llvm-project/llvm/lib/CodeGen/MIRParser/MIRParser.cpp

981 lines
35 KiB
C++

//===- MIRParser.cpp - MIR serialization format parser implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the class that parses the optional LLVM IR and machine
// functions that are stored in MIR files.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MIRParser/MIRParser.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Target/TargetMachine.h"
#include <memory>
using namespace llvm;
namespace llvm {
/// This class implements the parsing of LLVM IR that's embedded inside a MIR
/// file.
class MIRParserImpl {
SourceMgr SM;
yaml::Input In;
StringRef Filename;
LLVMContext &Context;
SlotMapping IRSlots;
std::unique_ptr<PerTargetMIParsingState> Target;
/// True when the MIR file doesn't have LLVM IR. Dummy IR functions are
/// created and inserted into the given module when this is true.
bool NoLLVMIR = false;
/// True when a well formed MIR file does not contain any MIR/machine function
/// parts.
bool NoMIRDocuments = false;
std::function<void(Function &)> ProcessIRFunction;
public:
MIRParserImpl(std::unique_ptr<MemoryBuffer> Contents, StringRef Filename,
LLVMContext &Context,
std::function<void(Function &)> ProcessIRFunction);
void reportDiagnostic(const SMDiagnostic &Diag);
/// Report an error with the given message at unknown location.
///
/// Always returns true.
bool error(const Twine &Message);
/// Report an error with the given message at the given location.
///
/// Always returns true.
bool error(SMLoc Loc, const Twine &Message);
/// Report a given error with the location translated from the location in an
/// embedded string literal to a location in the MIR file.
///
/// Always returns true.
bool error(const SMDiagnostic &Error, SMRange SourceRange);
/// Try to parse the optional LLVM module and the machine functions in the MIR
/// file.
///
/// Return null if an error occurred.
std::unique_ptr<Module>
parseIRModule(DataLayoutCallbackTy DataLayoutCallback);
/// Create an empty function with the given name.
Function *createDummyFunction(StringRef Name, Module &M);
bool parseMachineFunctions(Module &M, MachineModuleInfo &MMI);
/// Parse the machine function in the current YAML document.
///
///
/// Return true if an error occurred.
bool parseMachineFunction(Module &M, MachineModuleInfo &MMI);
/// Initialize the machine function to the state that's described in the MIR
/// file.
///
/// Return true if error occurred.
bool initializeMachineFunction(const yaml::MachineFunction &YamlMF,
MachineFunction &MF);
bool parseRegisterInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF);
bool setupRegisterInfo(const PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF);
bool initializeFrameInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF);
bool initializeCallSiteInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF);
bool parseCalleeSavedRegister(PerFunctionMIParsingState &PFS,
std::vector<CalleeSavedInfo> &CSIInfo,
const yaml::StringValue &RegisterSource,
bool IsRestored, int FrameIdx);
template <typename T>
bool parseStackObjectsDebugInfo(PerFunctionMIParsingState &PFS,
const T &Object,
int FrameIdx);
bool initializeConstantPool(PerFunctionMIParsingState &PFS,
MachineConstantPool &ConstantPool,
const yaml::MachineFunction &YamlMF);
bool initializeJumpTableInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineJumpTable &YamlJTI);
private:
bool parseMDNode(PerFunctionMIParsingState &PFS, MDNode *&Node,
const yaml::StringValue &Source);
bool parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB,
const yaml::StringValue &Source);
/// Return a MIR diagnostic converted from an MI string diagnostic.
SMDiagnostic diagFromMIStringDiag(const SMDiagnostic &Error,
SMRange SourceRange);
/// Return a MIR diagnostic converted from a diagnostic located in a YAML
/// block scalar string.
