forked from OSchip/llvm-project
3221 lines
122 KiB
C++
3221 lines
122 KiB
C++
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for declarations.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "Sema.h"
|
||
#include "clang/AST/APValue.h"
|
||
#include "clang/AST/ASTConsumer.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/DeclObjC.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/Parse/DeclSpec.h"
|
||
#include "clang/Basic/Diagnostic.h"
|
||
#include "clang/Basic/TargetInfo.h"
|
||
#include "clang/Basic/SourceManager.h"
|
||
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
|
||
#include "clang/Lex/Preprocessor.h"
|
||
#include "clang/Lex/HeaderSearch.h"
|
||
#include "llvm/ADT/SmallSet.h"
|
||
using namespace clang;
|
||
|
||
Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
|
||
const CXXScopeSpec *SS) {
|
||
DeclContext *DC = 0;
|
||
if (SS) {
|
||
if (SS->isInvalid())
|
||
return 0;
|
||
DC = static_cast<DeclContext*>(SS->getScopeRep());
|
||
}
|
||
Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
|
||
|
||
if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
|
||
isa<ObjCInterfaceDecl>(IIDecl) ||
|
||
isa<TagDecl>(IIDecl)))
|
||
return IIDecl;
|
||
return 0;
|
||
}
|
||
|
||
DeclContext *Sema::getContainingDC(DeclContext *DC) {
|
||
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
|
||
// A C++ out-of-line method will return to the file declaration context.
|
||
if (MD->isOutOfLineDefinition())
|
||
return MD->getLexicalDeclContext();
|
||
|
||
// A C++ inline method is parsed *after* the topmost class it was declared in
|
||
// is fully parsed (it's "complete").
|
||
// The parsing of a C++ inline method happens at the declaration context of
|
||
// the topmost (non-nested) class it is lexically declared in.
|
||
assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
|
||
DC = MD->getParent();
|
||
while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
|
||
DC = RD;
|
||
|
||
// Return the declaration context of the topmost class the inline method is
|
||
// declared in.
|
||
return DC;
|
||
}
|
||
|
||
if (isa<ObjCMethodDecl>(DC))
|
||
return Context.getTranslationUnitDecl();
|
||
|
||
if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
|
||
return SD->getLexicalDeclContext();
|
||
|
||
return DC->getLexicalParent();
|
||
}
|
||
|
||
void Sema::PushDeclContext(DeclContext *DC) {
|
||
assert(getContainingDC(DC) == CurContext &&
|
||
"The next DeclContext should be lexically contained in the current one.");
|
||
CurContext = DC;
|
||
}
|
||
|
||
void Sema::PopDeclContext() {
|
||
assert(CurContext && "DeclContext imbalance!");
|
||
CurContext = getContainingDC(CurContext);
|
||
}
|
||
|
||
/// Add this decl to the scope shadowed decl chains.
|
||
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
|
||
S->AddDecl(D);
|
||
|
||
// C++ [basic.scope]p4:
|
||
// -- exactly one declaration shall declare a class name or
|
||
// enumeration name that is not a typedef name and the other
|
||
// declarations shall all refer to the same object or
|
||
// enumerator, or all refer to functions and function templates;
|
||
// in this case the class name or enumeration name is hidden.
|
||
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
|
||
// We are pushing the name of a tag (enum or class).
|
||
IdentifierResolver::iterator
|
||
I = IdResolver.begin(TD->getIdentifier(),
|
||
TD->getDeclContext(), false/*LookInParentCtx*/);
|
||
if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
|
||
// There is already a declaration with the same name in the same
|
||
// scope. It must be found before we find the new declaration,
|
||
// so swap the order on the shadowed declaration chain.
|
||
|
||
IdResolver.AddShadowedDecl(TD, *I);
|
||
return;
|
||
}
|
||
} else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
|
||
FunctionDecl *FD = cast<FunctionDecl>(D);
|
||
// We are pushing the name of a function, which might be an
|
||
// overloaded name.
|
||
IdentifierResolver::iterator
|
||
I = IdResolver.begin(FD->getDeclName(),
|
||
FD->getDeclContext(), false/*LookInParentCtx*/);
|
||
if (I != IdResolver.end() &&
|
||
IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
|
||
(isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
|
||
// There is already a declaration with the same name in the same
|
||
// scope. It must be a function or an overloaded function.
|
||
OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
|
||
if (!Ovl) {
|
||
// We haven't yet overloaded this function. Take the existing
|
||
// FunctionDecl and put it into an OverloadedFunctionDecl.
|
||
Ovl = OverloadedFunctionDecl::Create(Context,
|
||
FD->getDeclContext(),
|
||
FD->getDeclName());
|
||
Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
|
||
|
||
// Remove the name binding to the existing FunctionDecl...
|
||
IdResolver.RemoveDecl(*I);
|
||
|
||
// ... and put the OverloadedFunctionDecl in its place.
|
||
IdResolver.AddDecl(Ovl);
|
||
}
|
||
|
||
// We have an OverloadedFunctionDecl. Add the new FunctionDecl
|
||
// to its list of overloads.
|
||
Ovl->addOverload(FD);
|
||
|
||
return;
|
||
}
|
||
}
|
||
|
||
IdResolver.AddDecl(D);
|
||
}
|
||
|
||
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
|
||
if (S->decl_empty()) return;
|
||
assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
|
||
|
||
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
|
||
I != E; ++I) {
|
||
Decl *TmpD = static_cast<Decl*>(*I);
|
||
assert(TmpD && "This decl didn't get pushed??");
|
||
|
||
if (isa<CXXFieldDecl>(TmpD)) continue;
|
||
|
||
assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
|
||
ScopedDecl *D = cast<ScopedDecl>(TmpD);
|
||
|
||
IdentifierInfo *II = D->getIdentifier();
|
||
if (!II) continue;
|
||
|
||
// We only want to remove the decls from the identifier decl chains for
|
||
// local scopes, when inside a function/method.
|
||
if (S->getFnParent() != 0)
|
||
IdResolver.RemoveDecl(D);
|
||
|
||
// Chain this decl to the containing DeclContext.
|
||
D->setNext(CurContext->getDeclChain());
|
||
CurContext->setDeclChain(D);
|
||
}
|
||
}
|
||
|
||
/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
|
||
/// return 0 if one not found.
|
||
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
|
||
// The third "scope" argument is 0 since we aren't enabling lazy built-in
|
||
// creation from this context.
|
||
Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
|
||
|
||
return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
|
||
}
|
||
|
||
/// LookupDecl - Look up the inner-most declaration in the specified
|
||
/// namespace.
|
||
Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
|
||
const DeclContext *LookupCtx,
|
||
bool enableLazyBuiltinCreation) {
|
||
if (!Name) return 0;
|
||
unsigned NS = NSI;
|
||
if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
|
||
NS |= Decl::IDNS_Tag;
|
||
|
||
IdentifierResolver::iterator
|
||
I = LookupCtx ? IdResolver.begin(Name, LookupCtx, false/*LookInParentCtx*/)
|
||
: IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/);
|
||
// Scan up the scope chain looking for a decl that matches this identifier
|
||
// that is in the appropriate namespace. This search should not take long, as
|
||
// shadowing of names is uncommon, and deep shadowing is extremely uncommon.
|
||
for (; I != IdResolver.end(); ++I)
|
||
if ((*I)->getIdentifierNamespace() & NS)
|
||
return *I;
|
||
|
||
// If we didn't find a use of this identifier, and if the identifier
|
||
// corresponds to a compiler builtin, create the decl object for the builtin
|
||
// now, injecting it into translation unit scope, and return it.
|
||
if (NS & Decl::IDNS_Ordinary) {
|
||
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
||
if (enableLazyBuiltinCreation && II &&
|
||
(LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
|
||
// If this is a builtin on this (or all) targets, create the decl.
|
||
if (unsigned BuiltinID = II->getBuiltinID())
|
||
return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
|
||
}
|
||
if (getLangOptions().ObjC1 && II) {
|
||
// @interface and @compatibility_alias introduce typedef-like names.
|
||
// Unlike typedef's, they can only be introduced at file-scope (and are
|
||
// therefore not scoped decls). They can, however, be shadowed by
|
||
// other names in IDNS_Ordinary.
|
||
ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
|
||
if (IDI != ObjCInterfaceDecls.end())
|
||
return IDI->second;
|
||
ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
|
||
if (I != ObjCAliasDecls.end())
|
||
return I->second->getClassInterface();
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
void Sema::InitBuiltinVaListType() {
|
||
if (!Context.getBuiltinVaListType().isNull())
|
||
return;
|
||
|
||
IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
|
||
Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
|
||
TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
|
||
Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
|
||
}
|
||
|
||
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
|
||
/// lazily create a decl for it.
|
||
ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
|
||
Scope *S) {
|
||
Builtin::ID BID = (Builtin::ID)bid;
|
||
|
||
if (Context.BuiltinInfo.hasVAListUse(BID))
|
||
InitBuiltinVaListType();
|
||
|
||
QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
|
||
FunctionDecl *New = FunctionDecl::Create(Context,
|
||
Context.getTranslationUnitDecl(),
|
||
SourceLocation(), II, R,
|
||
FunctionDecl::Extern, false, 0);
|
||
|
||
// Create Decl objects for each parameter, adding them to the
|
||
// FunctionDecl.
|
||
if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
|
||
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
||
for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
|
||
Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
|
||
FT->getArgType(i), VarDecl::None, 0,
|
||
0));
|
||
New->setParams(&Params[0], Params.size());
|
||
}
|
||
|
||
|
||
|
||
// TUScope is the translation-unit scope to insert this function into.
|
||
PushOnScopeChains(New, TUScope);
|
||
return New;
|
||
}
|
||
|
||
/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
|
||
/// everything from the standard library is defined.
|
||
NamespaceDecl *Sema::GetStdNamespace() {
|
||
if (!StdNamespace) {
|
||
IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
|
||
DeclContext *Global = Context.getTranslationUnitDecl();
|
||
Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
|
||
0, Global, /*enableLazyBuiltinCreation=*/false);
|
||
StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
|
||
}
|
||
return StdNamespace;
|
||
}
|
||
|
||
/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
|
||
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
||
/// situation, merging decls or emitting diagnostics as appropriate.
|
||
///
|
||
TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
|
||
// Allow multiple definitions for ObjC built-in typedefs.
|
||
// FIXME: Verify the underlying types are equivalent!
|
||
if (getLangOptions().ObjC1) {
|
||
const IdentifierInfo *TypeID = New->getIdentifier();
|
||
switch (TypeID->getLength()) {
|
||
default: break;
|
||
case 2:
|
||
if (!TypeID->isStr("id"))
|
||
break;
|
||
Context.setObjCIdType(New);
|
||
return New;
|
||
case 5:
|
||
if (!TypeID->isStr("Class"))
|
||
break;
|
||
Context.setObjCClassType(New);
|
||
return New;
|
||
case 3:
|
||
if (!TypeID->isStr("SEL"))
|
||
break;
|
||
Context.setObjCSelType(New);
|
||
return New;
|
||
case 8:
|
||
if (!TypeID->isStr("Protocol"))
|
||
break;
|
||
Context.setObjCProtoType(New->getUnderlyingType());
|
||
return New;
|
||
}
|
||
// Fall through - the typedef name was not a builtin type.
|
||
}
|
||
// Verify the old decl was also a typedef.
|
||
TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
|
||
if (!Old) {
|
||
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
||
<< New->getDeclName();
|
||
Diag(OldD->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
|
||
// If the typedef types are not identical, reject them in all languages and
|
||
// with any extensions enabled.
|
||
if (Old->getUnderlyingType() != New->getUnderlyingType() &&
|
||
Context.getCanonicalType(Old->getUnderlyingType()) !=
|
||
Context.getCanonicalType(New->getUnderlyingType())) {
|
||
Diag(New->getLocation(), diag::err_redefinition_different_typedef)
|
||
<< New->getUnderlyingType().getAsString()
|
||
<< Old->getUnderlyingType().getAsString();
|
||
Diag(Old->getLocation(), diag::note_previous_definition);
|
||
return Old;
|
||
}
|
||
|
||
if (getLangOptions().Microsoft) return New;
|
||
|
||
// C++ [dcl.typedef]p2:
|
||
// In a given non-class scope, a typedef specifier can be used to
|
||
// redefine the name of any type declared in that scope to refer
|
||
// to the type to which it already refers.
|
||
if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
|
||
return New;
|
||
|
||
// In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
|
||
// Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
|
||
// *either* declaration is in a system header. The code below implements
|
||
// this adhoc compatibility rule. FIXME: The following code will not
|
||
// work properly when compiling ".i" files (containing preprocessed output).
|
||
if (PP.getDiagnostics().getSuppressSystemWarnings()) {
|
||
SourceManager &SrcMgr = Context.getSourceManager();
|
||
if (SrcMgr.isInSystemHeader(Old->getLocation()))
|
||
return New;
|
||
if (SrcMgr.isInSystemHeader(New->getLocation()))
|
||
return New;
|
||
}
|
||
|
||
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
|
||
Diag(Old->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
|
||
/// DeclhasAttr - returns true if decl Declaration already has the target
|
||
/// attribute.
|
||
static bool DeclHasAttr(const Decl *decl, const Attr *target) {
|
||
for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
|
||
if (attr->getKind() == target->getKind())
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/// MergeAttributes - append attributes from the Old decl to the New one.
|
||
static void MergeAttributes(Decl *New, Decl *Old) {
|
||
Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
|
||
|
||
while (attr) {
|
||
tmp = attr;
|
||
attr = attr->getNext();
|
||
|
||
if (!DeclHasAttr(New, tmp)) {
|
||
New->addAttr(tmp);
|
||
} else {
|
||
tmp->setNext(0);
|
||
delete(tmp);
|
||
}
|
||
}
|
||
|
||
Old->invalidateAttrs();
|
||
}
|
||
|
||
/// MergeFunctionDecl - We just parsed a function 'New' from
|
||
/// declarator D which has the same name and scope as a previous
|
||
/// declaration 'Old'. Figure out how to resolve this situation,
|
||
/// merging decls or emitting diagnostics as appropriate.
|
||
/// Redeclaration will be set true if this New is a redeclaration OldD.
|
||
///
|
||
/// In C++, New and Old must be declarations that are not
|
||
/// overloaded. Use IsOverload to determine whether New and Old are
|
||
/// overloaded, and to select the Old declaration that New should be
|
||
/// merged with.
|
||
FunctionDecl *
|
||
Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
|
||
assert(!isa<OverloadedFunctionDecl>(OldD) &&
|
||
"Cannot merge with an overloaded function declaration");
|
||
|
||
Redeclaration = false;
|
||
// Verify the old decl was also a function.
