forked from OSchip/llvm-project
403 lines
16 KiB
C++
403 lines
16 KiB
C++
//===- AllReduceLowering.cpp - Implementation of all-reduce lowering ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements in-dialect lowering of the all-reduce op to a block of
|
|
// simpler instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/GPU/GPUDialect.h"
|
|
#include "mlir/Dialect/GPU/Passes.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
struct GpuAllReduceRewriter {
|
|
using AccumulatorFactory = std::function<Value(Value, Value)>;
|
|
|
|
GpuAllReduceRewriter(gpu::GPUFuncOp funcOp_, gpu::AllReduceOp reduceOp_,
|
|
PatternRewriter &rewriter_)
|
|
: funcOp(funcOp_), reduceOp(reduceOp_), rewriter(rewriter_),
|
|
loc(reduceOp.getLoc()), valueType(reduceOp.value().getType()),
|
|
indexType(IndexType::get(reduceOp.getContext())),
|
|
int32Type(IntegerType::get(/*width=*/32, reduceOp.getContext())) {}
|
|
|
|
/// Creates an all_reduce across the workgroup.
|
|
///
|
|
/// First reduce the elements within a subgroup. The first invocation of each
|
|
/// subgroup writes the intermediate result to workgroup memory. After
|
|
/// synchronizing the workgroup, the first subgroup reduces the values from
|
|
/// workgroup memory. The result is broadcasted to all invocations through
|
|
/// workgroup memory.
|
|
///
|
|
/// %subgroup_reduce = `createSubgroupReduce(%operand)`
|
|
/// cond_br %is_first_lane, ^then1, ^continue1
|
|
/// ^then1:
|
|
/// store %subgroup_reduce, %workgroup_buffer[%subgroup_id]
|
|
/// br ^continue1
|
|
/// ^continue1:
|
|
/// gpu.barrier
|
|
/// %is_valid_subgroup = cmpi "slt" %invocation_idx, %num_subgroups
|
|
/// cond_br %is_valid_subgroup, ^then2, ^continue2
|
|
/// ^then2:
|
|
/// %partial_reduce = load %workgroup_buffer[%invocation_idx]
|
|
/// %all_reduce = `createSubgroupReduce(%partial_reduce)`
|
|
/// store %all_reduce, %workgroup_buffer[%zero]
|
|
/// llvm.br ^continue2
|
|
/// ^continue2:
|
|
/// gpu.barrier
|
|
/// %result = load %workgroup_buffer[%zero]
|
|
/// return %result
|
|
///
|
|
void rewrite() {
|
|
rewriter.setInsertionPoint(reduceOp);
|
|
|
|
// Compute linear invocation index and workgroup size.
|
|
Value dimX = getDimOp<gpu::BlockDimOp>("x");
|
|
Value dimY = getDimOp<gpu::BlockDimOp>("y");
|
|
Value dimZ = getDimOp<gpu::BlockDimOp>("z");
|
|
Value tidX = getDimOp<gpu::ThreadIdOp>("x");
|
|
Value tidY = getDimOp<gpu::ThreadIdOp>("y");
|
|
Value tidZ = getDimOp<gpu::ThreadIdOp>("z");
|
|
Value tmp1 = create<MulIOp>(int32Type, tidZ, dimY);
|
|
Value tmp2 = create<AddIOp>(int32Type, tmp1, tidY);
|
|
Value tmp3 = create<MulIOp>(int32Type, tmp2, dimX);
|
|
Value tmp4 = create<MulIOp>(int32Type, dimX, dimY);
|
|
Value invocationIdx = create<AddIOp>(int32Type, tmp3, tidX);
|
|
Value workgroupSize = create<MulIOp>(int32Type, tmp4, dimZ);
|
|
|
|
// Compute lane id (invocation id withing the subgroup).