SMDiagnostic diagFromBlockStringDiag(const SMDiagnostic &Error,
SMRange SourceRange);
void computeFunctionProperties(MachineFunction &MF);
};
} // end namespace llvm
static void handleYAMLDiag(const SMDiagnostic &Diag, void *Context) {
reinterpret_cast<MIRParserImpl *>(Context)->reportDiagnostic(Diag);
}
MIRParserImpl::MIRParserImpl(std::unique_ptr<MemoryBuffer> Contents,
StringRef Filename, LLVMContext &Context,
std::function<void(Function &)> Callback)
: SM(),
In(SM.getMemoryBuffer(SM.AddNewSourceBuffer(std::move(Contents), SMLoc()))
->getBuffer(),
nullptr, handleYAMLDiag, this),
Filename(Filename), Context(Context), ProcessIRFunction(Callback) {
In.setContext(&In);
}
bool MIRParserImpl::error(const Twine &Message) {
Context.diagnose(DiagnosticInfoMIRParser(
DS_Error, SMDiagnostic(Filename, SourceMgr::DK_Error, Message.str())));
return true;
}
bool MIRParserImpl::error(SMLoc Loc, const Twine &Message) {
Context.diagnose(DiagnosticInfoMIRParser(
DS_Error, SM.GetMessage(Loc, SourceMgr::DK_Error, Message)));
return true;
}
bool MIRParserImpl::error(const SMDiagnostic &Error, SMRange SourceRange) {
assert(Error.getKind() == SourceMgr::DK_Error && "Expected an error");
reportDiagnostic(diagFromMIStringDiag(Error, SourceRange));
return true;
}
void MIRParserImpl::reportDiagnostic(const SMDiagnostic &Diag) {
DiagnosticSeverity Kind;
switch (Diag.getKind()) {
case SourceMgr::DK_Error:
Kind = DS_Error;
break;
case SourceMgr::DK_Warning:
Kind = DS_Warning;
break;
case SourceMgr::DK_Note:
Kind = DS_Note;
break;
case SourceMgr::DK_Remark:
llvm_unreachable("remark unexpected");
break;
}
Context.diagnose(DiagnosticInfoMIRParser(Kind, Diag));
}
std::unique_ptr<Module>
MIRParserImpl::parseIRModule(DataLayoutCallbackTy DataLayoutCallback) {
if (!In.setCurrentDocument()) {
if (In.error())
return nullptr;
// Create an empty module when the MIR file is empty.
NoMIRDocuments = true;
auto M = std::make_unique<Module>(Filename, Context);
if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
M->setDataLayout(*LayoutOverride);
return M;
}
std::unique_ptr<Module> M;
// Parse the block scalar manually so that we can return unique pointer
// without having to go trough YAML traits.
if (const auto *BSN =
dyn_cast_or_null<yaml::BlockScalarNode>(In.getCurrentNode())) {
SMDiagnostic Error;
M = parseAssembly(MemoryBufferRef(BSN->getValue(), Filename), Error,
Context, &IRSlots, DataLayoutCallback);
if (!M) {
reportDiagnostic(diagFromBlockStringDiag(Error, BSN->getSourceRange()));
return nullptr;
}
In.nextDocument();
if (!In.setCurrentDocument())
NoMIRDocuments = true;
} else {
// Create an new, empty module.
M = std::make_unique<Module>(Filename, Context);
if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
M->setDataLayout(*LayoutOverride);
NoLLVMIR = true;
}
return M;
}
bool MIRParserImpl::parseMachineFunctions(Module &M, MachineModuleInfo &MMI) {
if (NoMIRDocuments)
return false;
// Parse the machine functions.
do {
if (parseMachineFunction(M, MMI))
return true;
In.nextDocument();
} while (In.setCurrentDocument());
return false;
}
Function *MIRParserImpl::createDummyFunction(StringRef Name, Module &M) {
auto &Context = M.getContext();
Function *F =
Function::Create(FunctionType::get(Type::getVoidTy(Context), false),
Function::ExternalLinkage, Name, M);
BasicBlock *BB = BasicBlock::Create(Context, "entry", F);
new UnreachableInst(Context, BB);
if (ProcessIRFunction)
ProcessIRFunction(*F);
return F;
}
bool MIRParserImpl::parseMachineFunction(Module &M, MachineModuleInfo &MMI) {
// Parse the yaml.
yaml::MachineFunction YamlMF;
yaml::EmptyContext Ctx;
const LLVMTargetMachine &TM = MMI.getTarget();
YamlMF.MachineFuncInfo = std::unique_ptr<yaml::MachineFunctionInfo>(
TM.createDefaultFuncInfoYAML());
yaml::yamlize(In, YamlMF, false, Ctx);
if (In.error())
return true;
// Search for the corresponding IR function.
StringRef FunctionName = YamlMF.Name;
Function *F = M.getFunction(FunctionName);
if (!F) {
if (NoLLVMIR) {
F = createDummyFunction(FunctionName, M);
} else {
return error(Twine("function '") + FunctionName +
"' isn't defined in the provided LLVM IR");
}
}
if (MMI.getMachineFunction(*F) != nullptr)
return error(Twine("redefinition of machine function '") + FunctionName +
"'");
// Create the MachineFunction.
MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
if (initializeMachineFunction(YamlMF, MF))
return true;
return false;
}
static bool isSSA(const MachineFunction &MF) {
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
unsigned Reg = Register::index2VirtReg(I);
if (!MRI.hasOneDef(Reg) && !MRI.def_empty(Reg))
return false;
}
return true;
}
void MIRParserImpl::computeFunctionProperties(MachineFunction &MF) {
MachineFunctionProperties &Properties = MF.getProperties();
bool HasPHI = false;
bool HasInlineAsm = false;
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (MI.isPHI())
HasPHI = true;
if (MI.isInlineAsm())
HasInlineAsm = true;
}
}
if (!HasPHI)
Properties.set(MachineFunctionProperties::Property::NoPHIs);
MF.setHasInlineAsm(HasInlineAsm);
if (isSSA(MF))
Properties.set(MachineFunctionProperties::Property::IsSSA);
else
Properties.reset(MachineFunctionProperties::Property::IsSSA);
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (MRI.getNumVirtRegs() == 0)
Properties.set(MachineFunctionProperties::Property::NoVRegs);
}
bool MIRParserImpl::initializeCallSiteInfo(
PerFunctionMIParsingState &PFS, const yaml::MachineFunction &YamlMF) {
MachineFunction &MF = PFS.MF;
SMDiagnostic Error;
const LLVMTargetMachine &TM = MF.getTarget();
for (auto YamlCSInfo : YamlMF.CallSitesInfo) {
yaml::CallSiteInfo::MachineInstrLoc MILoc = YamlCSInfo.CallLocation;
if (MILoc.BlockNum >= MF.size())
return error(Twine(MF.getName()) +
Twine(" call instruction block out of range.") +
" Unable to reference bb:" + Twine(MILoc.BlockNum));
auto CallB = std::next(MF.begin(), MILoc.BlockNum);
if (MILoc.Offset >= CallB->size())
return error(Twine(MF.getName()) +
Twine(" call instruction offset out of range.") +
" Unable to reference instruction at bb: " +
Twine(MILoc.BlockNum) + " at offset:" + Twine(MILoc.Offset));
auto CallI = std::next(CallB->instr_begin(), MILoc.Offset);
if (!CallI->isCall(MachineInstr::IgnoreBundle))
return error(Twine(MF.getName()) +
Twine(" call site info should reference call "
"instruction. Instruction at bb:") +
Twine(MILoc.BlockNum) + " at offset:" + Twine(MILoc.Offset) +
" is not a call instruction");
MachineFunction::CallSiteInfo CSInfo;
for (auto ArgRegPair : YamlCSInfo.ArgForwardingRegs) {
Register Reg;
if (parseNamedRegisterReference(PFS, Reg, ArgRegPair.Reg.Value, Error))
return error(Error, ArgRegPair.Reg.SourceRange);
CSInfo.emplace_back(Reg, ArgRegPair.ArgNo);
}
if (TM.Options.EmitCallSiteInfo)
MF.addCallArgsForwardingRegs(&*CallI, std::move(CSInfo));
}
if (YamlMF.CallSitesInfo.size() && !TM.Options.EmitCallSiteInfo)
return error(Twine("Call site info provided but not used"));
return false;
}
bool
MIRParserImpl::initializeMachineFunction(const yaml::MachineFunction &YamlMF,
MachineFunction &MF) {
// TODO: Recreate the machine function.
if (Target) {
// Avoid clearing state if we're using the same subtarget again.
Target->setTarget(MF.getSubtarget());
} else {
Target.reset(new PerTargetMIParsingState(MF.getSubtarget()));
}
MF.setAlignment(YamlMF.Alignment.valueOrOne());
MF.setExposesReturnsTwice(YamlMF.ExposesReturnsTwice);
MF.setHasWinCFI(YamlMF.HasWinCFI);
if (YamlMF.Legalized)
MF.getProperties().set(MachineFunctionProperties::Property::Legalized);
if (YamlMF.RegBankSelected)
MF.getProperties().set(
MachineFunctionProperties::Property::RegBankSelected);
if (YamlMF.Selected)
MF.getProperties().set(MachineFunctionProperties::Property::Selected);
if (YamlMF.FailedISel)
MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
PerFunctionMIParsingState PFS(MF, SM, IRSlots, *Target);
if (parseRegisterInfo(PFS, YamlMF))
return true;
if (!YamlMF.Constants.empty()) {
auto *ConstantPool = MF.getConstantPool();
assert(ConstantPool && "Constant pool must be created");
if (initializeConstantPool(PFS, *ConstantPool, YamlMF))
return true;
}
StringRef BlockStr = YamlMF.Body.Value.Value;
SMDiagnostic Error;
SourceMgr BlockSM;
BlockSM.AddNewSourceBuffer(
MemoryBuffer::getMemBuffer(BlockStr, "",/*RequiresNullTerminator=*/false),
SMLoc());
PFS.SM = &BlockSM;
if (parseMachineBasicBlockDefinitions(PFS, BlockStr, Error)) {
reportDiagnostic(
diagFromBlockStringDiag(Error, YamlMF.Body.Value.SourceRange));
return true;
}
// Check Basic Block Section Flags.
