType == KVCRef; }
|
|
|
|
bool isVolatileQualified() const { return Volatile; }
|
|
bool isRestrictQualified() const { return Restrict; }
|
|
|
|
bool isObjCIvar() const { return Ivar; }
|
|
bool isObjCWeak() const { return ObjCType == Weak; }
|
|
bool isObjCStrong() const { return ObjCType == Strong; }
|
|
|
|
static void SetObjCIvar(LValue& R, bool iValue) {
|
|
R.Ivar = iValue;
|
|
}
|
|
|
|
static void SetObjCType(bool isWeak, bool isStrong, LValue& R) {
|
|
assert(!(isWeak == true && isStrong == true));
|
|
if (isWeak)
|
|
R.ObjCType = Weak;
|
|
else if (isStrong)
|
|
R.ObjCType = Strong;
|
|
}
|
|
|
|
// simple lvalue
|
|
llvm::Value *getAddress() const { assert(isSimple()); return V; }
|
|
// vector elt lvalue
|
|
llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
|
|
llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
|
|
// extended vector elements.
|
|
llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
|
|
llvm::Constant *getExtVectorElts() const {
|
|
assert(isExtVectorElt());
|
|
return VectorElts;
|
|
}
|
|
// bitfield lvalue
|
|
llvm::Value *getBitfieldAddr() const { assert(isBitfield()); return V; }
|
|
unsigned short getBitfieldStartBit() const {
|
|
assert(isBitfield());
|
|
return BitfieldData.StartBit;
|
|
}
|
|
unsigned short getBitfieldSize() const {
|
|
assert(isBitfield());
|
|
return BitfieldData.Size;
|
|
}
|
|
bool isBitfieldSigned() const {
|
|
assert(isBitfield());
|
|
return BitfieldData.IsSigned;
|
|
}
|
|
// property ref lvalue
|
|
const ObjCPropertyRefExpr *getPropertyRefExpr() const {
|
|
assert(isPropertyRef());
|
|
return PropertyRefExpr;
|
|
}
|
|
|
|
// 'implicit' property ref lvalue
|
|
const ObjCKVCRefExpr *getKVCRefExpr() const {
|
|
assert(isKVCRef());
|
|
return KVCRefExpr;
|
|
}
|
|
|
|
static LValue MakeAddr(llvm::Value *V, unsigned Qualifiers) {
|
|
LValue R;
|
|
R.LVType = Simple;
|
|
R.V = V;
|
|
SetQualifiers(Qualifiers,R);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
|
|
unsigned Qualifiers) {
|
|
LValue R;
|
|
R.LVType = VectorElt;
|
|
R.V = Vec;
|
|
R.VectorIdx = Idx;
|
|
SetQualifiers(Qualifiers,R);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
|
|
unsigned Qualifiers) {
|
|
LValue R;
|
|
R.LVType = ExtVectorElt;
|
|
R.V = Vec;
|
|
R.VectorElts = Elts;
|
|
SetQualifiers(Qualifiers,R);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeBitfield(llvm::Value *V, unsigned short StartBit,
|
|
unsigned short Size, bool IsSigned,
|
|
unsigned Qualifiers) {
|
|
LValue R;
|
|
R.LVType = BitField;
|
|
R.V = V;
|
|
R.BitfieldData.StartBit = StartBit;
|
|
R.BitfieldData.Size = Size;
|
|
R.BitfieldData.IsSigned = IsSigned;
|
|
SetQualifiers(Qualifiers,R);
|
|
return R;
|
|
}
|
|
|
|
// FIXME: It is probably bad that we aren't emitting the target when
|
|
// we build the lvalue. However, this complicates the code a bit,
|
|
// and I haven't figured out how to make it go wrong yet.
|
|
static LValue MakePropertyRef(const ObjCPropertyRefExpr *E,
|
|
unsigned Qualifiers) {
|
|
LValue R;
|
|
R.LVType = PropertyRef;
|
|
R.PropertyRefExpr = E;
|
|
SetQualifiers(Qualifiers,R);
|
|
return R;
|
|
}
|
|
static LValue MakeKVCRef(const ObjCKVCRefExpr *E,
|
|
unsigned Qualifiers) {
|
|
LValue R;
|
|
R.LVType = KVCRef;
|
|
R.KVCRefExpr = E;
|
|
SetQualifiers(Qualifiers,R);
|
|
return R;
|
|
}
|
|
};
|
|
|
|
} // end namespace CodeGen
|
|
} // end namespace clang
|
|
|
|
#endif
|