|
|
Value subgroupMask = create<ConstantIntOp>(kSubgroupSize - 1, int32Type);
|
|
Value laneId = create<AndOp>(invocationIdx, subgroupMask);
|
|
Value isFirstLane = create<CmpIOp>(CmpIPredicate::eq, laneId,
|
|
create<ConstantIntOp>(0, int32Type));
|
|
|
|
Value numThreadsWithSmallerSubgroupId =
|
|
create<SubIOp>(invocationIdx, laneId);
|
|
// The number of active invocations starting from the current subgroup.
|
|
// The consumers do not require the value to be clamped to the size of the
|
|
// subgroup.
|
|
Value activeWidth =
|
|
create<SubIOp>(workgroupSize, numThreadsWithSmallerSubgroupId);
|
|
|
|
// Create factory for op which accumulates to values.
|
|
AccumulatorFactory accumFactory = getFactory();
|
|
assert(accumFactory && "failed to create accumulator factory");
|
|
|
|
// Reduce elements within each subgroup to produce the intermediate results.
|
|
Value subgroupReduce = createSubgroupReduce(activeWidth, laneId,
|
|
reduceOp.value(), accumFactory);
|
|
|
|
// Add workgroup buffer to parent function for intermediate result.
|
|
Value buffer = createWorkgroupBuffer();
|
|
|
|
// Write the intermediate results to workgroup memory, using the first lane
|
|
// of each subgroup.
|
|
createPredicatedBlock(isFirstLane, [&] {
|
|
Value subgroupId = getDivideBySubgroupSize(invocationIdx);
|
|
Value index = create<IndexCastOp>(indexType, subgroupId);
|
|
create<StoreOp>(subgroupReduce, buffer, index);
|
|
});
|
|
create<gpu::BarrierOp>();
|
|
|
|
// Compute number of active subgroups.
|
|
Value biasedBlockSize =
|
|
create<AddIOp>(int32Type, workgroupSize, subgroupMask);
|
|
Value numSubgroups = getDivideBySubgroupSize(biasedBlockSize);
|
|
Value isValidSubgroup =
|
|
create<CmpIOp>(CmpIPredicate::slt, invocationIdx, numSubgroups);
|
|
|
|
// Use the first numSubgroups invocations to reduce the intermediate results
|
|
// from workgroup memory. The final result is written to workgroup memory
|
|
// again.
|
|
Value zero = create<ConstantIndexOp>(0);
|
|
createPredicatedBlock(isValidSubgroup, [&] {
|
|
Value index = create<IndexCastOp>(indexType, invocationIdx);
|
|
Value value = create<LoadOp>(valueType, buffer, index);
|
|
Value result =
|
|
createSubgroupReduce(numSubgroups, laneId, value, accumFactory);
|
|
create<StoreOp>(result, buffer, zero);
|
|
});
|
|
|
|
// Synchronize workgroup and load result from workgroup memory.
|
|
create<gpu::BarrierOp>();
|
|
Value result = create<LoadOp>(valueType, buffer, zero);
|
|
|
|
rewriter.replaceOp(reduceOp, result);
|
|
}
|
|
|
|
private:
|
|
// Shortcut to create an op from rewriter using loc as the first argument.
|
|
template <typename T, typename... Args> T create(Args... args) {
|
|
return rewriter.create<T>(loc, std::forward<Args>(args)...);
|
|
}
|
|
|
|
// Creates dimension op of type T, with the result casted to int32.
|
|
template <typename T> Value getDimOp(StringRef dimension) {
|
|
Value dim = create<T>(indexType, rewriter.getStringAttr(dimension));
|
|
return create<IndexCastOp>(int32Type, dim);
|
|
}
|
|
|
|
/// Adds type to funcOp's workgroup attributions.
|
|
Value createWorkgroupBuffer() {
|
|
int workgroupMemoryAddressSpace = 3;
|
|
auto bufferType =
|
|
MemRefType::get({kSubgroupSize}, valueType, ArrayRef<AffineMap>{},
|
|
workgroupMemoryAddressSpace);
|
|
return funcOp.addWorkgroupAttribution(bufferType);
|
|
}
|
|
|
|
/// Returns an accumulator factory using either the op attribute or the body
|
|
/// region.