if (MF.getTarget().getBBSectionsType() == BasicBlockSection::Labels) {
MF.createBBLabels();
MF.setBBSectionsType(BasicBlockSection::Labels);
} else if (MF.hasBBSections()) {
MF.createBBLabels();
MF.assignBeginEndSections();
}
PFS.SM = &SM;
// Initialize the frame information after creating all the MBBs so that the
// MBB references in the frame information can be resolved.
if (initializeFrameInfo(PFS, YamlMF))
return true;
// Initialize the jump table after creating all the MBBs so that the MBB
// references can be resolved.
if (!YamlMF.JumpTableInfo.Entries.empty() &&
initializeJumpTableInfo(PFS, YamlMF.JumpTableInfo))
return true;
// Parse the machine instructions after creating all of the MBBs so that the
// parser can resolve the MBB references.
StringRef InsnStr = YamlMF.Body.Value.Value;
SourceMgr InsnSM;
InsnSM.AddNewSourceBuffer(
MemoryBuffer::getMemBuffer(InsnStr, "", /*RequiresNullTerminator=*/false),
SMLoc());
PFS.SM = &InsnSM;
if (parseMachineInstructions(PFS, InsnStr, Error)) {
reportDiagnostic(
diagFromBlockStringDiag(Error, YamlMF.Body.Value.SourceRange));
return true;
}
PFS.SM = &SM;
if (setupRegisterInfo(PFS, YamlMF))
return true;
if (YamlMF.MachineFuncInfo) {
const LLVMTargetMachine &TM = MF.getTarget();
// Note this is called after the initial constructor of the
// MachineFunctionInfo based on the MachineFunction, which may depend on the
// IR.
SMRange SrcRange;
if (TM.parseMachineFunctionInfo(*YamlMF.MachineFuncInfo, PFS, Error,
SrcRange)) {
return error(Error, SrcRange);
}
}
// Set the reserved registers after parsing MachineFuncInfo. The target may
// have been recording information used to select the reserved registers
// there.
// FIXME: This is a temporary workaround until the reserved registers can be
// serialized.
MachineRegisterInfo &MRI = MF.getRegInfo();
MRI.freezeReservedRegs(MF);
computeFunctionProperties(MF);
if (initializeCallSiteInfo(PFS, YamlMF))
return false;
MF.getSubtarget().mirFileLoaded(MF);
MF.verify();
return false;
}
bool MIRParserImpl::parseRegisterInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF) {
MachineFunction &MF = PFS.MF;
MachineRegisterInfo &RegInfo = MF.getRegInfo();
assert(RegInfo.tracksLiveness());
if (!YamlMF.TracksRegLiveness)
RegInfo.invalidateLiveness();
SMDiagnostic Error;
// Parse the virtual register information.
for (const auto &VReg : YamlMF.VirtualRegisters) {
VRegInfo &Info = PFS.getVRegInfo(VReg.ID.Value);
if (Info.Explicit)
return error(VReg.ID.SourceRange.Start,
Twine("redefinition of virtual register '%") +
Twine(VReg.ID.Value) + "'");
Info.Explicit = true;
if (StringRef(VReg.Class.Value).equals("_")) {
Info.Kind = VRegInfo::GENERIC;
Info.D.RegBank = nullptr;
} else {
const auto *RC = Target->getRegClass(VReg.Class.Value);
if (RC) {
Info.Kind = VRegInfo::NORMAL;
Info.D.RC = RC;
} else {
const RegisterBank *RegBank = Target->getRegBank(VReg.Class.Value);
if (!RegBank)
return error(
VReg.Class.SourceRange.Start,
Twine("use of undefined register class or register bank '") +
VReg.Class.Value + "'");
Info.Kind = VRegInfo::REGBANK;
Info.D.RegBank = RegBank;
}
}
if (!VReg.PreferredRegister.Value.empty()) {
if (Info.Kind != VRegInfo::NORMAL)
return error(VReg.Class.SourceRange.Start,
Twine("preferred register can only be set for normal vregs"));
if (parseRegisterReference(PFS, Info.PreferredReg,
VReg.PreferredRegister.Value, Error))
return error(Error, VReg.PreferredRegister.SourceRange);
}
}
// Parse the liveins.
