llvm-project/llvm/unittests/Transforms/Scalar/LoopPassManagerTest.cpp

1588 lines
69 KiB
C++

//===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
using testing::DoDefault;
using testing::Return;
using testing::Expectation;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::_;
template <typename DerivedT, typename IRUnitT,
typename AnalysisManagerT = AnalysisManager<IRUnitT>,
typename... ExtraArgTs>
class MockAnalysisHandleBase {
public:
class Analysis : public AnalysisInfoMixin<Analysis> {
friend AnalysisInfoMixin<Analysis>;
friend MockAnalysisHandleBase;
static AnalysisKey Key;
DerivedT *Handle;
Analysis(DerivedT &Handle) : Handle(&Handle) {
static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
"Must pass the derived type to this template!");
}
public:
class Result {
friend MockAnalysisHandleBase;
DerivedT *Handle;
Result(DerivedT &Handle) : Handle(&Handle) {}
public:
// Forward invalidation events to the mock handle.
bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
typename AnalysisManagerT::Invalidator &Inv) {
return Handle->invalidate(IR, PA, Inv);
}
};
Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
return Handle->run(IR, AM, ExtraArgs...);
}
};
Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
typename Analysis::Result getResult() {
return typename Analysis::Result(static_cast<DerivedT &>(*this));
}
protected:
// FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
// the template, so we use a boring static function.
static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
typename AnalysisManagerT::Invalidator &Inv) {
auto PAC = PA.template getChecker<Analysis>();
return !PAC.preserved() &&
!PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
}
/// Derived classes should call this in their constructor to set up default
/// mock actions. (We can't do this in our constructor because this has to
/// run after the DerivedT is constructed.)
void setDefaults() {
ON_CALL(static_cast<DerivedT &>(*this),
run(_, _, testing::Matcher<ExtraArgTs>(_)...))
.WillByDefault(Return(this->getResult()));
ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
.WillByDefault(Invoke(&invalidateCallback));
}
};
template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
typename... ExtraArgTs>
AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
ExtraArgTs...>::Analysis::Key;
/// Mock handle for loop analyses.
///
/// This is provided as a template accepting an (optional) integer. Because
/// analyses are identified and queried by type, this allows constructing
/// multiple handles with distinctly typed nested 'Analysis' types that can be
/// registered and queried. If you want to register multiple loop analysis
/// passes, you'll need to instantiate this type with different values for I.
/// For example:
///
/// MockLoopAnalysisHandleTemplate<0> h0;
/// MockLoopAnalysisHandleTemplate<1> h1;
/// typedef decltype(h0)::Analysis Analysis0;
/// typedef decltype(h1)::Analysis Analysis1;
template <size_t I = static_cast<size_t>(-1)>
struct MockLoopAnalysisHandleTemplate
: MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
LoopAnalysisManager,
LoopStandardAnalysisResults &> {
typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
LoopStandardAnalysisResults &));
MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
LoopAnalysisManager::Invalidator &));
MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
};
typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
struct MockFunctionAnalysisHandle
: MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
FunctionAnalysisManager::Invalidator &));
MockFunctionAnalysisHandle() { setDefaults(); }
};
template <typename DerivedT, typename IRUnitT,
typename AnalysisManagerT = AnalysisManager<IRUnitT>,
typename... ExtraArgTs>
class MockPassHandleBase {
public:
class Pass : public PassInfoMixin<Pass> {
friend MockPassHandleBase;
DerivedT *Handle;
Pass(DerivedT &Handle) : Handle(&Handle) {
static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
"Must pass the derived type to this template!");
}
public:
PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
ExtraArgTs... ExtraArgs) {
return Handle->run(IR, AM, ExtraArgs...);
}
};
Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
protected:
/// Derived classes should call this in their constructor to set up default
/// mock actions. (We can't do this in our constructor because this has to
/// run after the DerivedT is constructed.)
void setDefaults() {
ON_CALL(static_cast<DerivedT &>(*this),
run(_, _, testing::Matcher<ExtraArgTs>(_)...))
