forked from OSchip/llvm-project
836 lines
31 KiB
C++
836 lines
31 KiB
C++
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveInterval analysis pass which is used
|
|
// by the Linear Scan Register allocator. This pass linearizes the
|
|
// basic blocks of the function in DFS order and uses the
|
|
// LiveVariables pass to conservatively compute live intervals for
|
|
// each virtual and physical register.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "liveintervals"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/Value.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// Hidden options for help debugging.
|
|
cl::opt<bool> DisableReMat("disable-rematerialization",
|
|
cl::init(false), cl::Hidden);
|
|
}
|
|
|
|
STATISTIC(numIntervals, "Number of original intervals");
|
|
STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
|
|
STATISTIC(numFolded , "Number of loads/stores folded into instructions");
|
|
|
|
char LiveIntervals::ID = 0;
|
|
namespace {
|
|
RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
|
|
}
|
|
|
|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addRequired<LiveVariables>();
|
|
AU.addPreservedID(PHIEliminationID);
|
|
AU.addRequiredID(PHIEliminationID);
|
|
AU.addRequiredID(TwoAddressInstructionPassID);
|
|
AU.addRequired<LoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
void LiveIntervals::releaseMemory() {
|
|
mi2iMap_.clear();
|
|
i2miMap_.clear();
|
|
r2iMap_.clear();
|
|
for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
|
|
delete ClonedMIs[i];
|
|
}
|
|
|
|
/// runOnMachineFunction - Register allocate the whole function
|
|
///
|
|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
|
|
mf_ = &fn;
|
|
tm_ = &fn.getTarget();
|
|
mri_ = tm_->getRegisterInfo();
|
|
tii_ = tm_->getInstrInfo();
|
|
lv_ = &getAnalysis<LiveVariables>();
|
|
allocatableRegs_ = mri_->getAllocatableSet(fn);
|
|
|
|
// Number MachineInstrs and MachineBasicBlocks.
|
|
// Initialize MBB indexes to a sentinal.
|
|
MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
|
|
|
|
unsigned MIIndex = 0;
|
|
for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
|
|
MBB != E; ++MBB) {
|
|
unsigned StartIdx = MIIndex;
|
|
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
|
|
I != E; ++I) {
|
|
bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
|
|
assert(inserted && "multiple MachineInstr -> index mappings");
|
|
i2miMap_.push_back(I);
|
|
MIIndex += InstrSlots::NUM;
|
|
}
|
|
|
|
// Set the MBB2IdxMap entry for this MBB.
|
|
MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
|
|
}
|
|
|
|
computeIntervals();
|
|
|
|
numIntervals += getNumIntervals();
|
|
|
|
DOUT << "********** INTERVALS **********\n";
|
|
for (iterator I = begin(), E = end(); I != E; ++I) {
|
|
I->second.print(DOUT, mri_);
|
|
DOUT << "\n";
|
|
}
|
|
|
|
numIntervalsAfter += getNumIntervals();
|
|
DEBUG(dump());
|
|
return true;
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
void LiveIntervals::print(std::ostream &O, const Module* ) const {
|
|
O << "********** INTERVALS **********\n";
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
I->second.print(DOUT, mri_);
|
|
DOUT << "\n";
|
|
}
|
|
|
|
O << "********** MACHINEINSTRS **********\n";
|
|
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
|
|
mbbi != mbbe; ++mbbi) {
|
|
O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
|
|
for (MachineBasicBlock::iterator mii = mbbi->begin(),
|
|
mie = mbbi->end(); mii != mie; ++mii) {
|
|
O << getInstructionIndex(mii) << '\t' << *mii;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Not called?
|
|
/// CreateNewLiveInterval - Create a new live interval with the given live
|
|
/// ranges. The new live interval will have an infinite spill weight.
|
|
LiveInterval&
|
|
LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
|
|
const std::vector<LiveRange> &LRs) {
|
|
const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
|
|
|
|
// Create a new virtual register for the spill interval.
