llvm-project/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp

635 lines
23 KiB
C++

//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
static cl::opt<bool>
RunLoopVectorization("vectorize-loops", cl::Hidden,
cl::desc("Run the Loop vectorization passes"));
static cl::opt<bool>
RunSLPVectorization("vectorize-slp", cl::Hidden,
cl::desc("Run the SLP vectorization passes"));
static cl::opt<bool>
RunBBVectorization("vectorize-slp-aggressive", cl::Hidden,
cl::desc("Run the BB vectorization passes"));
static cl::opt<bool>
UseGVNAfterVectorization("use-gvn-after-vectorization",
cl::init(false), cl::Hidden,
cl::desc("Run GVN instead of Early CSE after vectorization passes"));
static cl::opt<bool> ExtraVectorizerPasses(
"extra-vectorizer-passes", cl::init(false), cl::Hidden,
cl::desc("Run cleanup optimization passes after vectorization."));
static cl::opt<bool> UseNewSROA("use-new-sroa",
cl::init(true), cl::Hidden,
cl::desc("Enable the new, experimental SROA pass"));
static cl::opt<bool>
RunLoopRerolling("reroll-loops", cl::Hidden,
cl::desc("Run the loop rerolling pass"));
static cl::opt<bool>
RunFloat2Int("float-to-int", cl::Hidden, cl::init(true),
cl::desc("Run the float2int (float demotion) pass"));
static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
cl::Hidden,
cl::desc("Run the load combining pass"));
static cl::opt<bool>
RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
cl::init(true), cl::Hidden,
cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
"vectorizer instead of before"));
static cl::opt<bool> UseCFLAA("use-cfl-aa",
cl::init(false), cl::Hidden,
cl::desc("Enable the new, experimental CFL alias analysis"));
static cl::opt<bool>
EnableMLSM("mlsm", cl::init(true), cl::Hidden,
cl::desc("Enable motion of merged load and store"));
static cl::opt<bool> EnableLoopInterchange(
"enable-loopinterchange", cl::init(false), cl::Hidden,
cl::desc("Enable the new, experimental LoopInterchange Pass"));
static cl::opt<bool> EnableLoopDistribute(
"enable-loop-distribute", cl::init(false), cl::Hidden,
cl::desc("Enable the new, experimental LoopDistribution Pass"));
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
LibraryInfo = nullptr;
Inliner = nullptr;
DisableUnitAtATime = false;
DisableUnrollLoops = false;
BBVectorize = RunBBVectorization;
SLPVectorize = RunSLPVectorization;
LoopVectorize = RunLoopVectorization;
RerollLoops = RunLoopRerolling;
LoadCombine = RunLoadCombine;
DisableGVNLoadPRE = false;
VerifyInput = false;
VerifyOutput = false;
MergeFunctions = false;
}
PassManagerBuilder::~PassManagerBuilder() {
delete LibraryInfo;
delete Inliner;
}
/// Set of global extensions, automatically added as part of the standard set.
static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
void PassManagerBuilder::addGlobalExtension(
PassManagerBuilder::ExtensionPointTy Ty,
PassManagerBuilder::ExtensionFn Fn) {
GlobalExtensions->push_back(std::make_pair(Ty, Fn));
}
void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
Extensions.push_back(std::make_pair(Ty, Fn));
}
void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
legacy::PassManagerBase &PM) const {
for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i)
if ((*GlobalExtensions)[i].first == ETy)
(*GlobalExtensions)[i].second(*this, PM);
for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
if (Extensions[i].first == ETy)
Extensions[i].second(*this, PM);
}
void PassManagerBuilder::addInitialAliasAnalysisPasses(
legacy::PassManagerBase &PM) const {
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
if (UseCFLAA)
PM.add(createCFLAliasAnalysisPass());
PM.add(createTypeBasedAliasAnalysisPass());
PM.add(createScopedNoAliasAAPass());
PM.add(createBasicAliasAnalysisPass());
}
void PassManagerBuilder::populateFunctionPassManager(
legacy::FunctionPassManager &FPM) {
addExtensionsToPM(EP_EarlyAsPossible, FPM);
// Add LibraryInfo if we have some.