for (const auto &LiveIn : YamlMF.LiveIns) {
Register Reg;
if (parseNamedRegisterReference(PFS, Reg, LiveIn.Register.Value, Error))
return error(Error, LiveIn.Register.SourceRange);
Register VReg;
if (!LiveIn.VirtualRegister.Value.empty()) {
VRegInfo *Info;
if (parseVirtualRegisterReference(PFS, Info, LiveIn.VirtualRegister.Value,
Error))
return error(Error, LiveIn.VirtualRegister.SourceRange);
VReg = Info->VReg;
}
RegInfo.addLiveIn(Reg, VReg);
}
// Parse the callee saved registers (Registers that will
// be saved for the caller).
if (YamlMF.CalleeSavedRegisters) {
SmallVector<MCPhysReg, 16> CalleeSavedRegisters;
for (const auto &RegSource : YamlMF.CalleeSavedRegisters.getValue()) {
Register Reg;
if (parseNamedRegisterReference(PFS, Reg, RegSource.Value, Error))
return error(Error, RegSource.SourceRange);
CalleeSavedRegisters.push_back(Reg);
}
RegInfo.setCalleeSavedRegs(CalleeSavedRegisters);
}
return false;
}
bool MIRParserImpl::setupRegisterInfo(const PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF) {
MachineFunction &MF = PFS.MF;
MachineRegisterInfo &MRI = MF.getRegInfo();
bool Error = false;
// Create VRegs
auto populateVRegInfo = [&] (const VRegInfo &Info, Twine Name) {
Register Reg = Info.VReg;
switch (Info.Kind) {
case VRegInfo::UNKNOWN:
error(Twine("Cannot determine class/bank of virtual register ") +
Name + " in function '" + MF.getName() + "'");
Error = true;
break;
case VRegInfo::NORMAL:
MRI.setRegClass(Reg, Info.D.RC);
if (Info.PreferredReg != 0)
MRI.setSimpleHint(Reg, Info.PreferredReg);
break;
case VRegInfo::GENERIC:
break;
case VRegInfo::REGBANK:
MRI.setRegBank(Reg, *Info.D.RegBank);
break;
}
};
for (auto I = PFS.VRegInfosNamed.begin(), E = PFS.VRegInfosNamed.end();
I != E; I++) {
const VRegInfo &Info = *I->second;
populateVRegInfo(Info, Twine(I->first()));
}
for (auto P : PFS.VRegInfos) {
const VRegInfo &Info = *P.second;
populateVRegInfo(Info, Twine(P.first));
}
// Compute MachineRegisterInfo::UsedPhysRegMask
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isRegMask())
continue;
MRI.addPhysRegsUsedFromRegMask(MO.getRegMask());
}
}
}
return Error;
}
bool MIRParserImpl::initializeFrameInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineFunction &YamlMF) {
MachineFunction &MF = PFS.MF;
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
const Function &F = MF.getFunction();
const yaml::MachineFrameInfo &YamlMFI = YamlMF.FrameInfo;
MFI.setFrameAddressIsTaken(YamlMFI.IsFrameAddressTaken);
MFI.setReturnAddressIsTaken(YamlMFI.IsReturnAddressTaken);
MFI.setHasStackMap(YamlMFI.HasStackMap);
MFI.setHasPatchPoint(YamlMFI.HasPatchPoint);
MFI.setStackSize(YamlMFI.StackSize);
MFI.setOffsetAdjustment(YamlMFI.OffsetAdjustment);
if (YamlMFI.MaxAlignment)
MFI.ensureMaxAlignment(Align(YamlMFI.MaxAlignment));
MFI.setAdjustsStack(YamlMFI.AdjustsStack);
MFI.setHasCalls(YamlMFI.HasCalls);
if (YamlMFI.MaxCallFrameSize != ~0u)
MFI.setMaxCallFrameSize(YamlMFI.MaxCallFrameSize);
MFI.setCVBytesOfCalleeSavedRegisters(YamlMFI.CVBytesOfCalleeSavedRegisters);
MFI.setHasOpaqueSPAdjustment(YamlMFI.HasOpaqueSPAdjustment);
MFI.setHasVAStart(YamlMFI.HasVAStart);
MFI.setHasMustTailInVarArgFunc(YamlMFI.HasMustTailInVarArgFunc);
MFI.setLocalFrameSize(YamlMFI.LocalFrameSize);
if (!YamlMFI.SavePoint.Value.empty()) {
MachineBasicBlock *MBB = nullptr;
if (parseMBBReference(PFS, MBB, YamlMFI.SavePoint))
return true;
MFI.setSavePoint(MBB);
}
if (!YamlMFI.RestorePoint.Value.empty()) {
MachineBasicBlock *MBB = nullptr;
if (parseMBBReference(PFS, MBB, YamlMFI.RestorePoint))
return true;
MFI.setRestorePoint(MBB);
}
std::vector<CalleeSavedInfo> CSIInfo;
// Initialize the fixed frame objects.