|
|
AccumulatorFactory getFactory() {
|
|
auto &body = reduceOp.body();
|
|
if (!body.empty())
|
|
return getFactory(body);
|
|
auto opAttr = reduceOp.op();
|
|
if (opAttr)
|
|
return getFactory(*opAttr);
|
|
return AccumulatorFactory();
|
|
}
|
|
|
|
/// Returns an accumulator factory that clones the body. The body's entry
|
|
/// block is expected to have 2 arguments. The gpu.yield return the
|
|
/// accumulated value of the same type.
|
|
AccumulatorFactory getFactory(Region &body) {
|
|
return AccumulatorFactory([&](Value lhs, Value rhs) {
|
|
Block *block = rewriter.getInsertionBlock();
|
|
Block *split = rewriter.splitBlock(block, rewriter.getInsertionPoint());
|
|
|
|
// Insert accumulator body between split block.
|
|
BlockAndValueMapping mapping;
|
|
mapping.map(body.front().getArgument(0), lhs);
|
|
mapping.map(body.front().getArgument(1), rhs);
|
|
rewriter.cloneRegionBefore(body, *split->getParent(),
|
|
split->getIterator(), mapping);
|
|
|
|
// Add branch before inserted body, into body.
|
|
block = block->getNextNode();
|
|
create<BranchOp>(block, ValueRange());
|
|
|
|
// Replace all gpu.yield ops with branch out of body.
|
|
for (; block != split; block = block->getNextNode()) {
|
|
Operation *terminator = block->getTerminator();
|
|
if (!isa<gpu::YieldOp>(terminator))
|
|
continue;
|
|
rewriter.setInsertionPointToEnd(block);
|
|
rewriter.replaceOpWithNewOp<BranchOp>(
|
|
terminator, split, ValueRange(terminator->getOperand(0)));
|
|
}
|
|
|
|
// Return accumulator result.
|
|
rewriter.setInsertionPointToStart(split);
|
|
return split->addArgument(lhs.getType());
|
|
});
|
|
}
|
|
|
|
/// Returns an accumulator factory that creates an op specified by opName.
|
|
AccumulatorFactory getFactory(StringRef opName) {
|
|
bool isFloatingPoint = valueType.isa<FloatType>();
|
|
if (opName == "add")
|
|
return isFloatingPoint ? getFactory<AddFOp>() : getFactory<AddIOp>();
|
|
if (opName == "mul")
|
|
return isFloatingPoint ? getFactory<MulFOp>() : getFactory<MulIOp>();
|
|
if (opName == "and") {
|
|
return getFactory<AndOp>();
|
|
}
|
|
if (opName == "or") {
|
|
return getFactory<OrOp>();
|
|
}
|
|
if (opName == "xor") {
|
|
return getFactory<XOrOp>();
|
|
}
|
|
if (opName == "max") {
|
|
return isFloatingPoint
|
|
? getCmpFactory<CmpFOp, CmpFPredicate, CmpFPredicate::UGT>()
|
|
: getCmpFactory<CmpIOp, CmpIPredicate, CmpIPredicate::ugt>();
|
|
}
|
|
if (opName == "min") {
|
|
return isFloatingPoint
|
|
? getCmpFactory<CmpFOp, CmpFPredicate, CmpFPredicate::ULT>()
|
|
: getCmpFactory<CmpIOp, CmpIPredicate, CmpIPredicate::ult>();
|
|
}
|
|
return AccumulatorFactory();
|
|
}
|
|
|
|
/// Returns an accumulator factory that creates an op of type T.