|
||
FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
|
||
if (!Old) {
|
||
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
||
<< New->getDeclName();
|
||
Diag(OldD->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
|
||
// Determine whether the previous declaration was a definition,
|
||
// implicit declaration, or a declaration.
|
||
diag::kind PrevDiag;
|
||
if (Old->isThisDeclarationADefinition())
|
||
PrevDiag = diag::note_previous_definition;
|
||
else if (Old->isImplicit())
|
||
PrevDiag = diag::note_previous_implicit_declaration;
|
||
else
|
||
PrevDiag = diag::note_previous_declaration;
|
||
|
||
QualType OldQType = Context.getCanonicalType(Old->getType());
|
||
QualType NewQType = Context.getCanonicalType(New->getType());
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// (C++98 13.1p2):
|
||
// Certain function declarations cannot be overloaded:
|
||
// -- Function declarations that differ only in the return type
|
||
// cannot be overloaded.
|
||
QualType OldReturnType
|
||
= cast<FunctionType>(OldQType.getTypePtr())->getResultType();
|
||
QualType NewReturnType
|
||
= cast<FunctionType>(NewQType.getTypePtr())->getResultType();
|
||
if (OldReturnType != NewReturnType) {
|
||
Diag(New->getLocation(), diag::err_ovl_diff_return_type);
|
||
Diag(Old->getLocation(), PrevDiag);
|
||
return New;
|
||
}
|
||
|
||
const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
|
||
const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
|
||
if (OldMethod && NewMethod) {
|
||
// -- Member function declarations with the same name and the
|
||
// same parameter types cannot be overloaded if any of them
|
||
// is a static member function declaration.
|
||
if (OldMethod->isStatic() || NewMethod->isStatic()) {
|
||
Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
|
||
Diag(Old->getLocation(), PrevDiag);
|
||
return New;
|
||
}
|
||
}
|
||
|
||
// (C++98 8.3.5p3):
|
||
// All declarations for a function shall agree exactly in both the
|
||
// return type and the parameter-type-list.
|
||
if (OldQType == NewQType) {
|
||
// We have a redeclaration.
|
||
MergeAttributes(New, Old);
|
||
Redeclaration = true;
|
||
return MergeCXXFunctionDecl(New, Old);
|
||
}
|
||
|
||
// Fall through for conflicting redeclarations and redefinitions.
|
||
}
|
||
|
||
// C: Function types need to be compatible, not identical. This handles
|
||
// duplicate function decls like "void f(int); void f(enum X);" properly.
|
||
if (!getLangOptions().CPlusPlus &&
|
||
Context.typesAreCompatible(OldQType, NewQType)) {
|
||
MergeAttributes(New, Old);
|
||
Redeclaration = true;
|
||
return New;
|
||
}
|
||
|
||
// A function that has already been declared has been redeclared or defined
|
||
// with a different type- show appropriate diagnostic
|
||
|
||
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
|
||
// TODO: This is totally simplistic. It should handle merging functions
|
||
// together etc, merging extern int X; int X; ...
|
||
Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
|
||
Diag(Old->getLocation(), PrevDiag);
|
||
return New;
|
||
}
|
||
|
||
/// Predicate for C "tentative" external object definitions (C99 6.9.2).
|
||
static bool isTentativeDefinition(VarDecl *VD) {
|
||
if (VD->isFileVarDecl())
|
||
return (!VD->getInit() &&
|
||
(VD->getStorageClass() == VarDecl::None ||
|
||
VD->getStorageClass() == VarDecl::Static));
|
||
return false;
|
||
}
|
||
|
||
/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
|
||
/// when dealing with C "tentative" external object definitions (C99 6.9.2).
|
||
void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
|
||
bool VDIsTentative = isTentativeDefinition(VD);
|
||
bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
|
||
|
||
for (IdentifierResolver::iterator
|
||
I = IdResolver.begin(VD->getIdentifier(),
|
||
VD->getDeclContext(), false/*LookInParentCtx*/),
|
||
E = IdResolver.end(); I != E; ++I) {
|
||
if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
|
||
VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
|
||
|
||
// Handle the following case:
|
||
// int a[10];
|
||
// int a[]; - the code below makes sure we set the correct type.
|
||
// int a[11]; - this is an error, size isn't 10.
|
||
if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
|
||
OldDecl->getType()->isConstantArrayType())
|
||
VD->setType(OldDecl->getType());
|
||
|
||
// Check for "tentative" definitions. We can't accomplish this in
|
||
// MergeVarDecl since the initializer hasn't been attached.
|
||
if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
|
||
continue;
|
||
|
||
// Handle __private_extern__ just like extern.
|
||
if (OldDecl->getStorageClass() != VarDecl::Extern &&
|
||
OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
|
||
VD->getStorageClass() != VarDecl::Extern &&
|
||
VD->getStorageClass() != VarDecl::PrivateExtern) {
|
||
Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
|
||
Diag(OldDecl->getLocation(), diag::note_previous_definition);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
|
||
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
|
||
/// situation, merging decls or emitting diagnostics as appropriate.
|
||
///
|
||
/// Tentative definition rules (C99 6.9.2p2) are checked by
|
||
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
|
||
/// definitions here, since the initializer hasn't been attached.
|
||
///
|
||
VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
|
||
// Verify the old decl was also a variable.
|
||
VarDecl *Old = dyn_cast<VarDecl>(OldD);
|
||
if (!Old) {
|
||
Diag(New->getLocation(), diag::err_redefinition_different_kind)
|
||
<< New->getDeclName();
|
||
Diag(OldD->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
|
||
MergeAttributes(New, Old);
|
||
|
||
// Verify the types match.
|
||
QualType OldCType = Context.getCanonicalType(Old->getType());
|
||
QualType NewCType = Context.getCanonicalType(New->getType());
|
||
if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
|
||
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
|
||
Diag(Old->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
// C99 6.2.2p4: Check if we have a static decl followed by a non-static.
|
||
if (New->getStorageClass() == VarDecl::Static &&
|
||
(Old->getStorageClass() == VarDecl::None ||
|
||
Old->getStorageClass() == VarDecl::Extern)) {
|
||
Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
|
||
Diag(Old->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
// C99 6.2.2p4: Check if we have a non-static decl followed by a static.
|
||
if (New->getStorageClass() != VarDecl::Static &&
|
||
Old->getStorageClass() == VarDecl::Static) {
|
||
Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
|
||
Diag(Old->getLocation(), diag::note_previous_definition);
|
||
return New;
|
||
}
|
||
// Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
|
||
if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
|
||
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
|
||
Diag(Old->getLocation(), diag::note_previous_definition);
|
||
}
|
||
return New;
|
||
}
|
||
|
||
/// CheckParmsForFunctionDef - Check that the parameters of the given
|
||
/// function are appropriate for the definition of a function. This
|
||
/// takes care of any checks that cannot be performed on the
|
||
/// declaration itself, e.g., that the types of each of the function
|
||
/// parameters are complete.
|
||
bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
|
||
bool HasInvalidParm = false;
|
||
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
|
||
ParmVarDecl *Param = FD->getParamDecl(p);
|
||
|
||
// C99 6.7.5.3p4: the parameters in a parameter type list in a
|
||
// function declarator that is part of a function definition of
|
||
// that function shall not have incomplete type.
|
||
if (Param->getType()->isIncompleteType() &&
|
||
!Param->isInvalidDecl()) {
|
||
Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
|
||
<< Param->getType();
|
||
Param->setInvalidDecl();
|
||
HasInvalidParm = true;
|
||
}
|
||
}
|
||
|
||
return HasInvalidParm;
|
||
}
|
||
|
||
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
|
||
/// no declarator (e.g. "struct foo;") is parsed.
|
||
Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
|
||
// TODO: emit error on 'int;' or 'const enum foo;'.
|
||
// TODO: emit error on 'typedef int;'
|
||
// if (!DS.isMissingDeclaratorOk()) Diag(...);
|
||
|
||
return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
|
||
}
|
||
|
||
bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
|
||
// Get the type before calling CheckSingleAssignmentConstraints(), since
|
||
// it can promote the expression.
|
||
QualType InitType = Init->getType();
|
||
|
||
AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
|
||
return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
|
||
InitType, Init, "initializing");
|
||
}
|
||
|
||
bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
|
||
const ArrayType *AT = Context.getAsArrayType(DeclT);
|
||
|
||
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
|
||
// C99 6.7.8p14. We have an array of character type with unknown size
|
||
// being initialized to a string literal.
|
||
llvm::APSInt ConstVal(32);
|
||
ConstVal = strLiteral->getByteLength() + 1;
|
||
// Return a new array type (C99 6.7.8p22).
|
||
DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
|
||
ArrayType::Normal, 0);
|
||
} else {
|
||
const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
|
||
// C99 6.7.8p14. We have an array of character type with known size.
|
||
// FIXME: Avoid truncation for 64-bit length strings.
|
||
if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
|
||
Diag(strLiteral->getSourceRange().getBegin(),
|
||
diag::warn_initializer_string_for_char_array_too_long)
|
||
<< strLiteral->getSourceRange();
|
||
}
|
||
// Set type from "char *" to "constant array of char".
|
||
strLiteral->setType(DeclT);
|
||
// For now, we always return false (meaning success).
|
||
return false;
|
||
}
|
||
|
||
StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
|
||
const ArrayType *AT = Context.getAsArrayType(DeclType);
|
||
if (AT && AT->getElementType()->isCharType()) {
|
||
return dyn_cast<StringLiteral>(Init);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
|
||
SourceLocation InitLoc,
|
||
DeclarationName InitEntity) {
|
||
// C++ [dcl.init.ref]p1:
|
||
// A variable declared to be a T&, that is<69> "reference to type T<>"
|
||
// (8.3.2), shall be initialized by an object, or function, of
|
||
// type T or by an object that can be converted into a T.
|
||
if (DeclType->isReferenceType())
|
||
return CheckReferenceInit(Init, DeclType);
|
||
|
||
// C99 6.7.8p3: The type of the entity to be initialized shall be an array
|
||
// of unknown size ("[]") or an object type that is not a variable array type.
|
||
if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
|
||
return Diag(InitLoc, diag::err_variable_object_no_init)
|
||
<< VAT->getSizeExpr()->getSourceRange();
|
||
|
||
InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
|
||
if (!InitList) {
|
||
// FIXME: Handle wide strings
|
||
if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
|
||
return CheckStringLiteralInit(strLiteral, DeclType);
|
||
|
||
// C++ [dcl.init]p14:
|
||
// -- If the destination type is a (possibly cv-qualified) class
|
||
// type:
|
||
if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
|
||
QualType DeclTypeC = Context.getCanonicalType(DeclType);
|
||
QualType InitTypeC = Context.getCanonicalType(Init->getType());
|
||
|
||
// -- If the initialization is direct-initialization, or if it is
|
||
// copy-initialization where the cv-unqualified version of the
|
||
// source type is the same class as, or a derived class of, the
|
||
// class of the destination, constructors are considered.
|
||
if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
|
||
IsDerivedFrom(InitTypeC, DeclTypeC)) {
|
||
CXXConstructorDecl *Constructor
|
||
= PerformInitializationByConstructor(DeclType, &Init, 1,
|
||
InitLoc, Init->getSourceRange(),
|
||
InitEntity, IK_Copy);
|
||
return Constructor == 0;
|
||
}
|
||
|
||
// -- Otherwise (i.e., for the remaining copy-initialization
|
||
// cases), user-defined conversion sequences that can
|
||
// convert from the source type to the destination type or
|
||
// (when a conversion function is used) to a derived class
|
||
// thereof are enumerated as described in 13.3.1.4, and the
|
||
// best one is chosen through overload resolution
|
||
// (13.3). If the conversion cannot be done or is
|
||
// ambiguous, the initialization is ill-formed. The
|
||
// function selected is called with the initializer
|
||
// expression as its argument; if the function is a
|
||
// constructor, the call initializes a temporary of the
|
||
// destination type.
|
||
// FIXME: We're pretending to do copy elision here; return to
|
||
// this when we have ASTs for such things.
|
||
if (!PerformImplicitConversion(Init, DeclType))
|
||
return false;
|
||
|
||
return Diag(InitLoc, diag::err_typecheck_convert_incompatible)
|
||
<< DeclType << InitEntity << "initializing"
|
||
<< Init->getSourceRange();
|
||
}
|
||
|
||
// C99 6.7.8p16.
|
||
if (DeclType->isArrayType())
|
||
return Diag(Init->getLocStart(), diag::err_array_init_list_required)
|
||
<< Init->getSourceRange();
|
||
|
||
return CheckSingleInitializer(Init, DeclType);
|
||
} else if (getLangOptions().CPlusPlus) {
|
||
// C++ [dcl.init]p14:
|
||
// [...] If the class is an aggregate (8.5.1), and the initializer
|
||
// is a brace-enclosed list, see 8.5.1.
|
||
//
|
||
// Note: 8.5.1 is handled below; here, we diagnose the case where
|
||
// we have an initializer list and a destination type that is not
|
||
// an aggregate.
|
||
// FIXME: In C++0x, this is yet another form of initialization.
|
||
if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
|
||
const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
|
||
if (!ClassDecl->isAggregate())
|
||
return Diag(InitLoc, diag::err_init_non_aggr_init_list)
|
||
<< DeclType.getAsString() << Init->getSourceRange();
|
||
}
|
||
}
|
||
|
||
InitListChecker CheckInitList(this, InitList, DeclType);
|
||
return CheckInitList.HadError();
|
||
}
|
||
|
||
/// GetNameForDeclarator - Determine the full declaration name for the
|
||
/// given Declarator.
|
||
DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
|
||
switch (D.getKind()) {
|
||
case Declarator::DK_Abstract:
|
||
assert(D.getIdentifier() == 0 && "abstract declarators have no name");
|
||
return DeclarationName();
|
||
|
||
case Declarator::DK_Normal:
|
||
assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
|
||
return DeclarationName(D.getIdentifier());
|
||
|
||
case Declarator::DK_Constructor: {
|
||
QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
|
||
Ty = Context.getCanonicalType(Ty);
|
||
return Context.DeclarationNames.getCXXConstructorName(Ty);
|
||
}
|
||
|
||
case Declarator::DK_Destructor: {
|
||
QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
|
||
Ty = Context.getCanonicalType(Ty);
|
||
return Context.DeclarationNames.getCXXDestructorName(Ty);
|
||
}
|
||
|
||
case Declarator::DK_Conversion: {
|
||
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
|
||
Ty = Context.getCanonicalType(Ty);
|
||
return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
|
||
}
|
||
|
||
case Declarator::DK_Operator:
|
||
assert(D.getIdentifier() == 0 && "operator names have no identifier");
|
||
return Context.DeclarationNames.getCXXOperatorName(
|
||
D.getOverloadedOperator());
|
||
}
|
||
|
||
assert(false && "Unknown name kind");
|
||
return DeclarationName();
|
||
}
|
||
|
||
Sema::DeclTy *
|
||
Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
|
||
ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
|
||
DeclarationName Name = GetNameForDeclarator(D);
|
||
|
||
// All of these full declarators require an identifier. If it doesn't have
|
||
// one, the ParsedFreeStandingDeclSpec action should be used.
