llvm-project/llvm/lib/Analysis/DataStructure/DataStructureOpt.cpp

103 lines
3.7 KiB
C++

//===- DataStructureOpt.cpp - Data Structure Analysis Based Optimizations -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses DSA to a series of simple optimizations, like marking
// unwritten global variables 'constant'.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Module.h"
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
namespace {
Statistic<>
NumGlobalsConstanted("ds-opt", "Number of globals marked constant");
Statistic<>
NumGlobalsIsolated("ds-opt", "Number of globals with references dropped");
class DSOpt : public ModulePass {
TDDataStructures *TD;
public:
bool runOnModule(Module &M) {
TD = &getAnalysis<TDDataStructures>();
bool Changed = OptimizeGlobals(M);
return Changed;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TDDataStructures>(); // Uses TD Datastructures
AU.addPreserved<LocalDataStructures>(); // Preserves local...
AU.addPreserved<TDDataStructures>(); // Preserves bu...
AU.addPreserved<BUDataStructures>(); // Preserves td...
}
private:
bool OptimizeGlobals(Module &M);
};
RegisterPass<DSOpt> X("ds-opt", "DSA-based simple optimizations");
}
ModulePass *llvm::createDSOptPass() { return new DSOpt(); }
/// OptimizeGlobals - This method uses information taken from DSA to optimize
/// global variables.
///
bool DSOpt::OptimizeGlobals(Module &M) {
DSGraph &GG = TD->getGlobalsGraph();
const DSGraph::ScalarMapTy &SM = GG.getScalarMap();
bool Changed = false;
for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
if (!I->isExternal()) { // Loop over all of the non-external globals...
// Look up the node corresponding to this global, if it exists.
DSNode *GNode = 0;
DSGraph::ScalarMapTy::const_iterator SMI = SM.find(I);
if (SMI != SM.end()) GNode = SMI->second.getNode();
if (GNode == 0 && I->hasInternalLinkage()) {
// If there is no entry in the scalar map for this global, it was never
// referenced in the program. If it has internal linkage, that means we
// can delete it. We don't ACTUALLY want to delete the global, just
// remove anything that references the global: later passes will take
// care of nuking it.
if (!I->use_empty()) {
I->replaceAllUsesWith(Constant::getNullValue((Type*)I->getType()));
++NumGlobalsIsolated;
}
} else if (GNode && GNode->isComplete()) {
// If the node has not been read or written, and it is not externally
// visible, kill any references to it so it can be DCE'd.
if (!GNode->isModified() && !GNode->isRead() &&I->hasInternalLinkage()){
if (!I->use_empty()) {
I->replaceAllUsesWith(Constant::getNullValue((Type*)I->getType()));
++NumGlobalsIsolated;
}
}
// We expect that there will almost always be a node for this global.
// If there is, and the node doesn't have the M bit set, we can set the
// 'constant' bit on the global.
if (!GNode->isModified() && !I->isConstant()) {
I->setConstant(true);
++NumGlobalsConstanted;
Changed = true;
}
}
}
return Changed;
}