.WillByDefault(Return(PreservedAnalyses::all()));
}
};
struct MockLoopPassHandle
: MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
LoopStandardAnalysisResults &, LPMUpdater &> {
MOCK_METHOD4(run,
PreservedAnalyses(Loop &, LoopAnalysisManager &,
LoopStandardAnalysisResults &, LPMUpdater &));
MockLoopPassHandle() { setDefaults(); }
};
struct MockFunctionPassHandle
: MockPassHandleBase<MockFunctionPassHandle, Function> {
MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
MockFunctionPassHandle() { setDefaults(); }
};
struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
MockModulePassHandle() { setDefaults(); }
};
/// Define a custom matcher for objects which support a 'getName' method
/// returning a StringRef.
///
/// LLVM often has IR objects or analysis objects which expose a StringRef name
/// and in tests it is convenient to match these by name for readability. This
/// matcher supports any type exposing a getName() method of this form.
///
/// It should be used as:
///
/// HasName("my_function")
///
/// No namespace or other qualification is required.
MATCHER_P(HasName, Name, "") {
// The matcher's name and argument are printed in the case of failure, but we
// also want to print out the name of the argument. This uses an implicitly
// avaiable std::ostream, so we have to construct a std::string.
*result_listener << "has name '" << arg.getName().str() << "'";
return Name == arg.getName();
}
std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
return parseAssemblyString(IR, Err, C);
}
class LoopPassManagerTest : public ::testing::Test {
protected:
LLVMContext Context;
std::unique_ptr<Module> M;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
ModuleAnalysisManager MAM;
MockLoopAnalysisHandle MLAHandle;
MockLoopPassHandle MLPHandle;
MockFunctionPassHandle MFPHandle;
MockModulePassHandle MMPHandle;
static PreservedAnalyses
getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
return PreservedAnalyses::all();
};
public:
LoopPassManagerTest()
: M(parseIR(Context,
"define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %end\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
"loop.0.1.ph:\n"
" br label %loop.0.1\n"
"loop.0.1:\n"
" %cond.0.1 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"end:\n"
" ret void\n"
"}\n"
"\n"
"define void @g(i1* %ptr) {\n"
"entry:\n"
" br label %loop.g.0\n"
"loop.g.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.g.0, label %end\n"
"end:\n"
" ret void\n"
"}\n")),
LAM(true), FAM(true), MAM(true) {
// Register our mock analysis.
LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
// We need DominatorTreeAnalysis for LoopAnalysis.
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return LoopAnalysis(); });
// We also allow loop passes to assume a set of other analyses and so need
// those.
FAM.registerPass([&] { return AAManager(); });
FAM.registerPass([&] { return AssumptionAnalysis(); });
FAM.registerPass([&] { return MemorySSAAnalysis(); });
FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
FAM.registerPass([&] { return TargetLibraryAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });
// Register required pass instrumentation analysis.
LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
// Cross-register proxies.
LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
}
};
TEST_F(LoopPassManagerTest, Basic) {
ModulePassManager MPM(true);
::testing::InSequence MakeExpectationsSequenced;
// First we just visit all the loops in all the functions and get their
// analysis results. This will run the analysis a total of four times,
// once for each loop.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
// Wire the loop pass through pass managers into the module pipeline.
{
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
FunctionPassManager FPM(true);
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// Next we run two passes over the loops. The first one invalidates the
// analyses for one loop, the second ones try to get the analysis results.
// This should force only one analysis to re-run within the loop PM, but will
// also invalidate everything after the loop pass manager finishes.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(DoDefault())
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(DoDefault())
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
.WillOnce(DoDefault())
.WillOnce(Invoke(getLoopAnalysisResult));
// Wire two loop pass runs into the module pipeline.
{
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FunctionPassManager FPM(true);
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// And now run the pipeline across the module.
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
// We process each function completely in sequence.
::testing::Sequence FSequence, GSequence;
// First, force the analysis result to be computed for each loop.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
.InSequence(GSequence)
.WillOnce(DoDefault());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// No need to re-run if we require again from a fresh loop pass manager.
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// For 'f', preserve most things but not the specific loop analyses.
auto PA = getLoopPassPreservedAnalyses();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.InSequence(FSequence)
.WillOnce(Return(PA));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// On one loop, skip the invalidation (as though we did an internal update).
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
.InSequence(FSequence)
.WillOnce(Return(false));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// Now two loops still have to be recomputed.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// Preserve things in the second function to ensure invalidation remains
// isolated to one function.