for (const auto &Object : YamlMF.FixedStackObjects) {
int ObjectIdx;
if (Object.Type != yaml::FixedMachineStackObject::SpillSlot)
ObjectIdx = MFI.CreateFixedObject(Object.Size, Object.Offset,
Object.IsImmutable, Object.IsAliased);
else
ObjectIdx = MFI.CreateFixedSpillStackObject(Object.Size, Object.Offset);
if (!TFI->isSupportedStackID(Object.StackID))
return error(Object.ID.SourceRange.Start,
Twine("StackID is not supported by target"));
MFI.setStackID(ObjectIdx, Object.StackID);
MFI.setObjectAlignment(ObjectIdx, Object.Alignment.valueOrOne());
if (!PFS.FixedStackObjectSlots.insert(std::make_pair(Object.ID.Value,
ObjectIdx))
.second)
return error(Object.ID.SourceRange.Start,
Twine("redefinition of fixed stack object '%fixed-stack.") +
Twine(Object.ID.Value) + "'");
if (parseCalleeSavedRegister(PFS, CSIInfo, Object.CalleeSavedRegister,
Object.CalleeSavedRestored, ObjectIdx))
return true;
if (parseStackObjectsDebugInfo(PFS, Object, ObjectIdx))
return true;
}
// Initialize the ordinary frame objects.
for (const auto &Object : YamlMF.StackObjects) {
int ObjectIdx;
const AllocaInst *Alloca = nullptr;
const yaml::StringValue &Name = Object.Name;
if (!Name.Value.empty()) {
Alloca = dyn_cast_or_null<AllocaInst>(
F.getValueSymbolTable()->lookup(Name.Value));
if (!Alloca)
return error(Name.SourceRange.Start,
"alloca instruction named '" + Name.Value +
"' isn't defined in the function '" + F.getName() +
"'");
}
if (!TFI->isSupportedStackID(Object.StackID))
return error(Object.ID.SourceRange.Start,
Twine("StackID is not supported by target"));
if (Object.Type == yaml::MachineStackObject::VariableSized)
ObjectIdx =
MFI.CreateVariableSizedObject(Object.Alignment.valueOrOne(), Alloca);
else
ObjectIdx = MFI.CreateStackObject(
Object.Size, Object.Alignment.valueOrOne(),
Object.Type == yaml::MachineStackObject::SpillSlot, Alloca,
Object.StackID);
MFI.setObjectOffset(ObjectIdx, Object.Offset);
if (!PFS.StackObjectSlots.insert(std::make_pair(Object.ID.Value, ObjectIdx))
.second)
return error(Object.ID.SourceRange.Start,
Twine("redefinition of stack object '%stack.") +
Twine(Object.ID.Value) + "'");
if (parseCalleeSavedRegister(PFS, CSIInfo, Object.CalleeSavedRegister,
Object.CalleeSavedRestored, ObjectIdx))
return true;
if (Object.LocalOffset)
MFI.mapLocalFrameObject(ObjectIdx, Object.LocalOffset.getValue());
if (parseStackObjectsDebugInfo(PFS, Object, ObjectIdx))
return true;
}
MFI.setCalleeSavedInfo(CSIInfo);
if (!CSIInfo.empty())
MFI.setCalleeSavedInfoValid(true);
// Initialize the various stack object references after initializing the
// stack objects.