if (LibraryInfo)
FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
if (OptLevel == 0) return;
addInitialAliasAnalysisPasses(FPM);
FPM.add(createCFGSimplificationPass());
if (UseNewSROA)
FPM.add(createSROAPass());
else
FPM.add(createScalarReplAggregatesPass());
FPM.add(createEarlyCSEPass());
FPM.add(createLowerExpectIntrinsicPass());
}
void PassManagerBuilder::populateModulePassManager(
legacy::PassManagerBase &MPM) {
// If all optimizations are disabled, just run the always-inline pass and,
// if enabled, the function merging pass.
if (OptLevel == 0) {
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
// FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
// creates a CGSCC pass manager, but we don't want to add extensions into
// that pass manager. To prevent this we insert a no-op module pass to reset
// the pass manager to get the same behavior as EP_OptimizerLast in non-O0
// builds. The function merging pass is
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
else if (!GlobalExtensions->empty() || !Extensions.empty())
MPM.add(createBarrierNoopPass());
addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
return;
}
// Add LibraryInfo if we have some.
if (LibraryInfo)
MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
addInitialAliasAnalysisPasses(MPM);
if (!DisableUnitAtATime) {
addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
MPM.add(createIPSCCPPass()); // IP SCCP
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
}
// Start of CallGraph SCC passes.
if (!DisableUnitAtATime)
MPM.add(createPruneEHPass()); // Remove dead EH info
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
if (!DisableUnitAtATime)
MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs
if (OptLevel > 2)
MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
if (UseNewSROA)
MPM.add(createSROAPass(/*RequiresDomTree*/ false));
else
MPM.add(createScalarReplAggregatesPass(-1, false));
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
MPM.add(createJumpThreadingPass()); // Thread jumps.
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Combine silly seq's
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createReassociatePass()); // Reassociate expressions
// Rotate Loop - disable header duplication at -Oz
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
MPM.add(createLICMPass()); // Hoist loop invariants
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
MPM.add(createInstructionCombiningPass());
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createLoopDeletionPass()); // Delete dead loops
if (EnableLoopInterchange) {
MPM.add(createLoopInterchangePass()); // Interchange loops
MPM.add(createCFGSimplificationPass());
}
if (!DisableUnrollLoops)
MPM.add(createSimpleLoopUnrollPass()); // Unroll small loops
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
if (OptLevel > 1) {
if (EnableMLSM)
MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
}
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
MPM.add(createSCCPPass()); // Constant prop with SCCP
// Delete dead bit computations (instcombine runs after to fold away the dead
// computations, and then ADCE will run later to exploit any new DCE
// opportunities that creates).
MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
MPM.add(createInstructionCombiningPass());
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createJumpThreadingPass()); // Thread jumps
MPM.add(createCorrelatedValuePropagationPass());
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
MPM.add(createLICMPass());
addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
if (RerollLoops)
MPM.add(createLoopRerollPass());
if (!RunSLPAfterLoopVectorization) {
if (SLPVectorize)
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
if (BBVectorize) {
MPM.add(createBBVectorizePass());
MPM.add(createInstructionCombiningPass());
addExtensionsToPM(EP_Peephole, MPM);
if (OptLevel > 1 && UseGVNAfterVectorization)
MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
else
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
// BBVectorize may have significantly shortened a loop body; unroll again.
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass());
}
}
if (LoadCombine)
MPM.add(createLoadCombinePass());
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Clean up after everything.
addExtensionsToPM(EP_Peephole, MPM);
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
// pass manager that we are specifically trying to avoid. To prevent this
// we must insert a no-op module pass to reset the pass manager.
MPM.add(createBarrierNoopPass());
if (RunFloat2Int)
MPM.add(createFloat2IntPass());
// Re-rotate loops in all our loop nests. These may have fallout out of
// rotated form due to GVN or other transformations, and the vectorizer relies
// on the rotated form.