EXPECT_CALL(MFPHandle, run(HasName("g"), _))
.InSequence(GSequence)
.WillOnce(DoDefault());
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.InSequence(FSequence)
.WillOnce(DoDefault());
// For 'g', fail to preserve anything, causing the loops themselves to be
// cleared. We don't get an invalidation event here as the loop is gone, but
// we should still have to recompute the analysis.
EXPECT_CALL(MFPHandle, run(HasName("g"), _))
.InSequence(GSequence)
.WillOnce(Return(PreservedAnalyses::none()));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
.InSequence(GSequence)
.WillOnce(DoDefault());
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// Verify with a separate function pass run that we didn't mess up 'f's
// cache. No analysis runs should be necessary here.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
ModulePassManager MPM(true);
::testing::InSequence MakeExpectationsSequenced;
// First, force the analysis result to be computed for each loop.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Walking all the way out and all the way back in doesn't re-run the
// analysis.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// But a module pass that doesn't preserve the actual mock loop analysis
// invalidates all the way down and forces recomputing.
EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
return PA;
}));
// All the loop analyses from both functions get invalidated before we
// recompute anything.
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
// On one loop, again skip the invalidation (as though we did an internal
// update).
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
.WillOnce(Return(false));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
// Now all but one of the loops gets re-analyzed.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(MMPHandle.getPass());
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Verify that the cached values persist.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Now we fail to preserve the loop analysis and observe that the loop
// analyses are cleared (so no invalidation event) as the loops themselves
// are no longer valid.
EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(MMPHandle.getPass());
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Verify that the cached values persist.
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
// Next, check that even if we preserve everything within the function itelf,
// if the function's module pass proxy isn't preserved and the potential set
// of functions changes, the clear reaches the loop analyses as well. This
// will again trigger re-runs but not invalidation events.
EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserveSet<AllAnalysesOn<Function>>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
MPM.addPass(MMPHandle.getPass());
MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
MPM.run(*M, MAM);
}
// Test that if any of the bundled analyses provided in the LPM's signature
// become invalid, the analysis proxy itself becomes invalid and we clear all
// loop analysis results.
TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
::testing::InSequence MakeExpectationsSequenced;
// First, force the analysis result to be computed for each loop.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// No need to re-run if we require again from a fresh loop pass manager.
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// Preserving everything but the loop analyses themselves results in
// invalidation and running.
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.WillOnce(Return(getLoopPassPreservedAnalyses()));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// The rest don't invalidate analyses, they only trigger re-runs because we
// clear the cache completely.
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
// Not preserving `AAManager`.
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
// Not preserving `DominatorTreeAnalysis`.
PA.preserve<LoopAnalysis>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
PA.preserve<DominatorTreeAnalysis>();
// Not preserving the `LoopAnalysis`.
PA.preserve<LoopAnalysisManagerFunctionProxy>();
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
// Not preserving the `LoopAnalysisManagerFunctionProxy`.
PA.preserve<ScalarEvolutionAnalysis>();
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = PreservedAnalyses::none();
PA.preserve<AAManager>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LoopAnalysis>();
PA.preserve<LoopAnalysisManagerFunctionProxy>();
// Not preserving `ScalarEvolutionAnalysis`.
return PA;
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(
RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
// After all the churn on 'f', we'll compute the loop analysis results for
// 'g' once with a requires pass and then run our mock pass over g a bunch
// but just get cached results each time.
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, IndirectInvalidation) {
// We need two distinct analysis types and handles.
enum { A, B };
MockLoopAnalysisHandleTemplate<A> MLAHandleA;
MockLoopAnalysisHandleTemplate<B> MLAHandleB;
LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
typedef decltype(MLAHandleA)::Analysis AnalysisA;
typedef decltype(MLAHandleB)::Analysis AnalysisB;
// Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
// need to get the AnalysisB results in AnalysisA's run method and check if
// AnalysisB gets invalidated in AnalysisA's invalidate method.
ON_CALL(MLAHandleA, run(_, _, _))
.WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
(void)AM.getResult<AnalysisB>(L, AR);
return MLAHandleA.getResult();
}));
ON_CALL(MLAHandleA, invalidate(_, _, _))
.WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
LoopAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<AnalysisA>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
Inv.invalidate<AnalysisB>(L, PA);
}));
::testing::InSequence MakeExpectationsSequenced;
// Compute the analyses across all of 'f' first.
EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
// Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
// preserve everything for the rest. This in turn triggers that one loop to
// recompute both AnalysisB *and* AnalysisA if indirect invalidation is
// working.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
// Specifically preserve AnalysisA so that it would survive if it
// didn't depend on AnalysisB.
PA.preserve<AnalysisA>();
return PA;
}));
// It happens that AnalysisB is invalidated first. That shouldn't matter
// though, and we should still call AnalysisA's invalidation.
EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
// The rest of the loops should run and get cached results.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
// The run over 'g' should be boring, with us just computing the analyses once
// up front and then running loop passes and getting cached results.
EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &) {
(void)AM.getResult<AnalysisA>(L, AR);
return PreservedAnalyses::all();
}));
// Build the pipeline and run it.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
FPM.addPass(
createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
typedef decltype(MLAHandle)::Analysis LoopAnalysis;
MockFunctionAnalysisHandle MFAHandle;
FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
// Set up the loop analysis to depend on both the function and module
// analysis.
ON_CALL(MLAHandle, run(_, _, _))
.WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR) {
auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
Function &F = *L.getHeader()->getParent();
// This call will assert when trying to get the actual analysis if the
// FunctionAnalysis can be invalidated. Only check its existence.
// Alternatively, use FAM above, for the purposes of this unittest.
if (FAMP.cachedResultExists<FunctionAnalysis>(F))
FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
LoopAnalysis>();
return MLAHandle.getResult();
}));
::testing::InSequence MakeExpectationsSequenced;
// Compute the analyses across all of 'f' first.
EXPECT_CALL(MFPHandle, run(HasName("f"), _))
.WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
// Force the computing of the function analysis so it is available in
// this function.
(void)AM.getResult<FunctionAnalysis>(F);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
// Now invalidate the function analysis but preserve the loop analyses.
// This should trigger immediate invalidation of the loop analyses, despite
// the fact that they were preserved.
EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
// And re-running a requires pass recomputes them.
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
// When we run over 'g' we don't populate the cache with the function
// analysis.
EXPECT_CALL(MFPHandle, run(HasName("g"), _))
.WillOnce(Return(PreservedAnalyses::all()));
EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
// Which means that no extra invalidation occurs and cached values are used.
EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
auto PA = getLoopPassPreservedAnalyses();
if (EnableMSSALoopDependency)
PA.preserve<MemorySSAAnalysis>();
PA.preserveSet<AllAnalysesOn<Loop>>();
return PA;
}));
// Build the pipeline and run it.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
FPM.addPass(MFPHandle.getPass());
FPM.addPass(
createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
FPM.addPass(MFPHandle.getPass());
FPM.addPass(
createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, LoopChildInsertion) {
// Super boring module with three loops in a single loop nest.
M = parseIR(Context, "define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %end\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
"loop.0.1.ph:\n"
" br label %loop.0.1\n"
"loop.0.1:\n"
" %cond.0.1 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
"loop.0.2.ph:\n"
" br label %loop.0.2\n"
"loop.0.2:\n"
" %cond.0.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"end:\n"
" ret void\n"
"}\n");
// Build up variables referring into the IR so we can rewrite it below
// easily.
Function &F = *M->begin();
ASSERT_THAT(F, HasName("f"));
Argument &Ptr = *F.arg_begin();
auto BBI = F.begin();
BasicBlock &EntryBB = *BBI++;
ASSERT_THAT(EntryBB, HasName("entry"));
BasicBlock &Loop0BB = *BBI++;
ASSERT_THAT(Loop0BB, HasName("loop.0"));
BasicBlock &Loop00PHBB = *BBI++;
ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
BasicBlock &Loop00BB = *BBI++;
ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
BasicBlock &Loop01PHBB = *BBI++;
ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
BasicBlock &Loop01BB = *BBI++;
ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
BasicBlock &Loop02PHBB = *BBI++;
ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
BasicBlock &Loop02BB = *BBI++;
ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
BasicBlock &Loop0LatchBB = *BBI++;
ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
BasicBlock &EndBB = *BBI++;
ASSERT_THAT(EndBB, HasName("end"));
ASSERT_THAT(BBI, F.end());
auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
const char *Name, BasicBlock *BB) {
auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
/*isVolatile*/ true, BB);
BranchInst::Create(TrueBB, FalseBB, Cond, BB);
};
// Build the pass managers and register our pipeline. We build a single loop
// pass pipeline consisting of three mock pass runs over each loop. After
// this we run both domtree and loop verification passes to make sure that
// the IR remained valid during our mutations.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
FPM.addPass(DominatorTreeVerifierPass());
FPM.addPass(LoopVerifierPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// All the visit orders are deterministic, so we use simple fully order
// expectations.