|
|
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
|
|
|
|
// Replace the old virtual registers in the machine operands with the shiny
|
|
// new one.
|
|
for (std::vector<LiveRange>::const_iterator
|
|
I = LRs.begin(), E = LRs.end(); I != E; ++I) {
|
|
unsigned Index = getBaseIndex(I->start);
|
|
unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
|
|
|
|
for (; Index != End; Index += InstrSlots::NUM) {
|
|
// Skip deleted instructions
|
|
while (Index != End && !getInstructionFromIndex(Index))
|
|
Index += InstrSlots::NUM;
|
|
|
|
if (Index == End) break;
|
|
|
|
MachineInstr *MI = getInstructionFromIndex(Index);
|
|
|
|
for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
|
|
MachineOperand &MOp = MI->getOperand(J);
|
|
if (MOp.isRegister() && MOp.getReg() == LI->reg)
|
|
MOp.setReg(NewVReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
LiveInterval &NewLI = getOrCreateInterval(NewVReg);
|
|
|
|
// The spill weight is now infinity as it cannot be spilled again
|
|
NewLI.weight = float(HUGE_VAL);
|
|
|
|
for (std::vector<LiveRange>::const_iterator
|
|
I = LRs.begin(), E = LRs.end(); I != E; ++I) {
|
|
DOUT << " Adding live range " << *I << " to new interval\n";
|
|
NewLI.addRange(*I);
|
|
}
|
|
|
|
DOUT << "Created new live interval " << NewLI << "\n";
|
|
return NewLI;
|
|
}
|
|
|
|
/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
|
|
/// two addr elimination.
|
|
static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
|
|
const TargetInstrInfo *TII) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO1 = MI->getOperand(i);
|
|
if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
|
|
for (unsigned j = i+1; j < e; ++j) {
|
|
MachineOperand &MO2 = MI->getOperand(j);
|
|
if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
|
|
MI->getInstrDescriptor()->
|
|
getOperandConstraint(j, TOI::TIED_TO) == (int)i)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isReMaterializable - Returns true if the definition MI of the specified
|
|
/// val# of the specified interval is re-materializable.
|
|
bool LiveIntervals::isReMaterializable(const LiveInterval &li, unsigned ValNum,
|
|
MachineInstr *MI) {
|
|
if (DisableReMat)
|
|
return false;
|
|
|
|
if (tii_->isTriviallyReMaterializable(MI))
|
|
return true;
|
|
|
|
int FrameIdx = 0;
|
|
if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
|
|
!mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
|
|
return false;
|
|
|
|
// This is a load from fixed stack slot. It can be rematerialized unless it's
|
|
// re-defined by a two-address instruction.
|
|
for (unsigned i = 0, e = li.getNumValNums(); i != e; ++i) {
|
|
if (i == ValNum)
|
|
continue;
|
|
unsigned DefIdx = li.getDefForValNum(i);
|
|
if (DefIdx == ~1U)
|
|
continue; // Dead val#.
|
|
MachineInstr *DefMI = (DefIdx == ~0u)
|
|
? NULL : getInstructionFromIndex(DefIdx);
|
|
if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
|
|
unsigned index, unsigned i,
|
|
int slot, unsigned reg) {
|
|
MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot);
|
|
if (fmi) {
|
|
// Attempt to fold the memory reference into the instruction. If
|
|
// we can do this, we don't need to insert spill code.