|
||
if (!Name) {
|
||
if (!D.getInvalidType()) // Reject this if we think it is valid.
|
||
Diag(D.getDeclSpec().getSourceRange().getBegin(),
|
||
diag::err_declarator_need_ident)
|
||
<< D.getDeclSpec().getSourceRange() << D.getSourceRange();
|
||
return 0;
|
||
}
|
||
|
||
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
||
// we find one that is.
|
||
while ((S->getFlags() & Scope::DeclScope) == 0)
|
||
S = S->getParent();
|
||
|
||
DeclContext *DC;
|
||
Decl *PrevDecl;
|
||
ScopedDecl *New;
|
||
bool InvalidDecl = false;
|
||
|
||
// See if this is a redefinition of a variable in the same scope.
|
||
if (!D.getCXXScopeSpec().isSet()) {
|
||
DC = CurContext;
|
||
PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
|
||
} else { // Something like "int foo::x;"
|
||
DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
|
||
PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
|
||
|
||
// C++ 7.3.1.2p2:
|
||
// Members (including explicit specializations of templates) of a named
|
||
// namespace can also be defined outside that namespace by explicit
|
||
// qualification of the name being defined, provided that the entity being
|
||
// defined was already declared in the namespace and the definition appears
|
||
// after the point of declaration in a namespace that encloses the
|
||
// declarations namespace.
|
||
//
|
||
if (PrevDecl == 0) {
|
||
// No previous declaration in the qualifying scope.
|
||
Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
|
||
<< Name << D.getCXXScopeSpec().getRange();
|
||
} else if (!CurContext->Encloses(DC)) {
|
||
// The qualifying scope doesn't enclose the original declaration.
|
||
// Emit diagnostic based on current scope.
|
||
SourceLocation L = D.getIdentifierLoc();
|
||
SourceRange R = D.getCXXScopeSpec().getRange();
|
||
if (isa<FunctionDecl>(CurContext)) {
|
||
Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
|
||
} else {
|
||
Diag(L, diag::err_invalid_declarator_scope)
|
||
<< Name << cast<NamedDecl>(DC)->getDeclName() << R;
|
||
}
|
||
}
|
||
}
|
||
|
||
// In C++, the previous declaration we find might be a tag type
|
||
// (class or enum). In this case, the new declaration will hide the
|
||
// tag type.
|
||
if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
|
||
PrevDecl = 0;
|
||
|
||
QualType R = GetTypeForDeclarator(D, S);
|
||
assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
|
||
|
||
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
|
||
// Check that there are no default arguments (C++ only).
|
||
if (getLangOptions().CPlusPlus)
|
||
CheckExtraCXXDefaultArguments(D);
|
||
|
||
TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
|
||
if (!NewTD) return 0;
|
||
|
||
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
||
ProcessDeclAttributes(NewTD, D);
|
||
// Merge the decl with the existing one if appropriate. If the decl is
|
||
// in an outer scope, it isn't the same thing.
|
||
if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
|
||
NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
|
||
if (NewTD == 0) return 0;
|
||
}
|
||
New = NewTD;
|
||
if (S->getFnParent() == 0) {
|
||
// C99 6.7.7p2: If a typedef name specifies a variably modified type
|
||
// then it shall have block scope.
|
||
if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
|
||
// FIXME: Diagnostic needs to be fixed.
|
||
Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
|
||
InvalidDecl = true;
|
||
}
|
||
}
|
||
} else if (R.getTypePtr()->isFunctionType()) {
|
||
FunctionDecl::StorageClass SC = FunctionDecl::None;
|
||
switch (D.getDeclSpec().getStorageClassSpec()) {
|
||
default: assert(0 && "Unknown storage class!");
|
||
case DeclSpec::SCS_auto:
|
||
case DeclSpec::SCS_register:
|
||
case DeclSpec::SCS_mutable:
|
||
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func)
|
||
<< R.getAsString();
|
||
InvalidDecl = true;
|
||
break;
|
||
case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
|
||
case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
|
||
case DeclSpec::SCS_static: SC = FunctionDecl::Static; break;
|
||
case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
|
||
}
|
||
|
||
bool isInline = D.getDeclSpec().isInlineSpecified();
|
||
// bool isVirtual = D.getDeclSpec().isVirtualSpecified();
|
||
bool isExplicit = D.getDeclSpec().isExplicitSpecified();
|
||
|
||
FunctionDecl *NewFD;
|
||
if (D.getKind() == Declarator::DK_Constructor) {
|
||
// This is a C++ constructor declaration.
|
||
assert(DC->isCXXRecord() &&
|
||
"Constructors can only be declared in a member context");
|
||
|
||
bool isInvalidDecl = CheckConstructorDeclarator(D, R, SC);
|
||
|
||
// Create the new declaration
|
||
NewFD = CXXConstructorDecl::Create(Context,
|
||
cast<CXXRecordDecl>(DC),
|
||
D.getIdentifierLoc(), Name, R,
|
||
isExplicit, isInline,
|
||
/*isImplicitlyDeclared=*/false);
|
||
|
||
if (isInvalidDecl)
|
||
NewFD->setInvalidDecl();
|
||
} else if (D.getKind() == Declarator::DK_Destructor) {
|
||
// This is a C++ destructor declaration.
|
||
if (DC->isCXXRecord()) {
|
||
bool isInvalidDecl = CheckDestructorDeclarator(D, R, SC);
|
||
|
||
NewFD = CXXDestructorDecl::Create(Context,
|
||
cast<CXXRecordDecl>(DC),
|
||
D.getIdentifierLoc(), Name, R,
|
||
isInline,
|
||
/*isImplicitlyDeclared=*/false);
|
||
|
||
if (isInvalidDecl)
|
||
NewFD->setInvalidDecl();
|
||
} else {
|
||
Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
|
||
// Create a FunctionDecl to satisfy the function definition parsing
|
||
// code path.
|
||
NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
|
||
Name, R, SC, isInline, LastDeclarator,
|
||
// FIXME: Move to DeclGroup...
|
||
D.getDeclSpec().getSourceRange().getBegin());
|
||
NewFD->setInvalidDecl();
|
||
}
|
||
} else if (D.getKind() == Declarator::DK_Conversion) {
|
||
if (!DC->isCXXRecord()) {
|
||
Diag(D.getIdentifierLoc(),
|
||
diag::err_conv_function_not_member);
|
||
return 0;
|
||
} else {
|
||
bool isInvalidDecl = CheckConversionDeclarator(D, R, SC);
|
||
|
||
NewFD = CXXConversionDecl::Create(Context,
|
||
cast<CXXRecordDecl>(DC),
|
||
D.getIdentifierLoc(), Name, R,
|
||
isInline, isExplicit);
|
||
|
||
if (isInvalidDecl)
|
||
NewFD->setInvalidDecl();
|
||
}
|
||
} else if (DC->isCXXRecord()) {
|
||
// This is a C++ method declaration.
|
||
NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
|
||
D.getIdentifierLoc(), Name, R,
|
||
(SC == FunctionDecl::Static), isInline,
|
||
LastDeclarator);
|
||
} else {
|
||
NewFD = FunctionDecl::Create(Context, DC,
|
||
D.getIdentifierLoc(),
|
||
Name, R, SC, isInline, LastDeclarator,
|
||
// FIXME: Move to DeclGroup...
|
||
D.getDeclSpec().getSourceRange().getBegin());
|
||
}
|
||
// Handle attributes.
|
||
ProcessDeclAttributes(NewFD, D);
|
||
|
||
// Handle GNU asm-label extension (encoded as an attribute).
|
||
if (Expr *E = (Expr*) D.getAsmLabel()) {
|
||
// The parser guarantees this is a string.
|
||
StringLiteral *SE = cast<StringLiteral>(E);
|
||
NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
|
||
SE->getByteLength())));
|
||
}
|
||
|
||
// Copy the parameter declarations from the declarator D to
|
||
// the function declaration NewFD, if they are available.
|
||
if (D.getNumTypeObjects() > 0) {
|
||
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
||
|
||
// Create Decl objects for each parameter, adding them to the
|
||
// FunctionDecl.
|
||
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
||
|
||
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
|
||
// function that takes no arguments, not a function that takes a
|
||
// single void argument.
|
||
// We let through "const void" here because Sema::GetTypeForDeclarator
|
||
// already checks for that case.
|
||
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
||
FTI.ArgInfo[0].Param &&
|
||
((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
|
||
// empty arg list, don't push any params.
|
||
ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
|
||
|
||
// In C++, the empty parameter-type-list must be spelled "void"; a
|
||
// typedef of void is not permitted.
|
||
if (getLangOptions().CPlusPlus &&
|
||
Param->getType().getUnqualifiedType() != Context.VoidTy) {
|
||
Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
|
||
}
|
||
} else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
|
||
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
|
||
Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
|
||
}
|
||
|
||
NewFD->setParams(&Params[0], Params.size());
|
||
} else if (R->getAsTypedefType()) {
|
||
// When we're declaring a function with a typedef, as in the
|
||
// following example, we'll need to synthesize (unnamed)
|
||
// parameters for use in the declaration.
|
||
//
|
||
// @code
|
||
// typedef void fn(int);
|
||
// fn f;
|
||
// @endcode
|
||
const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
|
||
if (!FT) {
|
||
// This is a typedef of a function with no prototype, so we
|
||
// don't need to do anything.
|
||
} else if ((FT->getNumArgs() == 0) ||
|
||
(FT->getNumArgs() == 1 && !FT->isVariadic() &&
|
||
FT->getArgType(0)->isVoidType())) {
|
||
// This is a zero-argument function. We don't need to do anything.
|
||
} else {
|
||
// Synthesize a parameter for each argument type.
|
||
llvm::SmallVector<ParmVarDecl*, 16> Params;
|
||
for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
|
||
ArgType != FT->arg_type_end(); ++ArgType) {
|
||
Params.push_back(ParmVarDecl::Create(Context, DC,
|
||
SourceLocation(), 0,
|
||
*ArgType, VarDecl::None,
|
||
0, 0));
|
||
}
|
||
|
||
NewFD->setParams(&Params[0], Params.size());
|
||
}
|
||
}
|
||
|
||
// C++ constructors and destructors are handled by separate
|
||
// routines, since they don't require any declaration merging (C++
|
||
// [class.mfct]p2) and they aren't ever pushed into scope, because
|
||
// they can't be found by name lookup anyway (C++ [class.ctor]p2).
|
||
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
|
||
return ActOnConstructorDeclarator(Constructor);
|
||
else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
|
||
return ActOnDestructorDeclarator(Destructor);
|
||
|
||
// Extra checking for conversion functions, including recording
|
||
// the conversion function in its class.
|
||
if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
|
||
ActOnConversionDeclarator(Conversion);
|
||
|
||
// Extra checking for C++ overloaded operators (C++ [over.oper]).
|
||
if (NewFD->isOverloadedOperator() &&
|
||
CheckOverloadedOperatorDeclaration(NewFD))
|
||
NewFD->setInvalidDecl();
|
||
|
||
// Merge the decl with the existing one if appropriate. Since C functions
|
||
// are in a flat namespace, make sure we consider decls in outer scopes.
|
||
if (PrevDecl &&
|
||
(!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
|
||
bool Redeclaration = false;
|
||
|
||
// If C++, determine whether NewFD is an overload of PrevDecl or
|
||
// a declaration that requires merging. If it's an overload,
|
||
// there's no more work to do here; we'll just add the new
|
||
// function to the scope.
|
||
OverloadedFunctionDecl::function_iterator MatchedDecl;
|
||
if (!getLangOptions().CPlusPlus ||
|
||
!IsOverload(NewFD, PrevDecl, MatchedDecl)) {
|
||
Decl *OldDecl = PrevDecl;
|
||
|
||
// If PrevDecl was an overloaded function, extract the
|
||
// FunctionDecl that matched.
|
||
if (isa<OverloadedFunctionDecl>(PrevDecl))
|
||
OldDecl = *MatchedDecl;
|
||
|
||
// NewFD and PrevDecl represent declarations that need to be
|
||
// merged.
|
||
NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
|
||
|
||
if (NewFD == 0) return 0;
|
||
if (Redeclaration) {
|
||
NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
|
||
|
||
if (OldDecl == PrevDecl) {
|
||
// Remove the name binding for the previous
|
||
// declaration. We'll add the binding back later, but then
|
||
// it will refer to the new declaration (which will
|
||
// contain more information).
|
||
IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
|
||
} else {
|
||
// We need to update the OverloadedFunctionDecl with the
|
||
// latest declaration of this function, so that name
|
||
// lookup will always refer to the latest declaration of
|
||
// this function.
|
||
*MatchedDecl = NewFD;
|
||
|
||
// Add the redeclaration to the current scope, since we'll
|
||
// be skipping PushOnScopeChains.
|
||
S->AddDecl(NewFD);
|
||
|
||
return NewFD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
New = NewFD;
|
||
|
||
// In C++, check default arguments now that we have merged decls.
|
||
if (getLangOptions().CPlusPlus)
|
||
CheckCXXDefaultArguments(NewFD);
|
||
} else {
|
||
// Check that there are no default arguments (C++ only).
|
||
if (getLangOptions().CPlusPlus)
|
||
CheckExtraCXXDefaultArguments(D);
|
||
|
||
if (R.getTypePtr()->isObjCInterfaceType()) {
|
||
Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
|
||
<< D.getIdentifier();
|
||
InvalidDecl = true;
|
||
}
|
||
|
||
VarDecl *NewVD;
|
||
VarDecl::StorageClass SC;
|
||
switch (D.getDeclSpec().getStorageClassSpec()) {
|
||
default: assert(0 && "Unknown storage class!");
|
||
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
|
||
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
|
||
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
|
||
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
|
||
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
|
||
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
|
||
case DeclSpec::SCS_mutable:
|
||
// mutable can only appear on non-static class members, so it's always
|
||
// an error here
|
||
Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
|
||
InvalidDecl = true;
|
||
break;
|
||
}
|
||
|
||
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
||
if (!II) {
|
||
Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
|
||
<< Name.getAsString();
|
||
return 0;
|
||
}
|
||
|
||
if (DC->isCXXRecord()) {
|
||
assert(SC == VarDecl::Static && "Invalid storage class for member!");
|
||
// This is a static data member for a C++ class.
|
||
NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
|
||
D.getIdentifierLoc(), II,
|
||
R, LastDeclarator);
|
||
} else {
|
||
bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
|
||
if (S->getFnParent() == 0) {
|
||
// C99 6.9p2: The storage-class specifiers auto and register shall not
|
||
// appear in the declaration specifiers in an external declaration.