::testing::InSequence MakeExpectationsSequenced;
// We run loop passes three times over each of the loops.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
// When running over the middle loop, the second run inserts two new child
// loops, inserting them and itself into the worklist.
BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
L.addChildLoop(NewLoop);
auto *NewLoop010PHBB =
BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
NewLoop010BB =
BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
NewLoop01LatchBB =
BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
NewLoop010BB);
BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
EXPECT_TRUE(AR.DT.verify());
L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
NewLoop->verifyLoop();
L.verifyLoop();
Updater.addChildLoops({NewLoop});
return PreservedAnalyses::all();
}));
// We should immediately drop down to fully visit the new inner loop.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// After visiting the inner loop, we should re-visit the second loop
// reflecting its new loop nest structure.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
// In the second run over the middle loop after we've visited the new child,
// we add another child to check that we can repeatedly add children, and add
// children to a loop that already has children.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
L.addChildLoop(NewLoop);
auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
NewLoop011PHBB);
BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
NewLoop011BB);
AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
EXPECT_TRUE(AR.DT.verify());
L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
NewLoop->verifyLoop();
L.verifyLoop();
Updater.addChildLoops({NewLoop});
return PreservedAnalyses::all();
}));
// Again, we should immediately drop down to visit the new, unvisited child
// loop. We don't need to revisit the other child though.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// And now we should pop back up to the second loop and do a full pipeline of
// three passes on its current form.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Now that all the expected actions are registered, run the pipeline over
// our module. All of our expectations are verified when the test finishes.
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
// Super boring module with two loop nests and loop nest with two child
// loops.
M = parseIR(Context, "define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
"loop.0.2.ph:\n"
" br label %loop.0.2\n"
"loop.0.2:\n"
" %cond.0.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"loop.2.ph:\n"
" br label %loop.2\n"
"loop.2:\n"
" %cond.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.2, label %loop.2, label %end\n"
"end:\n"
" ret void\n"
"}\n");
// Build up variables referring into the IR so we can rewrite it below
// easily.
Function &F = *M->begin();
ASSERT_THAT(F, HasName("f"));
Argument &Ptr = *F.arg_begin();
auto BBI = F.begin();
BasicBlock &EntryBB = *BBI++;
ASSERT_THAT(EntryBB, HasName("entry"));
BasicBlock &Loop0BB = *BBI++;
ASSERT_THAT(Loop0BB, HasName("loop.0"));
BasicBlock &Loop00PHBB = *BBI++;
ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
BasicBlock &Loop00BB = *BBI++;
ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
BasicBlock &Loop02PHBB = *BBI++;
ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
BasicBlock &Loop02BB = *BBI++;
ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
BasicBlock &Loop0LatchBB = *BBI++;
ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
BasicBlock &Loop2PHBB = *BBI++;
ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
BasicBlock &Loop2BB = *BBI++;
ASSERT_THAT(Loop2BB, HasName("loop.2"));
BasicBlock &EndBB = *BBI++;
ASSERT_THAT(EndBB, HasName("end"));
ASSERT_THAT(BBI, F.end());
auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
const char *Name, BasicBlock *BB) {
auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
/*isVolatile*/ true, BB);
BranchInst::Create(TrueBB, FalseBB, Cond, BB);
};
// Build the pass managers and register our pipeline. We build a single loop
// pass pipeline consisting of three mock pass runs over each loop. After
// this we run both domtree and loop verification passes to make sure that
// the IR remained valid during our mutations.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
FPM.addPass(DominatorTreeVerifierPass());
FPM.addPass(LoopVerifierPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// All the visit orders are deterministic, so we use simple fully order
// expectations.