|
|
if (lv_)
|
|
lv_->instructionChanged(MI, fmi);
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
vrm.virtFolded(reg, MI, i, fmi);
|
|
mi2iMap_.erase(MI);
|
|
i2miMap_[index/InstrSlots::NUM] = fmi;
|
|
mi2iMap_[fmi] = index;
|
|
MI = MBB.insert(MBB.erase(MI), fmi);
|
|
++numFolded;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::vector<LiveInterval*> LiveIntervals::
|
|
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
|
|
// since this is called after the analysis is done we don't know if
|
|
// LiveVariables is available
|
|
lv_ = getAnalysisToUpdate<LiveVariables>();
|
|
|
|
std::vector<LiveInterval*> added;
|
|
|
|
assert(li.weight != HUGE_VALF &&
|
|
"attempt to spill already spilled interval!");
|
|
|
|
DOUT << "\t\t\t\tadding intervals for spills for interval: ";
|
|
li.print(DOUT, mri_);
|
|
DOUT << '\n';
|
|
|
|
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
|
|
|
|
unsigned NumValNums = li.getNumValNums();
|
|
SmallVector<MachineInstr*, 4> ReMatDefs;
|
|
ReMatDefs.resize(NumValNums, NULL);
|
|
SmallVector<MachineInstr*, 4> ReMatOrigDefs;
|
|
ReMatOrigDefs.resize(NumValNums, NULL);
|
|
SmallVector<int, 4> ReMatIds;
|
|
ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
|
|
BitVector ReMatDelete(NumValNums);
|
|
unsigned slot = VirtRegMap::MAX_STACK_SLOT;
|
|
|
|
bool NeedStackSlot = false;
|
|
for (unsigned i = 0; i != NumValNums; ++i) {
|
|
unsigned DefIdx = li.getDefForValNum(i);
|
|
if (DefIdx == ~1U)
|
|
continue; // Dead val#.
|
|
// Is the def for the val# rematerializable?
|
|
MachineInstr *DefMI = (DefIdx == ~0u)
|
|
? NULL : getInstructionFromIndex(DefIdx);
|
|
if (DefMI && isReMaterializable(li, i, DefMI)) {
|
|
// Remember how to remat the def of this val#.
|
|
ReMatOrigDefs[i] = DefMI;
|
|
// Original def may be modified so we have to make a copy here. vrm must
|
|
// delete these!
|
|
ReMatDefs[i] = DefMI = DefMI->clone();
|
|
vrm.setVirtIsReMaterialized(reg, DefMI);
|
|
|
|
bool CanDelete = true;
|
|
const SmallVector<unsigned, 4> &kills = li.getKillsForValNum(i);
|
|
for (unsigned j = 0, ee = kills.size(); j != ee; ++j) {
|
|
unsigned KillIdx = kills[j];
|
|
MachineInstr *KillMI = (KillIdx & 1)
|
|
? NULL : getInstructionFromIndex(KillIdx);
|
|
// Kill is a phi node, not all of its uses can be rematerialized.
|
|
// It must not be deleted.
|
|
if (!KillMI) {
|
|
CanDelete = false;
|
|
// Need a stack slot if there is any live range where uses cannot be
|
|
// rematerialized.
|
|
NeedStackSlot = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (CanDelete)
|
|
ReMatDelete.set(i);
|
|
} else {
|
|
// Need a stack slot if there is any live range where uses cannot be
|
|
// rematerialized.
|
|
NeedStackSlot = true;
|
|
}
|
|
}
|
|
|
|
// One stack slot per live interval.
|
|
if (NeedStackSlot)
|
|
slot = vrm.assignVirt2StackSlot(reg);
|
|
|
|
for (LiveInterval::Ranges::const_iterator
|
|
I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
|
|
MachineInstr *DefMI = ReMatDefs[I->ValId];
|
|
MachineInstr *OrigDefMI = ReMatOrigDefs[I->ValId];
|
|
bool DefIsReMat = DefMI != NULL;
|
|
bool CanDelete = ReMatDelete[I->ValId];
|
|
int LdSlot = 0;
|
|
bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
|
|
unsigned index = getBaseIndex(I->start);
|
|
unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
|
|
for (; index != end; index += InstrSlots::NUM) {
|
|
// skip deleted instructions
|
|
while (index != end && !getInstructionFromIndex(index))
|
|
index += InstrSlots::NUM;
|
|
if (index == end) break;
|
|
|
|
MachineInstr *MI = getInstructionFromIndex(index);
|
|
|
|
RestartInstruction:
|
|
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
|
|
MachineOperand& mop = MI->getOperand(i);
|
|
if (mop.isRegister() && mop.getReg() == li.reg) {
|
|
if (DefIsReMat) {
|
|
// If this is the rematerializable definition MI itself and
|
|
// all of its uses are rematerialized, simply delete it.