|
||
if (SC == VarDecl::Auto || SC == VarDecl::Register) {
|
||
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope)
|
||
<< R.getAsString();
|
||
InvalidDecl = true;
|
||
}
|
||
}
|
||
NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
|
||
II, R, SC, LastDeclarator,
|
||
// FIXME: Move to DeclGroup...
|
||
D.getDeclSpec().getSourceRange().getBegin());
|
||
NewVD->setThreadSpecified(ThreadSpecified);
|
||
}
|
||
// Handle attributes prior to checking for duplicates in MergeVarDecl
|
||
ProcessDeclAttributes(NewVD, D);
|
||
|
||
// Handle GNU asm-label extension (encoded as an attribute).
|
||
if (Expr *E = (Expr*) D.getAsmLabel()) {
|
||
// The parser guarantees this is a string.
|
||
StringLiteral *SE = cast<StringLiteral>(E);
|
||
NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
|
||
SE->getByteLength())));
|
||
}
|
||
|
||
// Emit an error if an address space was applied to decl with local storage.
|
||
// This includes arrays of objects with address space qualifiers, but not
|
||
// automatic variables that point to other address spaces.
|
||
// ISO/IEC TR 18037 S5.1.2
|
||
if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
|
||
Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
|
||
InvalidDecl = true;
|
||
}
|
||
// Merge the decl with the existing one if appropriate. If the decl is
|
||
// in an outer scope, it isn't the same thing.
|
||
if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
|
||
NewVD = MergeVarDecl(NewVD, PrevDecl);
|
||
if (NewVD == 0) return 0;
|
||
}
|
||
New = NewVD;
|
||
}
|
||
|
||
// Set the lexical context. If the declarator has a C++ scope specifier, the
|
||
// lexical context will be different from the semantic context.
|
||
New->setLexicalDeclContext(CurContext);
|
||
|
||
// If this has an identifier, add it to the scope stack.
|
||
if (Name)
|
||
PushOnScopeChains(New, S);
|
||
// If any semantic error occurred, mark the decl as invalid.
|
||
if (D.getInvalidType() || InvalidDecl)
|
||
New->setInvalidDecl();
|
||
|
||
return New;
|
||
}
|
||
|
||
void Sema::InitializerElementNotConstant(const Expr *Init) {
|
||
Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
|
||
<< Init->getSourceRange();
|
||
}
|
||
|
||
bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
|
||
switch (Init->getStmtClass()) {
|
||
default:
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
case Expr::ParenExprClass: {
|
||
const ParenExpr* PE = cast<ParenExpr>(Init);
|
||
return CheckAddressConstantExpressionLValue(PE->getSubExpr());
|
||
}
|
||
case Expr::CompoundLiteralExprClass:
|
||
return cast<CompoundLiteralExpr>(Init)->isFileScope();
|
||
case Expr::DeclRefExprClass: {
|
||
const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
|
||
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
||
if (VD->hasGlobalStorage())
|
||
return false;
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
if (isa<FunctionDecl>(D))
|
||
return false;
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::MemberExprClass: {
|
||
const MemberExpr *M = cast<MemberExpr>(Init);
|
||
if (M->isArrow())
|
||
return CheckAddressConstantExpression(M->getBase());
|
||
return CheckAddressConstantExpressionLValue(M->getBase());
|
||
}
|
||
case Expr::ArraySubscriptExprClass: {
|
||
// FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
|
||
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
|
||
return CheckAddressConstantExpression(ASE->getBase()) ||
|
||
CheckArithmeticConstantExpression(ASE->getIdx());
|
||
}
|
||
case Expr::StringLiteralClass:
|
||
case Expr::PredefinedExprClass:
|
||
return false;
|
||
case Expr::UnaryOperatorClass: {
|
||
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
|
||
|
||
// C99 6.6p9
|
||
if (Exp->getOpcode() == UnaryOperator::Deref)
|
||
return CheckAddressConstantExpression(Exp->getSubExpr());
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool Sema::CheckAddressConstantExpression(const Expr* Init) {
|
||
switch (Init->getStmtClass()) {
|
||
default:
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
case Expr::ParenExprClass:
|
||
return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
|
||
case Expr::StringLiteralClass:
|
||
case Expr::ObjCStringLiteralClass:
|
||
return false;
|
||
case Expr::CallExprClass:
|
||
case Expr::CXXOperatorCallExprClass:
|
||
// __builtin___CFStringMakeConstantString is a valid constant l-value.
|
||
if (cast<CallExpr>(Init)->isBuiltinCall() ==
|
||
Builtin::BI__builtin___CFStringMakeConstantString)
|
||
return false;
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
|
||
case Expr::UnaryOperatorClass: {
|
||
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
|
||
|
||
// C99 6.6p9
|
||
if (Exp->getOpcode() == UnaryOperator::AddrOf)
|
||
return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
|
||
|
||
if (Exp->getOpcode() == UnaryOperator::Extension)
|
||
return CheckAddressConstantExpression(Exp->getSubExpr());
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::BinaryOperatorClass: {
|
||
// FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
|
||
const BinaryOperator *Exp = cast<BinaryOperator>(Init);
|
||
|
||
Expr *PExp = Exp->getLHS();
|
||
Expr *IExp = Exp->getRHS();
|
||
if (IExp->getType()->isPointerType())
|
||
std::swap(PExp, IExp);
|
||
|
||
// FIXME: Should we pedwarn if IExp isn't an integer constant expression?
|
||
return CheckAddressConstantExpression(PExp) ||
|
||
CheckArithmeticConstantExpression(IExp);
|
||
}
|
||
case Expr::ImplicitCastExprClass:
|
||
case Expr::CStyleCastExprClass: {
|
||
const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
|
||
if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
|
||
// Check for implicit promotion
|
||
if (SubExpr->getType()->isFunctionType() ||
|
||
SubExpr->getType()->isArrayType())
|
||
return CheckAddressConstantExpressionLValue(SubExpr);
|
||
}
|
||
|
||
// Check for pointer->pointer cast
|
||
if (SubExpr->getType()->isPointerType())
|
||
return CheckAddressConstantExpression(SubExpr);
|
||
|
||
if (SubExpr->getType()->isIntegralType()) {
|
||
// Check for the special-case of a pointer->int->pointer cast;
|
||
// this isn't standard, but some code requires it. See
|
||
// PR2720 for an example.
|
||
if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
|
||
if (SubCast->getSubExpr()->getType()->isPointerType()) {
|
||
unsigned IntWidth = Context.getIntWidth(SubCast->getType());
|
||
unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
|
||
if (IntWidth >= PointerWidth) {
|
||
return CheckAddressConstantExpression(SubCast->getSubExpr());
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (SubExpr->getType()->isArithmeticType()) {
|
||
return CheckArithmeticConstantExpression(SubExpr);
|
||
}
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::ConditionalOperatorClass: {
|
||
// FIXME: Should we pedwarn here?
|
||
const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
|
||
if (!Exp->getCond()->getType()->isArithmeticType()) {
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
if (CheckArithmeticConstantExpression(Exp->getCond()))
|
||
return true;
|
||
if (Exp->getLHS() &&
|
||
CheckAddressConstantExpression(Exp->getLHS()))
|
||
return true;
|
||
return CheckAddressConstantExpression(Exp->getRHS());
|
||
}
|
||
case Expr::AddrLabelExprClass:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static const Expr* FindExpressionBaseAddress(const Expr* E);
|
||
|
||
static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
|
||
switch (E->getStmtClass()) {
|
||
default:
|
||
return E;
|
||
case Expr::ParenExprClass: {
|
||
const ParenExpr* PE = cast<ParenExpr>(E);
|
||
return FindExpressionBaseAddressLValue(PE->getSubExpr());
|
||
}
|
||
case Expr::MemberExprClass: {
|
||
const MemberExpr *M = cast<MemberExpr>(E);
|
||
if (M->isArrow())
|
||
return FindExpressionBaseAddress(M->getBase());
|
||
return FindExpressionBaseAddressLValue(M->getBase());
|
||
}
|
||
case Expr::ArraySubscriptExprClass: {
|
||
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
|
||
return FindExpressionBaseAddress(ASE->getBase());
|
||
}
|
||
case Expr::UnaryOperatorClass: {
|
||
const UnaryOperator *Exp = cast<UnaryOperator>(E);
|
||
|
||
if (Exp->getOpcode() == UnaryOperator::Deref)
|
||
return FindExpressionBaseAddress(Exp->getSubExpr());
|
||
|
||
return E;
|
||
}
|
||
}
|
||
}
|
||
|
||
static const Expr* FindExpressionBaseAddress(const Expr* E) {
|
||
switch (E->getStmtClass()) {
|
||
default:
|
||
return E;
|
||
case Expr::ParenExprClass: {
|
||
const ParenExpr* PE = cast<ParenExpr>(E);
|
||
return FindExpressionBaseAddress(PE->getSubExpr());
|
||
}
|
||
case Expr::UnaryOperatorClass: {
|
||
const UnaryOperator *Exp = cast<UnaryOperator>(E);
|
||
|
||
// C99 6.6p9
|
||
if (Exp->getOpcode() == UnaryOperator::AddrOf)
|
||
return FindExpressionBaseAddressLValue(Exp->getSubExpr());
|
||
|
||
if (Exp->getOpcode() == UnaryOperator::Extension)
|
||
return FindExpressionBaseAddress(Exp->getSubExpr());
|
||
|
||
return E;
|
||
}
|
||
case Expr::BinaryOperatorClass: {
|
||
const BinaryOperator *Exp = cast<BinaryOperator>(E);
|
||
|
||
Expr *PExp = Exp->getLHS();
|
||
Expr *IExp = Exp->getRHS();
|
||
if (IExp->getType()->isPointerType())
|
||
std::swap(PExp, IExp);
|
||
|
||
return FindExpressionBaseAddress(PExp);
|
||
}
|
||
case Expr::ImplicitCastExprClass: {
|
||
const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
|
||
|
||
// Check for implicit promotion
|
||
if (SubExpr->getType()->isFunctionType() ||
|
||
SubExpr->getType()->isArrayType())
|
||
return FindExpressionBaseAddressLValue(SubExpr);
|
||
|
||
// Check for pointer->pointer cast
|
||
if (SubExpr->getType()->isPointerType())
|
||
return FindExpressionBaseAddress(SubExpr);
|
||
|
||
// We assume that we have an arithmetic expression here;
|
||
// if we don't, we'll figure it out later
|
||
return 0;
|
||
}
|
||
case Expr::CStyleCastExprClass: {
|
||
const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
|
||
|
||
// Check for pointer->pointer cast
|
||
if (SubExpr->getType()->isPointerType())
|
||
return FindExpressionBaseAddress(SubExpr);
|
||
|
||
// We assume that we have an arithmetic expression here;
|
||
// if we don't, we'll figure it out later
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
|
||
switch (Init->getStmtClass()) {
|
||
default:
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
case Expr::ParenExprClass: {
|
||
const ParenExpr* PE = cast<ParenExpr>(Init);
|
||
return CheckArithmeticConstantExpression(PE->getSubExpr());
|
||
}
|
||
case Expr::FloatingLiteralClass:
|
||
case Expr::IntegerLiteralClass:
|
||
case Expr::CharacterLiteralClass:
|
||
case Expr::ImaginaryLiteralClass:
|
||
case Expr::TypesCompatibleExprClass:
|
||
case Expr::CXXBoolLiteralExprClass:
|
||
return false;
|
||
case Expr::CallExprClass:
|
||
case Expr::CXXOperatorCallExprClass: {
|
||
const CallExpr *CE = cast<CallExpr>(Init);
|
||
|
||
// Allow any constant foldable calls to builtins.
|
||
if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
|
||
return false;
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::DeclRefExprClass: {
|
||
const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
|
||
if (isa<EnumConstantDecl>(D))
|
||
return false;
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::CompoundLiteralExprClass:
|
||
// Allow "(vector type){2,4}"; normal C constraints don't allow this,
|
||
// but vectors are allowed to be magic.
|
||
if (Init->getType()->isVectorType())
|
||
return false;
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
case Expr::UnaryOperatorClass: {
|
||
const UnaryOperator *Exp = cast<UnaryOperator>(Init);
|
||
|
||
switch (Exp->getOpcode()) {
|
||
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
||
// See C99 6.6p3.
|
||
default:
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
case UnaryOperator::OffsetOf:
|
||
if (Exp->getSubExpr()->getType()->isConstantSizeType())
|
||
return false;
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
case UnaryOperator::Extension:
|
||
case UnaryOperator::LNot:
|
||
case UnaryOperator::Plus:
|
||
case UnaryOperator::Minus:
|
||
case UnaryOperator::Not:
|
||
return CheckArithmeticConstantExpression(Exp->getSubExpr());
|
||
}
|
||
}
|
||
case Expr::SizeOfAlignOfExprClass: {
|
||
const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
|
||
// Special check for void types, which are allowed as an extension
|
||
if (Exp->getTypeOfArgument()->isVoidType())
|
||
return false;
|
||
// alignof always evaluates to a constant.
|
||
// FIXME: is sizeof(int[3.0]) a constant expression?
|
||
if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
case Expr::BinaryOperatorClass: {
|
||
const BinaryOperator *Exp = cast<BinaryOperator>(Init);
|
||
|
||
if (Exp->getLHS()->getType()->isArithmeticType() &&
|
||
Exp->getRHS()->getType()->isArithmeticType()) {
|
||
return CheckArithmeticConstantExpression(Exp->getLHS()) ||
|
||
CheckArithmeticConstantExpression(Exp->getRHS());
|
||
}
|
||
|
||
if (Exp->getLHS()->getType()->isPointerType() &&
|
||
Exp->getRHS()->getType()->isPointerType()) {
|
||
const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
|
||
const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
|
||
|
||
// Only allow a null (constant integer) base; we could
|
||
// allow some additional cases if necessary, but this
|
||
// is sufficient to cover offsetof-like constructs.
|
||
if (!LHSBase && !RHSBase) {
|
||
return CheckAddressConstantExpression(Exp->getLHS()) ||
|
||
CheckAddressConstantExpression(Exp->getRHS());
|
||
}
|
||
}
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::ImplicitCastExprClass:
|
||
case Expr::CStyleCastExprClass: {
|
||
const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
|
||
if (SubExpr->getType()->isArithmeticType())
|
||
return CheckArithmeticConstantExpression(SubExpr);
|
||
|
||
if (SubExpr->getType()->isPointerType()) {
|
||
const Expr* Base = FindExpressionBaseAddress(SubExpr);
|
||
// If the pointer has a null base, this is an offsetof-like construct
|
||
if (!Base)
|
||
return CheckAddressConstantExpression(SubExpr);
|
||
}
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
case Expr::ConditionalOperatorClass: {
|
||
const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
|
||
|
||
// If GNU extensions are disabled, we require all operands to be arithmetic
|
||
// constant expressions.