MPM.add(createLoopRotatePass());
// Distribute loops to allow partial vectorization. I.e. isolate dependences
// into separate loop that would otherwise inhibit vectorization.
if (EnableLoopDistribute)
MPM.add(createLoopDistributePass());
MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
// FIXME: Because of #pragma vectorize enable, the passes below are always
// inserted in the pipeline, even when the vectorizer doesn't run (ex. when
// on -O1 and no #pragma is found). Would be good to have these two passes
// as function calls, so that we can only pass them when the vectorizer
// changed the code.
MPM.add(createInstructionCombiningPass());
if (OptLevel > 1 && ExtraVectorizerPasses) {
// At higher optimization levels, try to clean up any runtime overlap and
// alignment checks inserted by the vectorizer. We want to track correllated
// runtime checks for two inner loops in the same outer loop, fold any
// common computations, hoist loop-invariant aspects out of any outer loop,
// and unswitch the runtime checks if possible. Once hoisted, we may have
// dead (or speculatable) control flows or more combining opportunities.
MPM.add(createEarlyCSEPass());
MPM.add(createCorrelatedValuePropagationPass());
MPM.add(createInstructionCombiningPass());
MPM.add(createLICMPass());
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3));
MPM.add(createCFGSimplificationPass());
MPM.add(createInstructionCombiningPass());
}
if (RunSLPAfterLoopVectorization) {
if (SLPVectorize) {
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
if (OptLevel > 1 && ExtraVectorizerPasses) {
MPM.add(createEarlyCSEPass());
}
}
if (BBVectorize) {
MPM.add(createBBVectorizePass());
MPM.add(createInstructionCombiningPass());
addExtensionsToPM(EP_Peephole, MPM);
if (OptLevel > 1 && UseGVNAfterVectorization)
MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
else
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
// BBVectorize may have significantly shortened a loop body; unroll again.
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass());
}
}
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createCFGSimplificationPass());
MPM.add(createInstructionCombiningPass());
if (!DisableUnrollLoops) {
MPM.add(createLoopUnrollPass()); // Unroll small loops
// LoopUnroll may generate some redundency to cleanup.
MPM.add(createInstructionCombiningPass());
// Runtime unrolling will introduce runtime check in loop prologue. If the
// unrolled loop is a inner loop, then the prologue will be inside the
// outer loop. LICM pass can help to promote the runtime check out if the
// checked value is loop invariant.
MPM.add(createLICMPass());
}
// After vectorization and unrolling, assume intrinsics may tell us more
// about pointer alignments.
MPM.add(createAlignmentFromAssumptionsPass());
if (!DisableUnitAtATime) {
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
// GlobalOpt already deletes dead functions and globals, at -O2 try a
// late pass of GlobalDCE. It is capable of deleting dead cycles.
if (OptLevel > 1) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
MPM.add(createConstantMergePass()); // Merge dup global constants
}
}
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
addExtensionsToPM(EP_OptimizerLast, MPM);
}
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
// Provide AliasAnalysis services for optimizations.
addInitialAliasAnalysisPasses(PM);
// Propagate constants at call sites into the functions they call. This
// opens opportunities for globalopt (and inlining) by substituting function
// pointers passed as arguments to direct uses of functions.
PM.add(createIPSCCPPass());
// Now that we internalized some globals, see if we can hack on them!
PM.add(createGlobalOptimizerPass());
// Linking modules together can lead to duplicated global constants, only
// keep one copy of each constant.
PM.add(createConstantMergePass());
// Remove unused arguments from functions.
PM.add(createDeadArgEliminationPass());
// Reduce the code after globalopt and ipsccp. Both can open up significant
// simplification opportunities, and both can propagate functions through
// function pointers. When this happens, we often have to resolve varargs
// calls, etc, so let instcombine do this.
PM.add(createInstructionCombiningPass());
addExtensionsToPM(EP_Peephole, PM);
// Inline small functions
bool RunInliner = Inliner;
if (RunInliner) {
PM.add(Inliner);
Inliner = nullptr;
}
PM.add(createPruneEHPass()); // Remove dead EH info.