|
|
if (MI == OrigDefMI) {
|
|
if (CanDelete) {
|
|
RemoveMachineInstrFromMaps(MI);
|
|
MI->eraseFromParent();
|
|
break;
|
|
} else if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
|
|
// Folding the load/store can completely change the instruction
|
|
// in unpredictable ways, rescan it from the beginning.
|
|
goto RestartInstruction;
|
|
} else if (isLoadSS &&
|
|
tryFoldMemoryOperand(MI, vrm, index, i, LdSlot, li.reg)){
|
|
// FIXME: Other rematerializable loads can be folded as well.
|
|
// Folding the load/store can completely change the
|
|
// instruction in unpredictable ways, rescan it from
|
|
// the beginning.
|
|
goto RestartInstruction;
|
|
}
|
|
} else {
|
|
if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
|
|
// Folding the load/store can completely change the instruction in
|
|
// unpredictable ways, rescan it from the beginning.
|
|
goto RestartInstruction;
|
|
}
|
|
|
|
// Create a new virtual register for the spill interval.
|
|
unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
|
|
|
|
// Scan all of the operands of this instruction rewriting operands
|
|
// to use NewVReg instead of li.reg as appropriate. We do this for
|
|
// two reasons:
|
|
//
|
|
// 1. If the instr reads the same spilled vreg multiple times, we
|
|
// want to reuse the NewVReg.
|
|
// 2. If the instr is a two-addr instruction, we are required to
|
|
// keep the src/dst regs pinned.
|
|
//
|
|
// Keep track of whether we replace a use and/or def so that we can
|
|
// create the spill interval with the appropriate range.
|
|
mop.setReg(NewVReg);
|
|
|
|
bool HasUse = mop.isUse();
|
|
bool HasDef = mop.isDef();
|
|
for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
|
|
if (MI->getOperand(j).isReg() &&
|
|
MI->getOperand(j).getReg() == li.reg) {
|
|
MI->getOperand(j).setReg(NewVReg);
|
|
HasUse |= MI->getOperand(j).isUse();
|
|
HasDef |= MI->getOperand(j).isDef();
|
|
}
|
|
}
|
|
|
|
vrm.grow();
|
|
if (DefIsReMat) {
|
|
vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
|
|
if (ReMatIds[I->ValId] == VirtRegMap::MAX_STACK_SLOT) {
|
|
// Each valnum may have its own remat id.
|
|
ReMatIds[I->ValId] = vrm.assignVirtReMatId(NewVReg);
|
|
} else {
|
|
vrm.assignVirtReMatId(NewVReg, ReMatIds[I->ValId]);
|
|
}
|
|
if (!CanDelete || (HasUse && HasDef)) {
|
|
// If this is a two-addr instruction then its use operands are
|
|
// rematerializable but its def is not. It should be assigned a
|
|
// stack slot.
|
|
vrm.assignVirt2StackSlot(NewVReg, slot);
|
|
}
|
|
} else {
|
|
vrm.assignVirt2StackSlot(NewVReg, slot);
|
|
}
|
|
|
|
// create a new register interval for this spill / remat.