|
||
if (getLangOptions().NoExtensions) {
|
||
return CheckArithmeticConstantExpression(Exp->getCond()) ||
|
||
(Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
|
||
CheckArithmeticConstantExpression(Exp->getRHS());
|
||
}
|
||
|
||
// Otherwise, we have to emulate some of the behavior of fold here.
|
||
// Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
|
||
// because it can constant fold things away. To retain compatibility with
|
||
// GCC code, we see if we can fold the condition to a constant (which we
|
||
// should always be able to do in theory). If so, we only require the
|
||
// specified arm of the conditional to be a constant. This is a horrible
|
||
// hack, but is require by real world code that uses __builtin_constant_p.
|
||
APValue Val;
|
||
if (!Exp->getCond()->Evaluate(Val, Context)) {
|
||
// If Evaluate couldn't fold it, CheckArithmeticConstantExpression
|
||
// won't be able to either. Use it to emit the diagnostic though.
|
||
bool Res = CheckArithmeticConstantExpression(Exp->getCond());
|
||
assert(Res && "Evaluate couldn't evaluate this constant?");
|
||
return Res;
|
||
}
|
||
|
||
// Verify that the side following the condition is also a constant.
|
||
const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
|
||
if (Val.getInt() == 0)
|
||
std::swap(TrueSide, FalseSide);
|
||
|
||
if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
|
||
return true;
|
||
|
||
// Okay, the evaluated side evaluates to a constant, so we accept this.
|
||
// Check to see if the other side is obviously not a constant. If so,
|
||
// emit a warning that this is a GNU extension.
|
||
if (FalseSide && !FalseSide->isEvaluatable(Context))
|
||
Diag(Init->getExprLoc(),
|
||
diag::ext_typecheck_expression_not_constant_but_accepted)
|
||
<< FalseSide->getSourceRange();
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
|
||
Init = Init->IgnoreParens();
|
||
|
||
// Look through CXXDefaultArgExprs; they have no meaning in this context.
|
||
if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
|
||
return CheckForConstantInitializer(DAE->getExpr(), DclT);
|
||
|
||
if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
|
||
return CheckForConstantInitializer(e->getInitializer(), DclT);
|
||
|
||
if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
|
||
unsigned numInits = Exp->getNumInits();
|
||
for (unsigned i = 0; i < numInits; i++) {
|
||
// FIXME: Need to get the type of the declaration for C++,
|
||
// because it could be a reference?
|
||
if (CheckForConstantInitializer(Exp->getInit(i),
|
||
Exp->getInit(i)->getType()))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
if (Init->isNullPointerConstant(Context))
|
||
return false;
|
||
if (Init->getType()->isArithmeticType()) {
|
||
QualType InitTy = Context.getCanonicalType(Init->getType())
|
||
.getUnqualifiedType();
|
||
if (InitTy == Context.BoolTy) {
|
||
// Special handling for pointers implicitly cast to bool;
|
||
// (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
|
||
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
|
||
Expr* SubE = ICE->getSubExpr();
|
||
if (SubE->getType()->isPointerType() ||
|
||
SubE->getType()->isArrayType() ||
|
||
SubE->getType()->isFunctionType()) {
|
||
return CheckAddressConstantExpression(Init);
|
||
}
|
||
}
|
||
} else if (InitTy->isIntegralType()) {
|
||
Expr* SubE = 0;
|
||
if (CastExpr* CE = dyn_cast<CastExpr>(Init))
|
||
SubE = CE->getSubExpr();
|
||
// Special check for pointer cast to int; we allow as an extension
|
||
// an address constant cast to an integer if the integer
|
||
// is of an appropriate width (this sort of code is apparently used
|
||
// in some places).
|
||
// FIXME: Add pedwarn?
|
||
// FIXME: Don't allow bitfields here! Need the FieldDecl for that.
|
||
if (SubE && (SubE->getType()->isPointerType() ||
|
||
SubE->getType()->isArrayType() ||
|
||
SubE->getType()->isFunctionType())) {
|
||
unsigned IntWidth = Context.getTypeSize(Init->getType());
|
||
unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
|
||
if (IntWidth >= PointerWidth)
|
||
return CheckAddressConstantExpression(Init);
|
||
}
|
||
}
|
||
|
||
return CheckArithmeticConstantExpression(Init);
|
||
}
|
||
|
||
if (Init->getType()->isPointerType())
|
||
return CheckAddressConstantExpression(Init);
|
||
|
||
// An array type at the top level that isn't an init-list must
|
||
// be a string literal
|
||
if (Init->getType()->isArrayType())
|
||
return false;
|
||
|
||
if (Init->getType()->isFunctionType())
|
||
return false;
|
||
|
||
// Allow block exprs at top level.
|
||
if (Init->getType()->isBlockPointerType())
|
||
return false;
|
||
|
||
InitializerElementNotConstant(Init);
|
||
return true;
|
||
}
|
||
|
||
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
|
||
Decl *RealDecl = static_cast<Decl *>(dcl);
|
||
Expr *Init = static_cast<Expr *>(init);
|
||
assert(Init && "missing initializer");
|
||
|
||
// If there is no declaration, there was an error parsing it. Just ignore
|
||
// the initializer.
|
||
if (RealDecl == 0) {
|
||
delete Init;
|
||
return;
|
||
}
|
||
|
||
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
|
||
if (!VDecl) {
|
||
Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
|
||
diag::err_illegal_initializer);
|
||
RealDecl->setInvalidDecl();
|
||
return;
|
||
}
|
||
// Get the decls type and save a reference for later, since
|
||
// CheckInitializerTypes may change it.
|
||
QualType DclT = VDecl->getType(), SavT = DclT;
|
||
if (VDecl->isBlockVarDecl()) {
|
||
VarDecl::StorageClass SC = VDecl->getStorageClass();
|
||
if (SC == VarDecl::Extern) { // C99 6.7.8p5
|
||
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
|
||
VDecl->setInvalidDecl();
|
||
} else if (!VDecl->isInvalidDecl()) {
|
||
if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
|
||
VDecl->getDeclName()))
|
||
VDecl->setInvalidDecl();
|
||
|
||
// C++ 3.6.2p2, allow dynamic initialization of static initializers.
|
||
if (!getLangOptions().CPlusPlus) {
|
||
if (SC == VarDecl::Static) // C99 6.7.8p4.
|
||
CheckForConstantInitializer(Init, DclT);
|
||
}
|
||
}
|
||
} else if (VDecl->isFileVarDecl()) {
|
||
if (VDecl->getStorageClass() == VarDecl::Extern)
|
||
Diag(VDecl->getLocation(), diag::warn_extern_init);
|
||
if (!VDecl->isInvalidDecl())
|
||
if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
|
||
VDecl->getDeclName()))
|
||
VDecl->setInvalidDecl();
|
||
|
||
// C++ 3.6.2p2, allow dynamic initialization of static initializers.
|
||
if (!getLangOptions().CPlusPlus) {
|
||
// C99 6.7.8p4. All file scoped initializers need to be constant.
|
||
CheckForConstantInitializer(Init, DclT);
|
||
}
|
||
}
|
||
// If the type changed, it means we had an incomplete type that was
|
||
// completed by the initializer. For example:
|
||
// int ary[] = { 1, 3, 5 };
|
||
// "ary" transitions from a VariableArrayType to a ConstantArrayType.
|
||
if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
|
||
VDecl->setType(DclT);
|
||
Init->setType(DclT);
|
||
}
|
||
|
||
// Attach the initializer to the decl.
|
||
VDecl->setInit(Init);
|
||
return;
|
||
}
|
||
|
||
void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
|
||
Decl *RealDecl = static_cast<Decl *>(dcl);
|
||
|
||
// If there is no declaration, there was an error parsing it. Just ignore it.
|
||
if (RealDecl == 0)
|
||
return;
|
||
|
||
if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
|
||
QualType Type = Var->getType();
|
||
// C++ [dcl.init.ref]p3:
|
||
// The initializer can be omitted for a reference only in a
|
||
// parameter declaration (8.3.5), in the declaration of a
|
||
// function return type, in the declaration of a class member
|
||
// within its class declaration (9.2), and where the extern
|
||
// specifier is explicitly used.
|
||
if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
|
||
Diag(Var->getLocation(), diag::err_reference_var_requires_init)
|
||
<< Var->getDeclName()
|
||
<< SourceRange(Var->getLocation(), Var->getLocation());
|
||
Var->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// C++ [dcl.init]p9:
|
||
//
|
||
// If no initializer is specified for an object, and the object
|
||
// is of (possibly cv-qualified) non-POD class type (or array
|
||
// thereof), the object shall be default-initialized; if the
|
||
// object is of const-qualified type, the underlying class type
|
||
// shall have a user-declared default constructor.
|
||
if (getLangOptions().CPlusPlus) {
|
||
QualType InitType = Type;
|
||
if (const ArrayType *Array = Context.getAsArrayType(Type))
|
||
InitType = Array->getElementType();
|
||
if (InitType->isRecordType()) {
|
||
const CXXConstructorDecl *Constructor
|
||
= PerformInitializationByConstructor(InitType, 0, 0,
|
||
Var->getLocation(),
|
||
SourceRange(Var->getLocation(),
|
||
Var->getLocation()),
|
||
Var->getDeclName(),
|
||
IK_Default);
|
||
if (!Constructor)
|
||
Var->setInvalidDecl();
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
// FIXME: Temporarily disabled because we are not properly parsing
|
||
// linkage specifications on declarations, e.g.,
|
||
//
|
||
// extern "C" const CGPoint CGPointerZero;
|
||
//
|
||
// C++ [dcl.init]p9:
|
||
//
|
||
// If no initializer is specified for an object, and the
|
||
// object is of (possibly cv-qualified) non-POD class type (or
|
||
// array thereof), the object shall be default-initialized; if
|
||
// the object is of const-qualified type, the underlying class
|
||
// type shall have a user-declared default
|
||
// constructor. Otherwise, if no initializer is specified for
|
||
// an object, the object and its subobjects, if any, have an
|
||
// indeterminate initial value; if the object or any of its
|
||
// subobjects are of const-qualified type, the program is
|
||
// ill-formed.
|
||
//
|
||
// This isn't technically an error in C, so we don't diagnose it.
|
||
//
|
||
// FIXME: Actually perform the POD/user-defined default
|
||
// constructor check.
|
||
if (getLangOptions().CPlusPlus &&
|
||
Context.getCanonicalType(Type).isConstQualified() &&
|
||
Var->getStorageClass() != VarDecl::Extern)
|
||
Diag(Var->getLocation(), diag::err_const_var_requires_init)
|
||
<< Var->getName()
|
||
<< SourceRange(Var->getLocation(), Var->getLocation());
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/// The declarators are chained together backwards, reverse the list.
|
||
Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
|
||
// Often we have single declarators, handle them quickly.
|
||
Decl *GroupDecl = static_cast<Decl*>(group);
|
||
if (GroupDecl == 0)
|
||
return 0;
|
||
|
||
ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
|
||
ScopedDecl *NewGroup = 0;
|
||
if (Group->getNextDeclarator() == 0)
|
||
NewGroup = Group;
|
||
else { // reverse the list.
|
||
while (Group) {
|
||
ScopedDecl *Next = Group->getNextDeclarator();
|
||
Group->setNextDeclarator(NewGroup);
|
||
NewGroup = Group;
|
||
Group = Next;
|
||
}
|
||
}
|
||
// Perform semantic analysis that depends on having fully processed both
|
||
// the declarator and initializer.
|
||
for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
|
||
VarDecl *IDecl = dyn_cast<VarDecl>(ID);
|
||
if (!IDecl)
|
||
continue;
|
||
QualType T = IDecl->getType();
|
||
|
||
// C99 6.7.5.2p2: If an identifier is declared to be an object with
|
||
// static storage duration, it shall not have a variable length array.
|
||
if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
|
||
IDecl->getStorageClass() == VarDecl::Static) {
|
||
if (T->isVariableArrayType()) {
|
||
Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
|
||
IDecl->setInvalidDecl();
|
||
}
|
||
}
|
||
// Block scope. C99 6.7p7: If an identifier for an object is declared with
|
||
// no linkage (C99 6.2.2p6), the type for the object shall be complete...
|
||
if (IDecl->isBlockVarDecl() &&
|
||
IDecl->getStorageClass() != VarDecl::Extern) {
|
||
if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
|
||
Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
|
||
IDecl->setInvalidDecl();
|
||
}
|
||
}
|
||
// File scope. C99 6.9.2p2: A declaration of an identifier for and
|
||
// object that has file scope without an initializer, and without a
|
||
// storage-class specifier or with the storage-class specifier "static",
|
||
// constitutes a tentative definition. Note: A tentative definition with
|
||
// external linkage is valid (C99 6.2.2p5).
|
||
if (isTentativeDefinition(IDecl)) {
|
||
if (T->isIncompleteArrayType()) {
|
||
// C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
|
||
// array to be completed. Don't issue a diagnostic.
|
||
} else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
|
||
// C99 6.9.2p3: If the declaration of an identifier for an object is
|
||
// a tentative definition and has internal linkage (C99 6.2.2p3), the
|
||
// declared type shall not be an incomplete type.
|
||
Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
|
||
IDecl->setInvalidDecl();
|
||
}
|
||
}
|
||
if (IDecl->isFileVarDecl())
|
||
CheckForFileScopedRedefinitions(S, IDecl);
|
||
}
|
||
return NewGroup;
|
||
}
|
||
|
||
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
|
||
/// to introduce parameters into function prototype scope.
|
||
Sema::DeclTy *
|
||
Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
|
||
// FIXME: disallow CXXScopeSpec for param declarators.
|
||
const DeclSpec &DS = D.getDeclSpec();
|
||
|
||
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
|
||
VarDecl::StorageClass StorageClass = VarDecl::None;
|
||
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
|
||
StorageClass = VarDecl::Register;
|
||
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
|
||
Diag(DS.getStorageClassSpecLoc(),
|
||
diag::err_invalid_storage_class_in_func_decl);
|
||
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
||
}
|
||
if (DS.isThreadSpecified()) {
|
||
Diag(DS.getThreadSpecLoc(),
|
||
diag::err_invalid_storage_class_in_func_decl);
|
||
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
||
}
|
||
|
||
// Check that there are no default arguments inside the type of this
|
||
// parameter (C++ only).
|
||
if (getLangOptions().CPlusPlus)
|
||
CheckExtraCXXDefaultArguments(D);
|
||
|
||
// In this context, we *do not* check D.getInvalidType(). If the declarator
|
||
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
|
||
// though it will not reflect the user specified type.