|
|
template <typename T> AccumulatorFactory getFactory() {
|
|
return [&](Value lhs, Value rhs) {
|
|
return create<T>(lhs.getType(), lhs, rhs);
|
|
};
|
|
}
|
|
|
|
/// Returns an accumulator for comparison such as min, max. T is the type
|
|
/// of the compare op.
|
|
template <typename T, typename PredicateEnum, PredicateEnum predicate>
|
|
AccumulatorFactory getCmpFactory() const {
|
|
return [&](Value lhs, Value rhs) {
|
|
Value cmp = rewriter.create<T>(loc, predicate, lhs, rhs);
|
|
return rewriter.create<SelectOp>(loc, cmp, lhs, rhs);
|
|
};
|
|
}
|
|
|
|
/// Creates an if-block skeleton and calls the two factories to generate the
|
|
/// ops in the `then` and `else` block..
|
|
///
|
|
/// llvm.cond_br %condition, ^then, ^continue
|
|
/// ^then:
|
|
/// %then_operands = `thenOpsFactory()`
|
|
/// llvm.br ^continue(%then_operands)
|
|
/// ^else:
|
|
/// %else_operands = `elseOpsFactory()`
|
|
/// llvm.br ^continue(%else_operands)
|
|
/// ^continue(%block_operands):
|
|
///
|
|
template <typename ThenOpsFactory, typename ElseOpsFactory>
|
|
void createIf(Value condition, ThenOpsFactory &&thenOpsFactory,
|
|
ElseOpsFactory &&elseOpsFactory) {
|
|
Block *currentBlock = rewriter.getInsertionBlock();
|
|
auto currentPoint = rewriter.getInsertionPoint();
|
|
|
|
Block *thenBlock = rewriter.splitBlock(currentBlock, currentPoint);
|
|
Block *elseBlock = rewriter.splitBlock(thenBlock, thenBlock->begin());
|
|
Block *continueBlock = rewriter.splitBlock(elseBlock, elseBlock->begin());
|
|
|
|
rewriter.setInsertionPointToEnd(currentBlock);
|
|
create<CondBranchOp>(condition, thenBlock,
|
|
/*trueOperands=*/ArrayRef<Value>(), elseBlock,
|
|
/*falseOperands=*/ArrayRef<Value>());
|
|
|
|
rewriter.setInsertionPointToStart(thenBlock);
|
|
auto thenOperands = thenOpsFactory();
|
|
create<BranchOp>(continueBlock, thenOperands);
|
|
|
|
rewriter.setInsertionPointToStart(elseBlock);
|
|
auto elseOperands = elseOpsFactory();
|
|
create<BranchOp>(continueBlock, elseOperands);
|
|
|
|
assert(thenOperands.size() == elseOperands.size());
|
|
rewriter.setInsertionPointToStart(continueBlock);
|
|
for (auto operand : thenOperands)
|
|
continueBlock->addArgument(operand.getType());
|
|
}
|
|
|
|
/// Shortcut for createIf with empty else block and no block operands.
|
|
template <typename Factory>
|
|
void createPredicatedBlock(Value condition, Factory &&predicatedOpsFactory) {
|
|
static_assert(std::is_same<decltype(predicatedOpsFactory()), void>::value,
|
|
"predicatedOpsFactory should not return any value");
|
|
createIf(
|
|
condition,
|
|
[&] {
|
|
predicatedOpsFactory();
|
|
return ArrayRef<Value>();
|
|
},
|
|
[&] { return ArrayRef<Value>(); });
|
|
}
|
|
|
|
/// Creates a reduction across the first activeWidth lanes of a subgroup, or
|
|
/// the entire subgroup if activeWidth is larger than the subgroup width.
|
|
/// The first lane returns the result, all others return values are undefined.