|
|
LiveInterval &nI = getOrCreateInterval(NewVReg);
|
|
assert(nI.empty());
|
|
|
|
// the spill weight is now infinity as it
|
|
// cannot be spilled again
|
|
nI.weight = HUGE_VALF;
|
|
|
|
if (HasUse) {
|
|
LiveRange LR(getLoadIndex(index), getUseIndex(index),
|
|
nI.getNextValue(~0U, 0));
|
|
DOUT << " +" << LR;
|
|
nI.addRange(LR);
|
|
}
|
|
if (HasDef) {
|
|
LiveRange LR(getDefIndex(index), getStoreIndex(index),
|
|
nI.getNextValue(~0U, 0));
|
|
DOUT << " +" << LR;
|
|
nI.addRange(LR);
|
|
}
|
|
|
|
added.push_back(&nI);
|
|
|
|
// update live variables if it is available
|
|
if (lv_)
|
|
lv_->addVirtualRegisterKilled(NewVReg, MI);
|
|
|
|
DOUT << "\t\t\t\tadded new interval: ";
|
|
nI.print(DOUT, mri_);
|
|
DOUT << '\n';
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return added;
|
|
}
|
|
|
|
void LiveIntervals::printRegName(unsigned reg) const {
|
|
if (MRegisterInfo::isPhysicalRegister(reg))
|
|
cerr << mri_->getName(reg);
|
|
else
|
|
cerr << "%reg" << reg;
|
|
}
|
|
|
|
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
|
|
MachineBasicBlock::iterator mi,
|
|
unsigned MIIdx,
|
|
LiveInterval &interval) {
|
|
DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
|
|
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
|
|
|
|
// Virtual registers may be defined multiple times (due to phi
|
|
// elimination and 2-addr elimination). Much of what we do only has to be
|
|
// done once for the vreg. We use an empty interval to detect the first
|
|
// time we see a vreg.
|
|
if (interval.empty()) {
|
|
// Get the Idx of the defining instructions.
|
|
unsigned defIndex = getDefIndex(MIIdx);
|
|
unsigned ValNum;
|
|
unsigned SrcReg, DstReg;
|
|
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
|
|
ValNum = interval.getNextValue(defIndex, 0);
|
|
else
|
|
ValNum = interval.getNextValue(defIndex, SrcReg);
|
|
|
|
assert(ValNum == 0 && "First value in interval is not 0?");
|
|
ValNum = 0; // Clue in the optimizer.
|
|
|
|
// Loop over all of the blocks that the vreg is defined in. There are
|
|
// two cases we have to handle here. The most common case is a vreg
|
|
// whose lifetime is contained within a basic block. In this case there
|
|
// will be a single kill, in MBB, which comes after the definition.
|
|
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
|
|
// FIXME: what about dead vars?
|
|
unsigned killIdx;
|
|
if (vi.Kills[0] != mi)
|
|
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
|
|
else
|
|
killIdx = defIndex+1;
|
|
|
|
// If the kill happens after the definition, we have an intra-block
|
|
// live range.
|
|
if (killIdx > defIndex) {
|
|
assert(vi.AliveBlocks.none() &&
|
|
"Shouldn't be alive across any blocks!");
|
|
LiveRange LR(defIndex, killIdx, ValNum);
|
|
interval.addRange(LR);
|
|
DOUT << " +" << LR << "\n";
|
|
interval.addKillForValNum(ValNum, killIdx);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// The other case we handle is when a virtual register lives to the end
|
|
// of the defining block, potentially live across some blocks, then is
|
|
// live into some number of blocks, but gets killed. Start by adding a
|
|
// range that goes from this definition to the end of the defining block.
|
|
LiveRange NewLR(defIndex,
|
|
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
|
|
ValNum);
|
|
DOUT << " +" << NewLR;
|
|
interval.addRange(NewLR);
|
|
|
|
// Iterate over all of the blocks that the variable is completely
|
|
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
|
|
// live interval.
|
|
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
|
|
if (vi.AliveBlocks[i]) {
|
|
MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
|
|
if (!MBB->empty()) {
|
|
LiveRange LR(getMBBStartIdx(i),
|
|
getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
|
|
ValNum);
|
|
interval.addRange(LR);
|
|
DOUT << " +" << LR;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, this virtual register is live from the start of any killing
|
|
// block to the 'use' slot of the killing instruction.