|
||
QualType parmDeclType = GetTypeForDeclarator(D, S);
|
||
|
||
assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
|
||
|
||
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
|
||
// Can this happen for params? We already checked that they don't conflict
|
||
// among each other. Here they can only shadow globals, which is ok.
|
||
IdentifierInfo *II = D.getIdentifier();
|
||
if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
|
||
if (S->isDeclScope(PrevDecl)) {
|
||
Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
|
||
|
||
// Recover by removing the name
|
||
II = 0;
|
||
D.SetIdentifier(0, D.getIdentifierLoc());
|
||
}
|
||
}
|
||
|
||
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
|
||
// Doing the promotion here has a win and a loss. The win is the type for
|
||
// both Decl's and DeclRefExpr's will match (a convenient invariant for the
|
||
// code generator). The loss is the orginal type isn't preserved. For example:
|
||
//
|
||
// void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
|
||
// int blockvardecl[5];
|
||
// sizeof(parmvardecl); // size == 4
|
||
// sizeof(blockvardecl); // size == 20
|
||
// }
|
||
//
|
||
// For expressions, all implicit conversions are captured using the
|
||
// ImplicitCastExpr AST node (we have no such mechanism for Decl's).
|
||
//
|
||
// FIXME: If a source translation tool needs to see the original type, then
|
||
// we need to consider storing both types (in ParmVarDecl)...
|
||
//
|
||
if (parmDeclType->isArrayType()) {
|
||
// int x[restrict 4] -> int *restrict
|
||
parmDeclType = Context.getArrayDecayedType(parmDeclType);
|
||
} else if (parmDeclType->isFunctionType())
|
||
parmDeclType = Context.getPointerType(parmDeclType);
|
||
|
||
ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
|
||
D.getIdentifierLoc(), II,
|
||
parmDeclType, StorageClass,
|
||
0, 0);
|
||
|
||
if (D.getInvalidType())
|
||
New->setInvalidDecl();
|
||
|
||
if (II)
|
||
PushOnScopeChains(New, S);
|
||
|
||
ProcessDeclAttributes(New, D);
|
||
return New;
|
||
|
||
}
|
||
|
||
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
|
||
assert(getCurFunctionDecl() == 0 && "Function parsing confused");
|
||
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
||
"Not a function declarator!");
|
||
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
||
|
||
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
|
||
// for a K&R function.
|
||
if (!FTI.hasPrototype) {
|
||
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
|
||
if (FTI.ArgInfo[i].Param == 0) {
|
||
Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
|
||
<< FTI.ArgInfo[i].Ident;
|
||
// Implicitly declare the argument as type 'int' for lack of a better
|
||
// type.
|
||
DeclSpec DS;
|
||
const char* PrevSpec; // unused
|
||
DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
|
||
PrevSpec);
|
||
Declarator ParamD(DS, Declarator::KNRTypeListContext);
|
||
ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
|
||
FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
|
||
}
|
||
}
|
||
} else {
|
||
// FIXME: Diagnose arguments without names in C.
|
||
}
|
||
|
||
Scope *GlobalScope = FnBodyScope->getParent();
|
||
|
||
return ActOnStartOfFunctionDef(FnBodyScope,
|
||
ActOnDeclarator(GlobalScope, D, 0));
|
||
}
|
||
|
||
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
|
||
Decl *decl = static_cast<Decl*>(D);
|
||
FunctionDecl *FD = cast<FunctionDecl>(decl);
|
||
|
||
// See if this is a redefinition.
|
||
const FunctionDecl *Definition;
|
||
if (FD->getBody(Definition)) {
|
||
Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
|
||
Diag(Definition->getLocation(), diag::note_previous_definition);
|
||
}
|
||
|
||
PushDeclContext(FD);
|
||
|
||
// Check the validity of our function parameters
|
||
CheckParmsForFunctionDef(FD);
|
||
|
||
// Introduce our parameters into the function scope
|
||
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
|
||
ParmVarDecl *Param = FD->getParamDecl(p);
|
||
// If this has an identifier, add it to the scope stack.
|
||
if (Param->getIdentifier())
|
||
PushOnScopeChains(Param, FnBodyScope);
|
||
}
|
||
|
||
return FD;
|
||
}
|
||
|
||
Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
|
||
Decl *dcl = static_cast<Decl *>(D);
|
||
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
|
||
FD->setBody((Stmt*)Body);
|
||
assert(FD == getCurFunctionDecl() && "Function parsing confused");
|
||
} else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
|
||
MD->setBody((Stmt*)Body);
|
||
} else
|
||
return 0;
|
||
PopDeclContext();
|
||
// Verify and clean out per-function state.
|
||
|
||
// Check goto/label use.
|
||
for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
|
||
I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
|
||
// Verify that we have no forward references left. If so, there was a goto
|
||
// or address of a label taken, but no definition of it. Label fwd
|
||
// definitions are indicated with a null substmt.
|
||
if (I->second->getSubStmt() == 0) {
|
||
LabelStmt *L = I->second;
|
||
// Emit error.
|
||
Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
|
||
|
||
// At this point, we have gotos that use the bogus label. Stitch it into
|
||
// the function body so that they aren't leaked and that the AST is well
|
||
// formed.
|
||
if (Body) {
|
||
L->setSubStmt(new NullStmt(L->getIdentLoc()));
|
||
cast<CompoundStmt>((Stmt*)Body)->push_back(L);
|
||
} else {
|
||
// The whole function wasn't parsed correctly, just delete this.
|
||
delete L;
|
||
}
|
||
}
|
||
}
|
||
LabelMap.clear();
|
||
|
||
return D;
|
||
}
|
||
|
||
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
|
||
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
|
||
ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
|
||
IdentifierInfo &II, Scope *S) {
|
||
// Extension in C99. Legal in C90, but warn about it.
|
||
if (getLangOptions().C99)
|
||
Diag(Loc, diag::ext_implicit_function_decl) << &II;
|
||
else
|
||
Diag(Loc, diag::warn_implicit_function_decl) << &II;
|
||
|
||
// FIXME: handle stuff like:
|
||
// void foo() { extern float X(); }
|
||
// void bar() { X(); } <-- implicit decl for X in another scope.
|
||
|
||
// Set a Declarator for the implicit definition: int foo();
|
||
const char *Dummy;
|
||
DeclSpec DS;
|
||
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
|
||
Error = Error; // Silence warning.
|
||
assert(!Error && "Error setting up implicit decl!");
|
||
Declarator D(DS, Declarator::BlockContext);
|
||
D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
|
||
D.SetIdentifier(&II, Loc);
|
||
|
||
// Insert this function into translation-unit scope.
|
||
|
||
DeclContext *PrevDC = CurContext;
|
||
CurContext = Context.getTranslationUnitDecl();
|
||
|
||
FunctionDecl *FD =
|
||
dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
|
||
FD->setImplicit();
|
||
|
||
CurContext = PrevDC;
|
||
|
||
return FD;
|
||
}
|
||
|
||
|
||
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
|
||
ScopedDecl *LastDeclarator) {
|
||
assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
|
||
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
||
|
||
// Scope manipulation handled by caller.
|
||
TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
|
||
D.getIdentifierLoc(),
|
||
D.getIdentifier(),
|
||
T, LastDeclarator);
|
||
if (D.getInvalidType())
|
||
NewTD->setInvalidDecl();
|
||
return NewTD;
|
||
}
|
||
|
||
/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
|
||
/// former case, Name will be non-null. In the later case, Name will be null.
|
||
/// TagType indicates what kind of tag this is. TK indicates whether this is a
|
||
/// reference/declaration/definition of a tag.
|
||
Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
|
||
SourceLocation KWLoc, const CXXScopeSpec &SS,
|
||
IdentifierInfo *Name, SourceLocation NameLoc,
|
||
AttributeList *Attr) {
|
||
// If this is a use of an existing tag, it must have a name.
|
||
assert((Name != 0 || TK == TK_Definition) &&
|
||
"Nameless record must be a definition!");
|
||
|
||
TagDecl::TagKind Kind;
|
||
switch (TagType) {
|
||
default: assert(0 && "Unknown tag type!");
|
||
case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
|
||
case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
|
||
case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
|
||
case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break;
|
||
}
|
||
|
||
// Two code paths: a new one for structs/unions/classes where we create
|
||
// separate decls for forward declarations, and an old (eventually to
|
||
// be removed) code path for enums.
|
||
if (Kind != TagDecl::TK_enum)
|
||
return ActOnTagStruct(S, Kind, TK, KWLoc, SS, Name, NameLoc, Attr);
|
||
|
||
DeclContext *DC = CurContext;
|
||
ScopedDecl *PrevDecl = 0;
|
||
|
||
if (Name && SS.isNotEmpty()) {
|
||
// We have a nested-name tag ('struct foo::bar').
|
||
|
||
// Check for invalid 'foo::'.
|
||
if (SS.isInvalid()) {
|
||
Name = 0;
|
||
goto CreateNewDecl;
|
||
}
|
||
|
||
DC = static_cast<DeclContext*>(SS.getScopeRep());
|
||
// Look-up name inside 'foo::'.
|
||
PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
|
||
|
||
// A tag 'foo::bar' must already exist.
|
||
if (PrevDecl == 0) {
|
||
Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
|
||
Name = 0;
|
||
goto CreateNewDecl;
|
||
}
|
||
} else {
|
||
// If this is a named struct, check to see if there was a previous forward
|
||
// declaration or definition.
|
||
// Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
|
||
PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
|
||
}
|
||
|
||
if (PrevDecl) {
|
||
assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
|
||
"unexpected Decl type");
|
||
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
|
||
// If this is a use of a previous tag, or if the tag is already declared
|
||
// in the same scope (so that the definition/declaration completes or
|
||
// rementions the tag), reuse the decl.
|
||
if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
|
||
// Make sure that this wasn't declared as an enum and now used as a
|
||
// struct or something similar.
|
||
if (PrevTagDecl->getTagKind() != Kind) {
|
||
Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_use);
|
||
// Recover by making this an anonymous redefinition.
|
||
Name = 0;
|
||
PrevDecl = 0;
|
||
} else {
|
||
// If this is a use or a forward declaration, we're good.
|
||
if (TK != TK_Definition)
|
||
return PrevDecl;
|
||
|
||
// Diagnose attempts to redefine a tag.
|
||
if (PrevTagDecl->isDefinition()) {
|
||
Diag(NameLoc, diag::err_redefinition) << Name;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
||
// If this is a redefinition, recover by making this struct be
|
||
// anonymous, which will make any later references get the previous
|
||
// definition.
|
||
Name = 0;
|
||
} else {
|
||
// Okay, this is definition of a previously declared or referenced
|
||
// tag. Move the location of the decl to be the definition site.
|
||
PrevDecl->setLocation(NameLoc);
|
||
return PrevDecl;
|
||
}
|
||
}
|
||
}
|
||
// If we get here, this is a definition of a new struct type in a nested
|
||
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
|
||
// type.
|
||
} else {
|
||
// PrevDecl is a namespace.
|
||
if (isDeclInScope(PrevDecl, DC, S)) {
|
||
// The tag name clashes with a namespace name, issue an error and
|
||
// recover by making this tag be anonymous.
|
||
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
||
Name = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
CreateNewDecl:
|
||
|
||
// If there is an identifier, use the location of the identifier as the
|
||
// location of the decl, otherwise use the location of the struct/union
|
||
// keyword.
|
||
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
|
||
|
||
// Otherwise, if this is the first time we've seen this tag, create the decl.
|
||
TagDecl *New;
|
||
if (Kind == TagDecl::TK_enum) {
|
||
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
||
// enum X { A, B, C } D; D should chain to X.
|
||
New = EnumDecl::Create(Context, DC, Loc, Name, 0);
|
||
// If this is an undefined enum, warn.
|
||
if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
|
||
} else {
|
||
// struct/union/class
|
||
|
||
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
||
// struct X { int A; } D; D should chain to X.
|
||
if (getLangOptions().CPlusPlus)
|
||
// FIXME: Look for a way to use RecordDecl for simple structs.
|
||
New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name);
|
||
else
|
||
New = RecordDecl::Create(Context, Kind, DC, Loc, Name);
|
||
}
|
||
|
||
// If this has an identifier, add it to the scope stack.
|
||
if (Name) {
|
||
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
||
// we find one that is.
|
||
while ((S->getFlags() & Scope::DeclScope) == 0)
|
||
S = S->getParent();
|
||
|
||
// Add it to the decl chain.
|
||
PushOnScopeChains(New, S);
|
||
}
|
||
|
||
if (Attr)
|
||
ProcessDeclAttributeList(New, Attr);
|
||
|
||
// Set the lexical context. If the tag has a C++ scope specifier, the
|
||
// lexical context will be different from the semantic context.
|
||
New->setLexicalDeclContext(CurContext);
|
||
|
||
return New;
|
||
}
|
||
|
||
/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes. Unlike
|
||
/// the logic for enums, we create separate decls for forward declarations.
|
||
/// This is called by ActOnTag, but eventually will replace its logic.
|
||
Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
|
||
SourceLocation KWLoc, const CXXScopeSpec &SS,
|
||
IdentifierInfo *Name, SourceLocation NameLoc,
|
||
AttributeList *Attr) {
|
||
DeclContext *DC = CurContext;
|
||
ScopedDecl *PrevDecl = 0;
|
||
|
||
if (Name && SS.isNotEmpty()) {
|
||
// We have a nested-name tag ('struct foo::bar').
|
||
|
||
// Check for invalid 'foo::'.
|
||
if (SS.isInvalid()) {
|
||
Name = 0;
|
||
goto CreateNewDecl;
|
||
}
|
||
|
||
DC = static_cast<DeclContext*>(SS.getScopeRep());
|
||
// Look-up name inside 'foo::'.
|
||
PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
|
||
|
||
// A tag 'foo::bar' must already exist.
|
||
if (PrevDecl == 0) {
|
||
Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
|
||
Name = 0;
|
||
goto CreateNewDecl;
|
||
}
|
||
} else {
|
||
// If this is a named struct, check to see if there was a previous forward
|
||
// declaration or definition.
|
||
// Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
|
||
PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
|
||
}
|
||
|
||
if (PrevDecl) {
|
||
assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
|
||
"unexpected Decl type");
|
||
|
||
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
|
||
// If this is a use of a previous tag, or if the tag is already declared
|
||
// in the same scope (so that the definition/declaration completes or
|
||
// rementions the tag), reuse the decl.
|
||
if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
|
||
// Make sure that this wasn't declared as an enum and now used as a
|
||
// struct or something similar.
|
||
if (PrevTagDecl->getTagKind() != Kind) {
|
||
Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_use);
|
||
// Recover by making this an anonymous redefinition.