// Optimize globals again if we ran the inliner.
if (RunInliner)
PM.add(createGlobalOptimizerPass());
PM.add(createGlobalDCEPass()); // Remove dead functions.
// If we didn't decide to inline a function, check to see if we can
// transform it to pass arguments by value instead of by reference.
PM.add(createArgumentPromotionPass());
// The IPO passes may leave cruft around. Clean up after them.
PM.add(createInstructionCombiningPass());
addExtensionsToPM(EP_Peephole, PM);
PM.add(createJumpThreadingPass());
// Break up allocas
if (UseNewSROA)
PM.add(createSROAPass());
else
PM.add(createScalarReplAggregatesPass());
// Run a few AA driven optimizations here and now, to cleanup the code.
PM.add(createFunctionAttrsPass()); // Add nocapture.
PM.add(createGlobalsModRefPass()); // IP alias analysis.
PM.add(createLICMPass()); // Hoist loop invariants.
if (EnableMLSM)
PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
PM.add(createMemCpyOptPass()); // Remove dead memcpys.
// Nuke dead stores.
PM.add(createDeadStoreEliminationPass());
// More loops are countable; try to optimize them.
PM.add(createIndVarSimplifyPass());
PM.add(createLoopDeletionPass());
if (EnableLoopInterchange)
PM.add(createLoopInterchangePass());
PM.add(createLoopVectorizePass(true, LoopVectorize));
// More scalar chains could be vectorized due to more alias information
if (RunSLPAfterLoopVectorization)
if (SLPVectorize)
PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
// After vectorization, assume intrinsics may tell us more about pointer
// alignments.
PM.add(createAlignmentFromAssumptionsPass());
if (LoadCombine)
PM.add(createLoadCombinePass());
// Cleanup and simplify the code after the scalar optimizations.
PM.add(createInstructionCombiningPass());
addExtensionsToPM(EP_Peephole, PM);
PM.add(createJumpThreadingPass());
}
void PassManagerBuilder::addLateLTOOptimizationPasses(
legacy::PassManagerBase &PM) {
// Delete basic blocks, which optimization passes may have killed.
PM.add(createCFGSimplificationPass());
// Now that we have optimized the program, discard unreachable functions.
PM.add(createGlobalDCEPass());
// FIXME: this is profitable (for compiler time) to do at -O0 too, but
// currently it damages debug info.
if (MergeFunctions)
PM.add(createMergeFunctionsPass());
}
void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
if (LibraryInfo)
PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
if (VerifyInput)
PM.add(createVerifierPass());
if (OptLevel > 1)
addLTOOptimizationPasses(PM);
// Lower bit sets to globals. This pass supports Clang's control flow
// integrity mechanisms (-fsanitize=cfi*) and needs to run at link time if CFI
// is enabled. The pass does nothing if CFI is disabled.
PM.add(createLowerBitSetsPass());
if (OptLevel != 0)
addLateLTOOptimizationPasses(PM);
if (VerifyOutput)
PM.add(createVerifierPass());
}
inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
return reinterpret_cast<PassManagerBuilder*>(P);
}
inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
}
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
PassManagerBuilder *Builder = unwrap(PMB);
delete Builder;
}
void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
unsigned OptLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->OptLevel = OptLevel;
}
void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
unsigned SizeLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->SizeLevel = SizeLevel;
}
void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnitAtATime = Value;
}
void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnrollLoops = Value;
}
void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
// NOTE: The simplify-libcalls pass has been removed.
}
void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
unsigned Threshold) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->Inliner = createFunctionInliningPass(Threshold);
}
void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
Builder->populateFunctionPassManager(*FPM);
}
void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::PassManagerBase *MPM = unwrap(PM);
Builder->populateModulePassManager(*MPM);
}
void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM,
LLVMBool Internalize,
LLVMBool RunInliner) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::PassManagerBase *LPM = unwrap(PM);
// A small backwards compatibility hack. populateLTOPassManager used to take
// an RunInliner option.
if (RunInliner && !Builder->Inliner)
Builder->Inliner = createFunctionInliningPass();
Builder->populateLTOPassManager(*LPM);
}