|
|
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
|
|
MachineInstr *Kill = vi.Kills[i];
|
|
unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
|
|
LiveRange LR(getMBBStartIdx(Kill->getParent()),
|
|
killIdx, ValNum);
|
|
interval.addRange(LR);
|
|
interval.addKillForValNum(ValNum, killIdx);
|
|
DOUT << " +" << LR;
|
|
}
|
|
|
|
} else {
|
|
// If this is the second time we see a virtual register definition, it
|
|
// must be due to phi elimination or two addr elimination. If this is
|
|
// the result of two address elimination, then the vreg is one of the
|
|
// def-and-use register operand.
|
|
if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
|
|
// If this is a two-address definition, then we have already processed
|
|
// the live range. The only problem is that we didn't realize there
|
|
// are actually two values in the live interval. Because of this we
|
|
// need to take the LiveRegion that defines this register and split it
|
|
// into two values.
|
|
unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
|
|
unsigned RedefIndex = getDefIndex(MIIdx);
|
|
|
|
const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
|
|
unsigned OldEnd = OldLR->end;
|
|
|
|
// Delete the initial value, which should be short and continuous,
|
|
// because the 2-addr copy must be in the same MBB as the redef.
|
|
interval.removeRange(DefIndex, RedefIndex);
|
|
|
|
// Two-address vregs should always only be redefined once. This means
|
|
// that at this point, there should be exactly one value number in it.
|
|
assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
|
|
|
|
// The new value number (#1) is defined by the instruction we claimed
|
|
// defined value #0.
|
|
unsigned ValNo = interval.getNextValue(0, 0);
|
|
interval.copyValNumInfo(ValNo, 0);
|
|
|
|
// Value#0 is now defined by the 2-addr instruction.
|
|
interval.setDefForValNum(0, RedefIndex);
|
|
interval.setSrcRegForValNum(0, 0);
|
|
|
|
// Add the new live interval which replaces the range for the input copy.
|
|
LiveRange LR(DefIndex, RedefIndex, ValNo);
|
|
DOUT << " replace range with " << LR;
|
|
interval.addRange(LR);
|
|
interval.addKillForValNum(ValNo, RedefIndex);
|
|
interval.removeKillForValNum(ValNo, RedefIndex, OldEnd);
|
|
|
|
// If this redefinition is dead, we need to add a dummy unit live
|
|
// range covering the def slot.
|
|
if (lv_->RegisterDefIsDead(mi, interval.reg))
|
|
interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
|
|
|
|
DOUT << " RESULT: ";
|
|
interval.print(DOUT, mri_);
|
|
|
|
} else {
|
|
// Otherwise, this must be because of phi elimination. If this is the
|
|
// first redefinition of the vreg that we have seen, go back and change
|
|
// the live range in the PHI block to be a different value number.
|
|
if (interval.containsOneValue()) {
|
|
assert(vi.Kills.size() == 1 &&
|
|
"PHI elimination vreg should have one kill, the PHI itself!");
|
|
|
|
// Remove the old range that we now know has an incorrect number.
|
|
MachineInstr *Killer = vi.Kills[0];
|
|
unsigned Start = getMBBStartIdx(Killer->getParent());
|
|
unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
|
|
DOUT << " Removing [" << Start << "," << End << "] from: ";
|
|
interval.print(DOUT, mri_); DOUT << "\n";
|
|
interval.removeRange(Start, End);
|
|
interval.addKillForValNum(0, Start+1); // odd # means phi node
|
|
DOUT << " RESULT: "; interval.print(DOUT, mri_);
|
|
|
|
// Replace the interval with one of a NEW value number. Note that this
|
|
// value number isn't actually defined by an instruction, weird huh? :)
|
|
LiveRange LR(Start, End, interval.getNextValue(~0, 0));
|
|
DOUT << " replace range with " << LR;
|
|
interval.addRange(LR);
|
|
interval.addKillForValNum(LR.ValId, End);
|
|
DOUT << " RESULT: "; interval.print(DOUT, mri_);
|
|
}
|
|
|
|
// In the case of PHI elimination, each variable definition is only
|
|
// live until the end of the block. We've already taken care of the
|
|
// rest of the live range.