|
||
Name = 0;
|
||
PrevDecl = 0;
|
||
} else {
|
||
// If this is a use, return the original decl.
|
||
|
||
// FIXME: In the future, return a variant or some other clue
|
||
// for the consumer of this Decl to know it doesn't own it.
|
||
// For our current ASTs this shouldn't be a problem, but will
|
||
// need to be changed with DeclGroups.
|
||
if (TK == TK_Reference)
|
||
return PrevDecl;
|
||
|
||
// The new decl is a definition?
|
||
if (TK == TK_Definition) {
|
||
// Diagnose attempts to redefine a tag.
|
||
if (RecordDecl* DefRecord =
|
||
cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
|
||
Diag(NameLoc, diag::err_redefinition) << Name;
|
||
Diag(DefRecord->getLocation(), diag::note_previous_definition);
|
||
// If this is a redefinition, recover by making this struct be
|
||
// anonymous, which will make any later references get the previous
|
||
// definition.
|
||
Name = 0;
|
||
PrevDecl = 0;
|
||
}
|
||
// Okay, this is definition of a previously declared or referenced
|
||
// tag. We're going to create a new Decl.
|
||
}
|
||
}
|
||
// If we get here we have (another) forward declaration. Just create
|
||
// a new decl.
|
||
}
|
||
else {
|
||
// If we get here, this is a definition of a new struct type in a nested
|
||
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a
|
||
// new decl/type. We set PrevDecl to NULL so that the Records
|
||
// have distinct types.
|
||
PrevDecl = 0;
|
||
}
|
||
} else {
|
||
// PrevDecl is a namespace.
|
||
if (isDeclInScope(PrevDecl, DC, S)) {
|
||
// The tag name clashes with a namespace name, issue an error and
|
||
// recover by making this tag be anonymous.
|
||
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
||
Name = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
CreateNewDecl:
|
||
|
||
// If there is an identifier, use the location of the identifier as the
|
||
// location of the decl, otherwise use the location of the struct/union
|
||
// keyword.
|
||
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
|
||
|
||
// Otherwise, if this is the first time we've seen this tag, create the decl.
|
||
TagDecl *New;
|
||
|
||
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
|
||
// struct X { int A; } D; D should chain to X.
|
||
if (getLangOptions().CPlusPlus)
|
||
// FIXME: Look for a way to use RecordDecl for simple structs.
|
||
New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
|
||
dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
|
||
else
|
||
New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
|
||
dyn_cast_or_null<RecordDecl>(PrevDecl));
|
||
|
||
// If this has an identifier, add it to the scope stack.
|
||
if ((TK == TK_Definition || !PrevDecl) && Name) {
|
||
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
||
// we find one that is.
|
||
while ((S->getFlags() & Scope::DeclScope) == 0)
|
||
S = S->getParent();
|
||
|
||
// Add it to the decl chain.
|
||
PushOnScopeChains(New, S);
|
||
}
|
||
|
||
// Handle #pragma pack: if the #pragma pack stack has non-default
|
||
// alignment, make up a packed attribute for this decl. These
|
||
// attributes are checked when the ASTContext lays out the
|
||
// structure.
|
||
//
|
||
// It is important for implementing the correct semantics that this
|
||
// happen here (in act on tag decl). The #pragma pack stack is
|
||
// maintained as a result of parser callbacks which can occur at
|
||
// many points during the parsing of a struct declaration (because
|
||
// the #pragma tokens are effectively skipped over during the
|
||
// parsing of the struct).
|
||
if (unsigned Alignment = PackContext.getAlignment())
|
||
New->addAttr(new PackedAttr(Alignment * 8));
|
||
|
||
if (Attr)
|
||
ProcessDeclAttributeList(New, Attr);
|
||
|
||
// Set the lexical context. If the tag has a C++ scope specifier, the
|
||
// lexical context will be different from the semantic context.
|
||
New->setLexicalDeclContext(CurContext);
|
||
|
||
return New;
|
||
}
|
||
|
||
|
||
/// Collect the instance variables declared in an Objective-C object. Used in
|
||
/// the creation of structures from objects using the @defs directive.
|
||
static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
|
||
llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
|
||
if (Class->getSuperClass())
|
||
CollectIvars(Class->getSuperClass(), Ctx, ivars);
|
||
|
||
// For each ivar, create a fresh ObjCAtDefsFieldDecl.
|
||
for (ObjCInterfaceDecl::ivar_iterator
|
||
I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
|
||
|
||
ObjCIvarDecl* ID = *I;
|
||
ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
|
||
ID->getIdentifier(),
|
||
ID->getType(),
|
||
ID->getBitWidth()));
|
||
}
|
||
}
|
||
|
||
/// Called whenever @defs(ClassName) is encountered in the source. Inserts the
|
||
/// instance variables of ClassName into Decls.
|
||
void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
|
||
IdentifierInfo *ClassName,
|
||
llvm::SmallVectorImpl<DeclTy*> &Decls) {
|
||
// Check that ClassName is a valid class
|
||
ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
|
||
if (!Class) {
|
||
Diag(DeclStart, diag::err_undef_interface) << ClassName;
|
||
return;
|
||
}
|
||
// Collect the instance variables
|
||
CollectIvars(Class, Context, Decls);
|
||
}
|
||
|
||
/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
|
||
/// types into constant array types in certain situations which would otherwise
|
||
/// be errors (for GCC compatibility).
|
||
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
|
||
ASTContext &Context) {
|
||
// This method tries to turn a variable array into a constant
|
||
// array even when the size isn't an ICE. This is necessary
|
||
// for compatibility with code that depends on gcc's buggy
|
||
// constant expression folding, like struct {char x[(int)(char*)2];}
|
||
const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
|
||
if (!VLATy) return QualType();
|
||
|
||
APValue Result;
|
||
if (!VLATy->getSizeExpr() ||
|
||
!VLATy->getSizeExpr()->Evaluate(Result, Context))
|
||
return QualType();
|
||
|
||
assert(Result.isInt() && "Size expressions must be integers!");
|
||
llvm::APSInt &Res = Result.getInt();
|
||
if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
|
||
return Context.getConstantArrayType(VLATy->getElementType(),
|
||
Res, ArrayType::Normal, 0);
|
||
return QualType();
|
||
}
|
||
|
||
/// ActOnField - Each field of a struct/union/class is passed into this in order
|
||
/// to create a FieldDecl object for it.
|
||
Sema::DeclTy *Sema::ActOnField(Scope *S,
|
||
SourceLocation DeclStart,
|
||
Declarator &D, ExprTy *BitfieldWidth) {
|
||
IdentifierInfo *II = D.getIdentifier();
|
||
Expr *BitWidth = (Expr*)BitfieldWidth;
|
||
SourceLocation Loc = DeclStart;
|
||
if (II) Loc = D.getIdentifierLoc();
|
||
|
||
// FIXME: Unnamed fields can be handled in various different ways, for
|
||
// example, unnamed unions inject all members into the struct namespace!
|
||
|
||
if (BitWidth) {
|
||
// TODO: Validate.
|
||
//printf("WARNING: BITFIELDS IGNORED!\n");
|
||
|
||
// 6.7.2.1p3
|
||
// 6.7.2.1p4
|
||
|
||
} else {
|
||
// Not a bitfield.
|
||
|
||
// validate II.
|
||
|
||
}
|
||
|
||
QualType T = GetTypeForDeclarator(D, S);
|
||
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
||
bool InvalidDecl = false;
|
||
|
||
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
||
// than a variably modified type.
|
||
if (T->isVariablyModifiedType()) {
|
||
QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
|
||
if (!FixedTy.isNull()) {
|
||
Diag(Loc, diag::warn_illegal_constant_array_size);
|
||
T = FixedTy;
|
||
} else {
|
||
Diag(Loc, diag::err_typecheck_field_variable_size);
|
||
T = Context.IntTy;
|
||
InvalidDecl = true;
|
||
}
|
||
}
|
||
// FIXME: Chain fielddecls together.
|
||
FieldDecl *NewFD;
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
|
||
NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
|
||
Loc, II, T,
|
||
D.getDeclSpec().getStorageClassSpec() ==
|
||
DeclSpec::SCS_mutable, BitWidth);
|
||
if (II)
|
||
PushOnScopeChains(NewFD, S);
|
||
}
|
||
else
|
||
NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
|
||
|
||
ProcessDeclAttributes(NewFD, D);
|
||
|
||
if (D.getInvalidType() || InvalidDecl)
|
||
NewFD->setInvalidDecl();
|
||
return NewFD;
|
||
}
|
||
|
||
/// TranslateIvarVisibility - Translate visibility from a token ID to an
|
||
/// AST enum value.
|
||
static ObjCIvarDecl::AccessControl
|
||
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
|
||
switch (ivarVisibility) {
|
||
default: assert(0 && "Unknown visitibility kind");
|
||
case tok::objc_private: return ObjCIvarDecl::Private;
|
||
case tok::objc_public: return ObjCIvarDecl::Public;
|
||
case tok::objc_protected: return ObjCIvarDecl::Protected;
|
||
case tok::objc_package: return ObjCIvarDecl::Package;
|
||
}
|
||
}
|
||
|
||
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
|
||
/// in order to create an IvarDecl object for it.
|
||
Sema::DeclTy *Sema::ActOnIvar(Scope *S,
|
||
SourceLocation DeclStart,
|
||
Declarator &D, ExprTy *BitfieldWidth,
|
||
tok::ObjCKeywordKind Visibility) {
|
||
IdentifierInfo *II = D.getIdentifier();
|
||
Expr *BitWidth = (Expr*)BitfieldWidth;
|
||
SourceLocation Loc = DeclStart;
|
||
if (II) Loc = D.getIdentifierLoc();
|
||
|
||
// FIXME: Unnamed fields can be handled in various different ways, for
|
||
// example, unnamed unions inject all members into the struct namespace!
|
||
|
||
|
||
if (BitWidth) {
|
||
// TODO: Validate.
|
||
//printf("WARNING: BITFIELDS IGNORED!\n");
|
||
|
||
// 6.7.2.1p3
|
||
// 6.7.2.1p4
|
||
|
||
} else {
|
||
// Not a bitfield.
|
||
|
||
// validate II.
|
||
|
||
}
|
||
|
||
QualType T = GetTypeForDeclarator(D, S);
|
||
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
|
||
bool InvalidDecl = false;
|
||
|
||
// C99 6.7.2.1p8: A member of a structure or union may have any type other
|
||
// than a variably modified type.
|
||
if (T->isVariablyModifiedType()) {
|
||
// FIXME: This diagnostic needs work
|
||
Diag(Loc, diag::err_typecheck_illegal_vla) << SourceRange(Loc);
|
||
InvalidDecl = true;
|
||
}
|
||
|
||
// Get the visibility (access control) for this ivar.
|
||
ObjCIvarDecl::AccessControl ac =
|
||
Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
|
||
: ObjCIvarDecl::None;
|
||
|
||
// Construct the decl.
|
||
ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
|
||
(Expr *)BitfieldWidth);
|
||
|
||
// Process attributes attached to the ivar.
|
||
ProcessDeclAttributes(NewID, D);
|
||
|
||
if (D.getInvalidType() || InvalidDecl)
|
||
NewID->setInvalidDecl();
|
||
|
||
return NewID;
|
||
}
|
||
|
||
void Sema::ActOnFields(Scope* S,
|
||
SourceLocation RecLoc, DeclTy *RecDecl,
|
||
DeclTy **Fields, unsigned NumFields,
|
||
SourceLocation LBrac, SourceLocation RBrac,
|
||
AttributeList *Attr) {
|
||
Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
|
||
assert(EnclosingDecl && "missing record or interface decl");
|
||
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
|
||
|
||
if (Record)
|
||
if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
|
||
// Diagnose code like:
|
||
// struct S { struct S {} X; };
|
||
// We discover this when we complete the outer S. Reject and ignore the
|
||
// outer S.
|
||
Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
|
||
<< DefRecord->getDeclName();
|
||
Diag(RecLoc, diag::note_previous_definition);
|
||
Record->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// Verify that all the fields are okay.
|
||
unsigned NumNamedMembers = 0;
|
||
llvm::SmallVector<FieldDecl*, 32> RecFields;
|
||
llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
|
||
|
||
for (unsigned i = 0; i != NumFields; ++i) {
|
||
|
||
FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
|
||
assert(FD && "missing field decl");
|
||
|
||
// Remember all fields.
|
||
RecFields.push_back(FD);
|
||
|
||
// Get the type for the field.
|
||
Type *FDTy = FD->getType().getTypePtr();
|
||
|
||
// C99 6.7.2.1p2 - A field may not be a function type.
|
||
if (FDTy->isFunctionType()) {
|
||
Diag(FD->getLocation(), diag::err_field_declared_as_function)
|
||
<< FD->getDeclName();
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
// C99 6.7.2.1p2 - A field may not be an incomplete type except...
|
||
if (FDTy->isIncompleteType()) {
|
||
if (!Record) { // Incomplete ivar type is always an error.
|
||
Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
if (i != NumFields-1 || // ... that the last member ...
|
||
!Record->isStruct() || // ... of a structure ...
|
||
!FDTy->isArrayType()) { //... may have incomplete array type.
|
||
Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
if (NumNamedMembers < 1) { //... must have more than named member ...
|
||
Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
|
||
<< FD->getDeclName();
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
// Okay, we have a legal flexible array member at the end of the struct.
|
||
if (Record)
|
||
Record->setHasFlexibleArrayMember(true);
|
||
}
|
||
/// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
|
||
/// field of another structure or the element of an array.
|
||
if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
|
||
if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
|
||
// If this is a member of a union, then entire union becomes "flexible".
|
||
if (Record && Record->isUnion()) {
|
||
Record->setHasFlexibleArrayMember(true);
|
||
} else {
|
||
// If this is a struct/class and this is not the last element, reject
|
||
// it. Note that GCC supports variable sized arrays in the middle of
|
||
// structures.
|
||
if (i != NumFields-1) {
|
||
Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
|
||
<< FD->getDeclName();
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
// We support flexible arrays at the end of structs in other structs
|
||
// as an extension.
|
||
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
|
||
<< FD->getDeclName();
|
||
if (Record)
|
||
Record->setHasFlexibleArrayMember(true);
|
||
}
|
||
}
|
||
}
|
||
/// A field cannot be an Objective-c object
|
||
if (FDTy->isObjCInterfaceType()) {
|
||
Diag(FD->getLocation(), diag::err_statically_allocated_object)
|
||
<< FD->getDeclName();
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
// Keep track of the number of named members.
|
||
if (IdentifierInfo *II = FD->getIdentifier()) {
|
||
// Detect duplicate member names.
|
||
if (!FieldIDs.insert(II)) {
|
||
Diag(FD->getLocation(), diag::err_duplicate_member) << II;
|
||
// Find the previous decl.