|
|
Value createSubgroupReduce(Value activeWidth, Value laneId, Value operand,
|
|
AccumulatorFactory &accumFactory) {
|
|
Value subgroupSize = create<ConstantIntOp>(kSubgroupSize, int32Type);
|
|
Value isPartialSubgroup =
|
|
create<CmpIOp>(CmpIPredicate::slt, activeWidth, subgroupSize);
|
|
std::array<Type, 2> shuffleType = {valueType, rewriter.getI1Type()};
|
|
auto xorAttr = rewriter.getStringAttr("xor");
|
|
|
|
createIf(
|
|
isPartialSubgroup,
|
|
// Generate reduction over a (potentially) partial subgroup.
|
|
[&] {
|
|
Value value = operand;
|
|
// Repeatedly shuffle value from 'laneId ^ i' and accumulate if source
|
|
// lane is within the active range. The accumulated value is available
|
|
// in the first lane.
|
|
for (int i = 1; i < kSubgroupSize; i <<= 1) {
|
|
Value offset = create<ConstantIntOp>(i, int32Type);
|
|
auto shuffleOp = create<gpu::ShuffleOp>(shuffleType, value, offset,
|
|
activeWidth, xorAttr);
|
|
// Skip the accumulation if the shuffle op read from a lane outside
|
|
// of the active range.
|
|
createIf(
|
|
shuffleOp.getResult(1),
|
|
[&] {
|
|
return SmallVector<Value, 1>{
|
|
accumFactory(value, shuffleOp.getResult(0))};
|
|
},
|
|
[&] { return llvm::makeArrayRef(value); });
|
|
value = rewriter.getInsertionBlock()->getArgument(0);
|
|
}
|
|
return SmallVector<Value, 1>{value};
|
|
},
|
|
// Generate a reduction over the entire subgroup. This is a
|
|
// specialization of the above reduction with unconditional
|
|
// accumulation.
|
|
[&] {
|
|
Value value = operand;
|
|
for (int i = 1; i < kSubgroupSize; i <<= 1) {
|
|
Value offset = create<ConstantIntOp>(i, int32Type);
|
|
auto shuffleOp = create<gpu::ShuffleOp>(shuffleType, value, offset,
|
|
subgroupSize, xorAttr);
|
|
value = accumFactory(value, shuffleOp.getResult(0));
|
|
}
|
|
return SmallVector<Value, 1>{value};
|
|
});
|
|
return rewriter.getInsertionBlock()->getArgument(0);
|
|
}
|
|
|
|
/// Returns value divided by the subgroup size (i.e. 32).
|
|
Value getDivideBySubgroupSize(Value value) {
|
|
Value subgroupSize = create<ConstantIntOp>(kSubgroupSize, int32Type);
|
|
return create<SignedDivIOp>(int32Type, value, subgroupSize);
|
|
}
|
|
|
|
gpu::GPUFuncOp funcOp;
|
|
gpu::AllReduceOp reduceOp;
|
|
PatternRewriter &rewriter;
|
|
|
|
Location loc;
|
|
Type valueType;
|
|
Type indexType;
|
|
Type int32Type;
|
|
|
|
static constexpr int kSubgroupSize = 32;
|
|
};
|
|
|
|
struct GpuAllReduceConversion : public RewritePattern {
|
|
explicit GpuAllReduceConversion(MLIRContext *context)
|
|
: RewritePattern(gpu::GPUFuncOp::getOperationName(), 1, context) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto funcOp = cast<gpu::GPUFuncOp>(op);
|
|
auto callback = [&](gpu::AllReduceOp reduceOp) {
|
|
GpuAllReduceRewriter(funcOp, reduceOp, rewriter).rewrite();
|
|
// Performing a rewrite invalidates the walk iterator. Report interrupt
|
|
// so that we can start a new walk until all all_reduce ops are replaced.
|
|
return WalkResult::interrupt();
|
|
};
|
|
while (funcOp.walk(callback).wasInterrupted()) {
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::populateGpuRewritePatterns(MLIRContext *context,
|
|
OwningRewritePatternList &patterns) {
|
|
patterns.insert<GpuAllReduceConversion>(context);
|
|
}
|