if (!YamlMFI.StackProtector.Value.empty()) {
SMDiagnostic Error;
int FI;
if (parseStackObjectReference(PFS, FI, YamlMFI.StackProtector.Value, Error))
return error(Error, YamlMFI.StackProtector.SourceRange);
MFI.setStackProtectorIndex(FI);
}
return false;
}
bool MIRParserImpl::parseCalleeSavedRegister(PerFunctionMIParsingState &PFS,
std::vector<CalleeSavedInfo> &CSIInfo,
const yaml::StringValue &RegisterSource, bool IsRestored, int FrameIdx) {
if (RegisterSource.Value.empty())
return false;
Register Reg;
SMDiagnostic Error;
if (parseNamedRegisterReference(PFS, Reg, RegisterSource.Value, Error))
return error(Error, RegisterSource.SourceRange);
CalleeSavedInfo CSI(Reg, FrameIdx);
CSI.setRestored(IsRestored);
CSIInfo.push_back(CSI);
return false;
}
/// Verify that given node is of a certain type. Return true on error.
template <typename T>
static bool typecheckMDNode(T *&Result, MDNode *Node,
const yaml::StringValue &Source,
StringRef TypeString, MIRParserImpl &Parser) {
if (!Node)
return false;
Result = dyn_cast<T>(Node);
if (!Result)
return Parser.error(Source.SourceRange.Start,
"expected a reference to a '" + TypeString +
"' metadata node");
return false;
}
template <typename T>
bool MIRParserImpl::parseStackObjectsDebugInfo(PerFunctionMIParsingState &PFS,
const T &Object, int FrameIdx) {
// Debug information can only be attached to stack objects; Fixed stack
// objects aren't supported.
MDNode *Var = nullptr, *Expr = nullptr, *Loc = nullptr;
if (parseMDNode(PFS, Var, Object.DebugVar) ||
parseMDNode(PFS, Expr, Object.DebugExpr) ||
parseMDNode(PFS, Loc, Object.DebugLoc))
return true;
if (!Var && !Expr && !Loc)
return false;
DILocalVariable *DIVar = nullptr;
DIExpression *DIExpr = nullptr;
DILocation *DILoc = nullptr;
if (typecheckMDNode(DIVar, Var, Object.DebugVar, "DILocalVariable", *this) ||
typecheckMDNode(DIExpr, Expr, Object.DebugExpr, "DIExpression", *this) ||
typecheckMDNode(DILoc, Loc, Object.DebugLoc, "DILocation", *this))
return true;
PFS.MF.setVariableDbgInfo(DIVar, DIExpr, FrameIdx, DILoc);
return false;
}
bool MIRParserImpl::parseMDNode(PerFunctionMIParsingState &PFS,
MDNode *&Node, const yaml::StringValue &Source) {
if (Source.Value.empty())
return false;
SMDiagnostic Error;
if (llvm::parseMDNode(PFS, Node, Source.Value, Error))
return error(Error, Source.SourceRange);
return false;
}
bool MIRParserImpl::initializeConstantPool(PerFunctionMIParsingState &PFS,
MachineConstantPool &ConstantPool, const yaml::MachineFunction &YamlMF) {
DenseMap<unsigned, unsigned> &ConstantPoolSlots = PFS.ConstantPoolSlots;
const MachineFunction &MF = PFS.MF;
const auto &M = *MF.getFunction().getParent();
SMDiagnostic Error;
for (const auto &YamlConstant : YamlMF.Constants) {
if (YamlConstant.IsTargetSpecific)
// FIXME: Support target-specific constant pools
return error(YamlConstant.Value.SourceRange.Start,
"Can't parse target-specific constant pool entries yet");
const Constant *Value = dyn_cast_or_null<Constant>(
parseConstantValue(YamlConstant.Value.Value, Error, M));
if (!Value)
return error(Error, YamlConstant.Value.SourceRange);
const Align PrefTypeAlign =
M.getDataLayout().getPrefTypeAlign(Value->getType());
const Align Alignment = YamlConstant.Alignment.getValueOr(PrefTypeAlign);
unsigned Index = ConstantPool.getConstantPoolIndex(Value, Alignment);
if (!ConstantPoolSlots.insert(std::make_pair(YamlConstant.ID.Value, Index))
.second)
return error(YamlConstant.ID.SourceRange.Start,
Twine("redefinition of constant pool item '%const.") +
Twine(YamlConstant.ID.Value) + "'");
}
return false;
}
bool MIRParserImpl::initializeJumpTableInfo(PerFunctionMIParsingState &PFS,
const yaml::MachineJumpTable &YamlJTI) {
MachineJumpTableInfo *JTI = PFS.MF.getOrCreateJumpTableInfo(YamlJTI.Kind);
for (const auto &Entry : YamlJTI.Entries) {
std::vector<MachineBasicBlock *> Blocks;
for (const auto &MBBSource : Entry.Blocks) {
MachineBasicBlock *MBB = nullptr;
if (parseMBBReference(PFS, MBB, MBBSource.Value))
return true;
Blocks.push_back(MBB);
}
unsigned Index = JTI->createJumpTableIndex(Blocks);
if (!PFS.JumpTableSlots.insert(std::make_pair(Entry.ID.Value, Index))
.second)
return error(Entry.ID.SourceRange.Start,
Twine("redefinition of jump table entry '%jump-table.") +
Twine(Entry.ID.Value) + "'");
}
return false;
}
bool MIRParserImpl::parseMBBReference(PerFunctionMIParsingState &PFS,
MachineBasicBlock *&MBB,
const yaml::StringValue &Source) {
SMDiagnostic Error;
if (llvm::parseMBBReference(PFS, MBB, Source.Value, Error))
return error(Error, Source.SourceRange);
return false;
}
SMDiagnostic MIRParserImpl::diagFromMIStringDiag(const SMDiagnostic &Error,
SMRange SourceRange) {
assert(SourceRange.isValid() && "Invalid source range");
SMLoc Loc = SourceRange.Start;
bool HasQuote = Loc.getPointer() < SourceRange.End.getPointer() &&
*Loc.getPointer() == '\'';
// Translate the location of the error from the location in the MI string to
// the corresponding location in the MIR file.