|
|
unsigned defIndex = getDefIndex(MIIdx);
|
|
|
|
unsigned ValNum;
|
|
unsigned SrcReg, DstReg;
|
|
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
|
|
ValNum = interval.getNextValue(defIndex, 0);
|
|
else
|
|
ValNum = interval.getNextValue(defIndex, SrcReg);
|
|
|
|
unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
|
|
LiveRange LR(defIndex, killIndex, ValNum);
|
|
interval.addRange(LR);
|
|
interval.addKillForValNum(ValNum, killIndex-1); // odd # means phi node
|
|
DOUT << " +" << LR;
|
|
}
|
|
}
|
|
|
|
DOUT << '\n';
|
|
}
|
|
|
|
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator mi,
|
|
unsigned MIIdx,
|
|
LiveInterval &interval,
|
|
unsigned SrcReg) {
|
|
// A physical register cannot be live across basic block, so its
|
|
// lifetime must end somewhere in its defining basic block.
|
|
DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
|
|
|
|
unsigned baseIndex = MIIdx;
|
|
unsigned start = getDefIndex(baseIndex);
|
|
unsigned end = start;
|
|
|
|
// If it is not used after definition, it is considered dead at
|
|
// the instruction defining it. Hence its interval is:
|
|
// [defSlot(def), defSlot(def)+1)
|
|
if (lv_->RegisterDefIsDead(mi, interval.reg)) {
|
|
DOUT << " dead";
|
|
end = getDefIndex(start) + 1;
|
|
goto exit;
|
|
}
|
|
|
|
// If it is not dead on definition, it must be killed by a
|
|
// subsequent instruction. Hence its interval is:
|
|
// [defSlot(def), useSlot(kill)+1)
|
|
while (++mi != MBB->end()) {
|
|
baseIndex += InstrSlots::NUM;
|
|
if (lv_->KillsRegister(mi, interval.reg)) {
|
|
DOUT << " killed";
|
|
end = getUseIndex(baseIndex) + 1;
|
|
goto exit;
|
|
} else if (lv_->ModifiesRegister(mi, interval.reg)) {
|
|
// Another instruction redefines the register before it is ever read.
|
|
// Then the register is essentially dead at the instruction that defines
|
|
// it. Hence its interval is:
|
|
// [defSlot(def), defSlot(def)+1)
|
|
DOUT << " dead";
|
|
end = getDefIndex(start) + 1;
|
|
goto exit;
|
|
}
|
|
}
|
|
|
|
// The only case we should have a dead physreg here without a killing or
|
|
// instruction where we know it's dead is if it is live-in to the function
|
|
// and never used.
|
|
assert(!SrcReg && "physreg was not killed in defining block!");
|
|
end = getDefIndex(start) + 1; // It's dead.
|
|
|
|
exit:
|
|
assert(start < end && "did not find end of interval?");
|
|
|
|
// Already exists? Extend old live interval.
|
|
LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
|
|
unsigned Id = (OldLR != interval.end())
|
|
? OldLR->ValId : interval.getNextValue(start, SrcReg);
|
|
LiveRange LR(start, end, Id);
|
|
interval.addRange(LR);
|
|
interval.addKillForValNum(LR.ValId, end);
|
|
DOUT << " +" << LR << '\n';
|
|
}
|
|
|
|
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned MIIdx,
|
|
unsigned reg) {
|
|
if (MRegisterInfo::isVirtualRegister(reg))
|
|
handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
|
|
else if (allocatableRegs_[reg]) {
|
|
unsigned SrcReg, DstReg;
|
|
if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
|
|
SrcReg = 0;
|
|
handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
|
|
// Def of a register also defines its sub-registers.