|
||
SourceLocation PrevLoc;
|
||
for (unsigned i = 0; ; ++i) {
|
||
assert(i != RecFields.size() && "Didn't find previous def!");
|
||
if (RecFields[i]->getIdentifier() == II) {
|
||
PrevLoc = RecFields[i]->getLocation();
|
||
break;
|
||
}
|
||
}
|
||
Diag(PrevLoc, diag::note_previous_definition);
|
||
FD->setInvalidDecl();
|
||
EnclosingDecl->setInvalidDecl();
|
||
continue;
|
||
}
|
||
++NumNamedMembers;
|
||
}
|
||
}
|
||
|
||
// Okay, we successfully defined 'Record'.
|
||
if (Record) {
|
||
Record->defineBody(Context, &RecFields[0], RecFields.size());
|
||
// If this is a C++ record, HandleTagDeclDefinition will be invoked in
|
||
// Sema::ActOnFinishCXXClassDef.
|
||
if (!isa<CXXRecordDecl>(Record))
|
||
Consumer.HandleTagDeclDefinition(Record);
|
||
} else {
|
||
ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
|
||
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
|
||
ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
|
||
else if (ObjCImplementationDecl *IMPDecl =
|
||
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
|
||
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
|
||
IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
|
||
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
|
||
}
|
||
}
|
||
|
||
if (Attr)
|
||
ProcessDeclAttributeList(Record, Attr);
|
||
}
|
||
|
||
Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
|
||
DeclTy *lastEnumConst,
|
||
SourceLocation IdLoc, IdentifierInfo *Id,
|
||
SourceLocation EqualLoc, ExprTy *val) {
|
||
EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
|
||
EnumConstantDecl *LastEnumConst =
|
||
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
|
||
Expr *Val = static_cast<Expr*>(val);
|
||
|
||
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
||
// we find one that is.
|
||
while ((S->getFlags() & Scope::DeclScope) == 0)
|
||
S = S->getParent();
|
||
|
||
// Verify that there isn't already something declared with this name in this
|
||
// scope.
|
||
if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
|
||
// When in C++, we may get a TagDecl with the same name; in this case the
|
||
// enum constant will 'hide' the tag.
|
||
assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
|
||
"Received TagDecl when not in C++!");
|
||
if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
|
||
if (isa<EnumConstantDecl>(PrevDecl))
|
||
Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
|
||
else
|
||
Diag(IdLoc, diag::err_redefinition) << Id;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
||
delete Val;
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
llvm::APSInt EnumVal(32);
|
||
QualType EltTy;
|
||
if (Val) {
|
||
// Make sure to promote the operand type to int.
|
||
UsualUnaryConversions(Val);
|
||
|
||
// C99 6.7.2.2p2: Make sure we have an integer constant expression.
|
||
SourceLocation ExpLoc;
|
||
if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
|
||
Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr) << Id;
|
||
delete Val;
|
||
Val = 0; // Just forget about it.
|
||
} else {
|
||
EltTy = Val->getType();
|
||
}
|
||
}
|
||
|
||
if (!Val) {
|
||
if (LastEnumConst) {
|
||
// Assign the last value + 1.
|
||
EnumVal = LastEnumConst->getInitVal();
|
||
++EnumVal;
|
||
|
||
// Check for overflow on increment.
|
||
if (EnumVal < LastEnumConst->getInitVal())
|
||
Diag(IdLoc, diag::warn_enum_value_overflow);
|
||
|
||
EltTy = LastEnumConst->getType();
|
||
} else {
|
||
// First value, set to zero.
|
||
EltTy = Context.IntTy;
|
||
EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
|
||
}
|
||
}
|
||
|
||
EnumConstantDecl *New =
|
||
EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
|
||
Val, EnumVal,
|
||
LastEnumConst);
|
||
|
||
// Register this decl in the current scope stack.
|
||
PushOnScopeChains(New, S);
|
||
return New;
|
||
}
|
||
|
||
// FIXME: For consistency with ActOnFields(), we should have the parser
|
||
// pass in the source location for the left/right braces.
|
||
void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
|
||
DeclTy **Elements, unsigned NumElements) {
|
||
EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
|
||
|
||
if (Enum && Enum->isDefinition()) {
|
||
// Diagnose code like:
|
||
// enum e0 {
|
||
// E0 = sizeof(enum e0 { E1 })
|
||
// };
|
||
Diag(Enum->getLocation(), diag::err_nested_redefinition)
|
||
<< Enum->getDeclName();
|
||
Diag(EnumLoc, diag::note_previous_definition);
|
||
Enum->setInvalidDecl();
|
||
return;
|
||
}
|
||
// TODO: If the result value doesn't fit in an int, it must be a long or long
|
||
// long value. ISO C does not support this, but GCC does as an extension,
|
||
// emit a warning.
|
||
unsigned IntWidth = Context.Target.getIntWidth();
|
||
|
||
// Verify that all the values are okay, compute the size of the values, and
|
||
// reverse the list.
|
||
unsigned NumNegativeBits = 0;
|
||
unsigned NumPositiveBits = 0;
|
||
|
||
// Keep track of whether all elements have type int.
|
||
bool AllElementsInt = true;
|
||
|
||
EnumConstantDecl *EltList = 0;
|
||
for (unsigned i = 0; i != NumElements; ++i) {
|
||
EnumConstantDecl *ECD =
|
||
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
|
||
if (!ECD) continue; // Already issued a diagnostic.
|
||
|
||
// If the enum value doesn't fit in an int, emit an extension warning.
|
||
const llvm::APSInt &InitVal = ECD->getInitVal();
|
||
assert(InitVal.getBitWidth() >= IntWidth &&
|
||
"Should have promoted value to int");
|
||
if (InitVal.getBitWidth() > IntWidth) {
|
||
llvm::APSInt V(InitVal);
|
||
V.trunc(IntWidth);
|
||
V.extend(InitVal.getBitWidth());
|
||
if (V != InitVal)
|
||
Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
|
||
<< InitVal.toString(10);
|
||
}
|
||
|
||
// Keep track of the size of positive and negative values.
|
||
if (InitVal.isUnsigned() || InitVal.isNonNegative())
|
||
NumPositiveBits = std::max(NumPositiveBits,
|
||
(unsigned)InitVal.getActiveBits());
|
||
else
|
||
NumNegativeBits = std::max(NumNegativeBits,
|
||
(unsigned)InitVal.getMinSignedBits());
|
||
|
||
// Keep track of whether every enum element has type int (very commmon).
|
||
if (AllElementsInt)
|
||
AllElementsInt = ECD->getType() == Context.IntTy;
|
||
|
||
ECD->setNextDeclarator(EltList);
|
||
EltList = ECD;
|
||
}
|
||
|
||
// Figure out the type that should be used for this enum.
|
||
// FIXME: Support attribute(packed) on enums and -fshort-enums.
|
||
QualType BestType;
|
||
unsigned BestWidth;
|
||
|
||
if (NumNegativeBits) {
|
||
// If there is a negative value, figure out the smallest integer type (of
|
||
// int/long/longlong) that fits.
|
||
if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
|
||
BestType = Context.IntTy;
|
||
BestWidth = IntWidth;
|
||
} else {
|
||
BestWidth = Context.Target.getLongWidth();
|
||
|
||
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
|
||
BestType = Context.LongTy;
|
||
else {
|
||
BestWidth = Context.Target.getLongLongWidth();
|
||
|
||
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
|
||
Diag(Enum->getLocation(), diag::warn_enum_too_large);
|
||
BestType = Context.LongLongTy;
|
||
}
|
||
}
|
||
} else {
|
||
// If there is no negative value, figure out which of uint, ulong, ulonglong
|
||
// fits.
|
||
if (NumPositiveBits <= IntWidth) {
|
||
BestType = Context.UnsignedIntTy;
|
||
BestWidth = IntWidth;
|
||
} else if (NumPositiveBits <=
|
||
(BestWidth = Context.Target.getLongWidth())) {
|
||
BestType = Context.UnsignedLongTy;
|
||
} else {
|
||
BestWidth = Context.Target.getLongLongWidth();
|
||
assert(NumPositiveBits <= BestWidth &&
|
||
"How could an initializer get larger than ULL?");
|
||
BestType = Context.UnsignedLongLongTy;
|
||
}
|
||
}
|
||
|
||
// Loop over all of the enumerator constants, changing their types to match
|
||
// the type of the enum if needed.
|
||
for (unsigned i = 0; i != NumElements; ++i) {
|
||
EnumConstantDecl *ECD =
|
||
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
|
||
if (!ECD) continue; // Already issued a diagnostic.
|
||
|
||
// Standard C says the enumerators have int type, but we allow, as an
|
||
// extension, the enumerators to be larger than int size. If each
|
||
// enumerator value fits in an int, type it as an int, otherwise type it the
|
||
// same as the enumerator decl itself. This means that in "enum { X = 1U }"
|
||
// that X has type 'int', not 'unsigned'.
|
||
if (ECD->getType() == Context.IntTy) {
|
||
// Make sure the init value is signed.
|
||
llvm::APSInt IV = ECD->getInitVal();
|
||
IV.setIsSigned(true);
|
||
ECD->setInitVal(IV);
|
||
continue; // Already int type.
|
||
}
|
||
|
||
// Determine whether the value fits into an int.
|
||
llvm::APSInt InitVal = ECD->getInitVal();
|
||
bool FitsInInt;
|
||
if (InitVal.isUnsigned() || !InitVal.isNegative())
|
||
FitsInInt = InitVal.getActiveBits() < IntWidth;
|
||
else
|
||
FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
|
||
|
||
// If it fits into an integer type, force it. Otherwise force it to match
|
||
// the enum decl type.
|
||
QualType NewTy;
|
||
unsigned NewWidth;
|
||
bool NewSign;
|
||
if (FitsInInt) {
|
||
NewTy = Context.IntTy;
|
||
NewWidth = IntWidth;
|
||
NewSign = true;
|
||
} else if (ECD->getType() == BestType) {
|
||
// Already the right type!
|
||
continue;
|
||
} else {
|
||
NewTy = BestType;
|
||
NewWidth = BestWidth;
|
||
NewSign = BestType->isSignedIntegerType();
|
||
}
|
||
|
||
// Adjust the APSInt value.
|
||
InitVal.extOrTrunc(NewWidth);
|
||
InitVal.setIsSigned(NewSign);
|
||
ECD->setInitVal(InitVal);
|
||
|
||
// Adjust the Expr initializer and type.
|
||
ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
|
||
/*isLvalue=*/false));
|
||
ECD->setType(NewTy);
|
||
}
|
||
|
||
Enum->defineElements(EltList, BestType);
|
||
Consumer.HandleTagDeclDefinition(Enum);
|
||
}
|
||
|
||
Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
|
||
ExprTy *expr) {
|
||
StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
|
||
|
||
return FileScopeAsmDecl::Create(Context, Loc, AsmString);
|
||
}
|
||
|
||
Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
|
||
SourceLocation LBrace,
|
||
SourceLocation RBrace,
|
||
const char *Lang,
|
||
unsigned StrSize,
|
||
DeclTy *D) {
|
||
LinkageSpecDecl::LanguageIDs Language;
|
||
Decl *dcl = static_cast<Decl *>(D);
|
||
if (strncmp(Lang, "\"C\"", StrSize) == 0)
|
||
Language = LinkageSpecDecl::lang_c;
|
||
else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
|
||
Language = LinkageSpecDecl::lang_cxx;
|
||
else {
|
||
Diag(Loc, diag::err_bad_language);
|
||
return 0;
|
||
}
|
||
|
||
// FIXME: Add all the various semantics of linkage specifications
|
||
return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
|
||
}
|
||
|
||
void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
|
||
ExprTy *alignment, SourceLocation PragmaLoc,
|
||
SourceLocation LParenLoc, SourceLocation RParenLoc) {
|
||
Expr *Alignment = static_cast<Expr *>(alignment);
|
||
|
||
// If specified then alignment must be a "small" power of two.
|
||
unsigned AlignmentVal = 0;
|
||
if (Alignment) {
|
||
llvm::APSInt Val;
|
||
if (!Alignment->isIntegerConstantExpr(Val, Context) ||
|
||
!Val.isPowerOf2() ||
|
||
Val.getZExtValue() > 16) {
|
||
Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
|
||
delete Alignment;
|
||
return; // Ignore
|
||
}
|
||
|
||
AlignmentVal = (unsigned) Val.getZExtValue();
|
||
}
|
||
|
||
switch (Kind) {
|
||
case Action::PPK_Default: // pack([n])
|
||
PackContext.setAlignment(AlignmentVal);
|
||
break;
|
||
|
||
case Action::PPK_Show: // pack(show)
|
||
// Show the current alignment, making sure to show the right value
|
||
// for the default.
|
||
AlignmentVal = PackContext.getAlignment();
|
||
// FIXME: This should come from the target.
|
||
if (AlignmentVal == 0)
|
||
AlignmentVal = 8;
|
||
Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
|
||
break;
|
||
|
||
case Action::PPK_Push: // pack(push [, id] [, [n])
|
||
PackContext.push(Name);
|
||
// Set the new alignment if specified.
|
||
if (Alignment)
|
||
PackContext.setAlignment(AlignmentVal);
|
||
break;
|
||
|
||
case Action::PPK_Pop: // pack(pop [, id] [, n])
|
||
// MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
|
||
// "#pragma pack(pop, identifier, n) is undefined"
|
||
if (Alignment && Name)
|
||
Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
|
||
|
||
// Do the pop.
|
||
if (!PackContext.pop(Name)) {
|
||
// If a name was specified then failure indicates the name
|
||
// wasn't found. Otherwise failure indicates the stack was
|
||
// empty.
|
||
Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
|
||
<< (Name ? "no record matching name" : "stack empty");
|
||
|
||
// FIXME: Warn about popping named records as MSVC does.
|
||
} else {
|
||
// Pop succeeded, set the new alignment if specified.
|
||
if (Alignment)
|
||
PackContext.setAlignment(AlignmentVal);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
assert(0 && "Invalid #pragma pack kind.");
|
||
}
|
||
}
|
||
|
||
bool PragmaPackStack::pop(IdentifierInfo *Name) {
|
||
if (Stack.empty())
|
||
return false;
|
||
|
||
// If name is empty just pop top.
|
||
if (!Name) {
|
||
Alignment = Stack.back().first;
|
||
Stack.pop_back();
|
||
return true;
|
||
}
|
||
|
||
// Otherwise, find the named record.
|
||
for (unsigned i = Stack.size(); i != 0; ) {
|
||
--i;
|
||
if (Stack[i].second == Name) {
|
||
// Found it, pop up to and including this record.
|
||
Alignment = Stack[i].first;
|
||
Stack.erase(Stack.begin() + i, Stack.end());
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|