Loc = Loc.getFromPointer(Loc.getPointer() + Error.getColumnNo() +
(HasQuote ? 1 : 0));
// TODO: Translate any source ranges as well.
return SM.GetMessage(Loc, Error.getKind(), Error.getMessage(), None,
Error.getFixIts());
}
SMDiagnostic MIRParserImpl::diagFromBlockStringDiag(const SMDiagnostic &Error,
SMRange SourceRange) {
assert(SourceRange.isValid());
// Translate the location of the error from the location in the llvm IR string
// to the corresponding location in the MIR file.
auto LineAndColumn = SM.getLineAndColumn(SourceRange.Start);
unsigned Line = LineAndColumn.first + Error.getLineNo() - 1;
unsigned Column = Error.getColumnNo();
StringRef LineStr = Error.getLineContents();
SMLoc Loc = Error.getLoc();
// Get the full line and adjust the column number by taking the indentation of
// LLVM IR into account.
for (line_iterator L(*SM.getMemoryBuffer(SM.getMainFileID()), false), E;
L != E; ++L) {
if (L.line_number() == Line) {
LineStr = *L;
Loc = SMLoc::getFromPointer(LineStr.data());
auto Indent = LineStr.find(Error.getLineContents());
if (Indent != StringRef::npos)
Column += Indent;
break;
}
}
return SMDiagnostic(SM, Loc, Filename, Line, Column, Error.getKind(),
Error.getMessage(), LineStr, Error.getRanges(),
Error.getFixIts());
}
MIRParser::MIRParser(std::unique_ptr<MIRParserImpl> Impl)
: Impl(std::move(Impl)) {}
MIRParser::~MIRParser() {}
std::unique_ptr<Module>
MIRParser::parseIRModule(DataLayoutCallbackTy DataLayoutCallback) {
return Impl->parseIRModule(DataLayoutCallback);
}
bool MIRParser::parseMachineFunctions(Module &M, MachineModuleInfo &MMI) {
return Impl->parseMachineFunctions(M, MMI);
}
std::unique_ptr<MIRParser> llvm::createMIRParserFromFile(
StringRef Filename, SMDiagnostic &Error, LLVMContext &Context,
std::function<void(Function &)> ProcessIRFunction) {
auto FileOrErr = MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = FileOrErr.getError()) {
Error = SMDiagnostic(Filename, SourceMgr::DK_Error,
"Could not open input file: " + EC.message());
return nullptr;
}
return createMIRParser(std::move(FileOrErr.get()), Context,
ProcessIRFunction);
}
std::unique_ptr<MIRParser>
llvm::createMIRParser(std::unique_ptr<MemoryBuffer> Contents,
LLVMContext &Context,
std::function<void(Function &)> ProcessIRFunction) {
auto Filename = Contents->getBufferIdentifier();
if (Context.shouldDiscardValueNames()) {
Context.diagnose(DiagnosticInfoMIRParser(
DS_Error,
SMDiagnostic(
Filename, SourceMgr::DK_Error,
"Can't read MIR with a Context that discards named Values")));
return nullptr;
}
return std::make_unique<MIRParser>(std::make_unique<MIRParserImpl>(
std::move(Contents), Filename, Context, ProcessIRFunction));
}