::testing::InSequence MakeExpectationsSequenced;
// We run loop passes three times over each of the loops.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
// On the second run, we insert a sibling loop.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
L.getParentLoop()->addChildLoop(NewLoop);
auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
EXPECT_TRUE(AR.DT.verify());
L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
L.getParentLoop()->verifyLoop();
Updater.addSiblingLoops({NewLoop});
return PreservedAnalyses::all();
}));
// We finish processing this loop as sibling loops don't perturb the
// postorder walk.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
// We visit the inserted sibling next.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
// Next, on the third pass run on the last inner loop we add more new
// siblings, more than one, and one with nested child loops. By doing this at
// the end we make sure that edge case works well.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
AR.LI.AllocateLoop()};
L.getParentLoop()->addChildLoop(NewLoops[0]);
L.getParentLoop()->addChildLoop(NewLoops[1]);
NewLoops[1]->addChildLoop(NewLoops[2]);
auto *NewLoop03PHBB =
BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
auto *NewLoop03BB =
BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
auto *NewLoop04PHBB =
BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
auto *NewLoop04BB =
BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
auto *NewLoop040PHBB =
BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
auto *NewLoop040BB =
BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
auto *NewLoop04LatchBB =
BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
EXPECT_TRUE(AR.DT.verify());
L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
L.getParentLoop()->verifyLoop();
Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Note that we need to visit the inner loop of this added sibling before the
// sibling itself!
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// And only now do we visit the outermost loop of the nest.
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
// On the second pass, we add sibling loops which become new top-level loops.
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &Updater) {
auto *NewLoop = AR.LI.AllocateLoop();
AR.LI.addTopLevelLoop(NewLoop);
auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
EXPECT_TRUE(AR.DT.verify());
NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
NewLoop->verifyLoop();
Updater.addSiblingLoops({NewLoop});
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Now that all the expected actions are registered, run the pipeline over
// our module. All of our expectations are verified when the test finishes.
MPM.run(*M, MAM);
}
TEST_F(LoopPassManagerTest, LoopDeletion) {
// Build a module with a single loop nest that contains one outer loop with
// three subloops, and one of those with its own subloop. We will
// incrementally delete all of these to test different deletion scenarios.
M = parseIR(Context, "define void @f(i1* %ptr) {\n"
"entry:\n"
" br label %loop.0\n"
"loop.0:\n"
" %cond.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0, label %loop.0.0.ph, label %end\n"
"loop.0.0.ph:\n"
" br label %loop.0.0\n"
"loop.0.0:\n"
" %cond.0.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
"loop.0.1.ph:\n"
" br label %loop.0.1\n"
"loop.0.1:\n"
" %cond.0.1 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
"loop.0.2.ph:\n"
" br label %loop.0.2\n"
"loop.0.2:\n"
" %cond.0.2 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
"loop.0.2.0.ph:\n"
" br label %loop.0.2.0\n"
"loop.0.2.0:\n"
" %cond.0.2.0 = load volatile i1, i1* %ptr\n"
" br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
"loop.0.2.latch:\n"
" br label %loop.0.2\n"
"loop.0.latch:\n"
" br label %loop.0\n"
"end:\n"
" ret void\n"
"}\n");
// Build up variables referring into the IR so we can rewrite it below
// easily.
Function &F = *M->begin();
ASSERT_THAT(F, HasName("f"));
Argument &Ptr = *F.arg_begin();
auto BBI = F.begin();
BasicBlock &EntryBB = *BBI++;
ASSERT_THAT(EntryBB, HasName("entry"));
BasicBlock &Loop0BB = *BBI++;
ASSERT_THAT(Loop0BB, HasName("loop.0"));
BasicBlock &Loop00PHBB = *BBI++;
ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
BasicBlock &Loop00BB = *BBI++;
ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
BasicBlock &Loop01PHBB = *BBI++;
ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
BasicBlock &Loop01BB = *BBI++;
ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
BasicBlock &Loop02PHBB = *BBI++;
ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
BasicBlock &Loop02BB = *BBI++;
ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
BasicBlock &Loop020PHBB = *BBI++;
ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
BasicBlock &Loop020BB = *BBI++;
ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
BasicBlock &Loop02LatchBB = *BBI++;
ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
BasicBlock &Loop0LatchBB = *BBI++;
ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
BasicBlock &EndBB = *BBI++;
ASSERT_THAT(EndBB, HasName("end"));
ASSERT_THAT(BBI, F.end());
// Helper to do the actual deletion of a loop. We directly encode this here
// to isolate ourselves from the rest of LLVM and for simplicity. Here we can
// egregiously cheat based on knowledge of the test case. For example, we
// have no PHI nodes and there is always a single i-dom.
auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
assert(L.empty() && "Can only delete leaf loops with this routine!");
SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
Updater.markLoopAsDeleted(L, L.getName());
IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
L.getUniqueExitBlock());
for (BasicBlock *LoopBB : LoopBBs) {
SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
AR.DT[LoopBB]->end());
for (DomTreeNode *ChildNode : ChildNodes)
AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
AR.DT.eraseNode(LoopBB);
AR.LI.removeBlock(LoopBB);
LoopBB->dropAllReferences();
}
for (BasicBlock *LoopBB : LoopBBs)
LoopBB->eraseFromParent();
AR.LI.erase(&L);
};
// Build up the pass managers.
ModulePassManager MPM(true);
FunctionPassManager FPM(true);
// We run several loop pass pipelines across the loop nest, but they all take
// the same form of three mock pass runs in a loop pipeline followed by
// domtree and loop verification. We use a lambda to stamp this out each
// time.
auto AddLoopPipelineAndVerificationPasses = [&] {
LoopPassManager LPM(true);
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
LPM.addPass(MLPHandle.getPass());
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
FPM.addPass(DominatorTreeVerifierPass());
FPM.addPass(LoopVerifierPass());
};
// All the visit orders are deterministic so we use simple fully order
// expectations.
::testing::InSequence MakeExpectationsSequenced;
// We run the loop pipeline with three passes over each of the loops. When
// running over the middle loop, the second pass in the pipeline deletes it.
// This should prevent the third pass from visiting it but otherwise leave
// the process unimpacted.
AddLoopPipelineAndVerificationPasses();
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
Loop *ParentL = L.getParentLoop();
AR.SE.forgetLoop(&L);
EraseLoop(L, Loop01PHBB, AR, Updater);
ParentL->verifyLoop();
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// Run the loop pipeline again. This time we delete the last loop, which
// contains a nested loop within it and insert a new loop into the nest. This
// makes sure we can handle nested loop deletion.
AddLoopPipelineAndVerificationPasses();
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
BasicBlock *NewLoop03PHBB;
EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(*L.begin());
EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
auto *ParentL = L.getParentLoop();
AR.SE.forgetLoop(&L);
EraseLoop(L, Loop02PHBB, AR, Updater);
// Now insert a new sibling loop.
auto *NewSibling = AR.LI.AllocateLoop();
ParentL->addChildLoop(NewSibling);
NewLoop03PHBB =
BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
auto *NewLoop03BB =
BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
auto *Cond =
new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
/*isVolatile*/ true, NewLoop03BB);
BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
NewLoop03PHBB);
AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
AR.DT[NewLoop03BB]);
EXPECT_TRUE(AR.DT.verify());
ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
NewSibling->verifyLoop();
ParentL->verifyLoop();
Updater.addSiblingLoops({NewSibling});
return PreservedAnalyses::all();
}));
// To respect our inner-to-outer traversal order, we must visit the
// newly-inserted sibling of the loop we just deleted before we visit the
// outer loop. When we do so, this must compute a fresh analysis result, even
// though our new loop has the same pointer value as the loop we deleted.
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.Times(2)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.Times(3)
.WillRepeatedly(Invoke(getLoopAnalysisResult));
// In the final loop pipeline run we delete every loop, including the last
// loop of the nest. We do this again in the second pass in the pipeline, and
// as a consequence we never make it to three runs on any loop. We also cover
// deleting multiple loops in a single pipeline, deleting the first loop and
// deleting the (last) top level loop.
AddLoopPipelineAndVerificationPasses();
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(&L);
EraseLoop(L, Loop00PHBB, AR, Updater);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(&L);
EraseLoop(L, *NewLoop03PHBB, AR, Updater);
return PreservedAnalyses::all();
}));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(Invoke(getLoopAnalysisResult));
EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
.WillOnce(
Invoke([&](Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
AR.SE.forgetLoop(&L);
EraseLoop(L, EntryBB, AR, Updater);
return PreservedAnalyses::all();
}));
// Add the function pass pipeline now that it is fully built up and run it
// over the module's one function.
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.run(*M, MAM);
}
}