|
|
for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
|
|
// Avoid processing some defs more than once.
|
|
if (!MI->findRegisterDefOperand(*AS))
|
|
handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
|
|
}
|
|
}
|
|
|
|
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
|
|
unsigned MIIdx,
|
|
LiveInterval &interval, bool isAlias) {
|
|
DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
|
|
|
|
// Look for kills, if it reaches a def before it's killed, then it shouldn't
|
|
// be considered a livein.
|
|
MachineBasicBlock::iterator mi = MBB->begin();
|
|
unsigned baseIndex = MIIdx;
|
|
unsigned start = baseIndex;
|
|
unsigned end = start;
|
|
while (mi != MBB->end()) {
|
|
if (lv_->KillsRegister(mi, interval.reg)) {
|
|
DOUT << " killed";
|
|
end = getUseIndex(baseIndex) + 1;
|
|
goto exit;
|
|
} else if (lv_->ModifiesRegister(mi, interval.reg)) {
|
|
// Another instruction redefines the register before it is ever read.
|
|
// Then the register is essentially dead at the instruction that defines
|
|
// it. Hence its interval is:
|
|
// [defSlot(def), defSlot(def)+1)
|
|
DOUT << " dead";
|
|
end = getDefIndex(start) + 1;
|
|
goto exit;
|
|
}
|
|
|
|
baseIndex += InstrSlots::NUM;
|
|
++mi;
|
|
}
|
|
|
|
exit:
|
|
// Live-in register might not be used at all.
|
|
if (end == MIIdx) {
|
|
if (isAlias) {
|
|
DOUT << " dead";
|
|
end = getDefIndex(MIIdx) + 1;
|
|
} else {
|
|
DOUT << " live through";
|
|
end = baseIndex;
|
|
}
|
|
}
|
|
|
|
LiveRange LR(start, end, interval.getNextValue(start, 0));
|
|
interval.addRange(LR);
|
|
interval.addKillForValNum(LR.ValId, end);
|
|
DOUT << " +" << LR << '\n';
|
|
}
|
|
|
|
/// computeIntervals - computes the live intervals for virtual
|
|
/// registers. for some ordering of the machine instructions [1,N] a
|
|
/// live interval is an interval [i, j) where 1 <= i <= j < N for
|
|
/// which a variable is live
|
|
void LiveIntervals::computeIntervals() {
|
|
DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
|
|
<< "********** Function: "
|
|
<< ((Value*)mf_->getFunction())->getName() << '\n';
|
|
// Track the index of the current machine instr.
|
|
unsigned MIIndex = 0;
|
|
for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock *MBB = MBBI;
|
|
DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
|
|
|
|
MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
|
|
|
|
if (MBB->livein_begin() != MBB->livein_end()) {
|
|
// Create intervals for live-ins to this BB first.
|
|
for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
|
|
LE = MBB->livein_end(); LI != LE; ++LI) {
|
|
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
|
|
// Multiple live-ins can alias the same register.
|
|
for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
|
|
if (!hasInterval(*AS))
|
|
handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
|
|
true);
|
|
}
|
|
}
|
|
|
|
for (; MI != miEnd; ++MI) {
|
|
DOUT << MIIndex << "\t" << *MI;
|
|
|
|
// Handle defs.
|
|
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
// handle register defs - build intervals
|
|
if (MO.isRegister() && MO.getReg() && MO.isDef())
|
|
handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
|
|
}
|
|
|
|
MIIndex += InstrSlots::NUM;
|
|
}
|
|
}
|
|
}
|
|
|
|
LiveInterval LiveIntervals::createInterval(unsigned reg) {
|
|
float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
|
|
HUGE_VALF : 0.0F;
|
|
return LiveInterval(reg, Weight);
|
|
}
|