forked from OSchip/llvm-project
1288 lines
48 KiB
C++
1288 lines
48 KiB
C++
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a DAG instruction selector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "DAGISelEmitter.h"
|
|
#include "Record.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDTypeConstraint implementation
|
|
//
|
|
|
|
SDTypeConstraint::SDTypeConstraint(Record *R) {
|
|
OperandNo = R->getValueAsInt("OperandNum");
|
|
|
|
if (R->isSubClassOf("SDTCisVT")) {
|
|
ConstraintType = SDTCisVT;
|
|
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
|
|
} else if (R->isSubClassOf("SDTCisInt")) {
|
|
ConstraintType = SDTCisInt;
|
|
} else if (R->isSubClassOf("SDTCisFP")) {
|
|
ConstraintType = SDTCisFP;
|
|
} else if (R->isSubClassOf("SDTCisSameAs")) {
|
|
ConstraintType = SDTCisSameAs;
|
|
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
|
|
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
|
|
ConstraintType = SDTCisVTSmallerThanOp;
|
|
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
|
|
R->getValueAsInt("OtherOperandNum");
|
|
} else {
|
|
std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
|
|
/// N, which has NumResults results.
|
|
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
|
|
TreePatternNode *N,
|
|
unsigned NumResults) const {
|
|
assert(NumResults == 1 && "We only work with single result nodes so far!");
|
|
|
|
if (OpNo < NumResults)
|
|
return N; // FIXME: need value #
|
|
else
|
|
return N->getChild(OpNo-NumResults);
|
|
}
|
|
|
|
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
|
|
/// constraint to the nodes operands. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, throw an
|
|
/// exception.
|
|
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
|
|
const SDNodeInfo &NodeInfo,
|
|
TreePattern &TP) const {
|
|
unsigned NumResults = NodeInfo.getNumResults();
|
|
assert(NumResults == 1 && "We only work with single result nodes so far!");
|
|
|
|
// Check that the number of operands is sane.
|
|
if (NodeInfo.getNumOperands() >= 0) {
|
|
if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
|
|
TP.error(N->getOperator()->getName() + " node requires exactly " +
|
|
itostr(NodeInfo.getNumOperands()) + " operands!");
|
|
}
|
|
|
|
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
|
|
|
|
switch (ConstraintType) {
|
|
default: assert(0 && "Unknown constraint type!");
|
|
case SDTCisVT:
|
|
// Operand must be a particular type.
|
|
return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
|
|
case SDTCisInt:
|
|
if (NodeToApply->hasTypeSet() && !MVT::isInteger(NodeToApply->getType()))
|
|
NodeToApply->UpdateNodeType(MVT::i1, TP); // throw an error.
|
|
|
|
// FIXME: can tell from the target if there is only one Int type supported.
|
|
return false;
|
|
case SDTCisFP:
|
|
if (NodeToApply->hasTypeSet() &&
|
|
!MVT::isFloatingPoint(NodeToApply->getType()))
|
|
NodeToApply->UpdateNodeType(MVT::f32, TP); // throw an error.
|
|
// FIXME: can tell from the target if there is only one FP type supported.
|
|
return false;
|
|
case SDTCisSameAs: {
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
|
|
return NodeToApply->UpdateNodeType(OtherNode->getType(), TP) |
|
|
OtherNode->UpdateNodeType(NodeToApply->getType(), TP);
|
|
}
|
|
case SDTCisVTSmallerThanOp: {
|
|
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
|
|
// have an integer type that is smaller than the VT.
|
|
if (!NodeToApply->isLeaf() ||
|
|
!dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
|
|
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
|
|
->isSubClassOf("ValueType"))
|
|
TP.error(N->getOperator()->getName() + " expects a VT operand!");
|
|
MVT::ValueType VT =
|
|
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
|
|
if (!MVT::isInteger(VT))
|
|
TP.error(N->getOperator()->getName() + " VT operand must be integer!");
|
|
|
|
TreePatternNode *OtherNode =
|
|
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
|
|
if (OtherNode->hasTypeSet() &&
|
|
(!MVT::isInteger(OtherNode->getType()) ||
|
|
OtherNode->getType() <= VT))
|
|
OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SDNodeInfo implementation
|
|
//
|
|
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
|
|
EnumName = R->getValueAsString("Opcode");
|
|
SDClassName = R->getValueAsString("SDClass");
|
|
Record *TypeProfile = R->getValueAsDef("TypeProfile");
|
|
NumResults = TypeProfile->getValueAsInt("NumResults");
|
|
NumOperands = TypeProfile->getValueAsInt("NumOperands");
|
|
|
|
// Parse the type constraints.
|
|
ListInit *Constraints = TypeProfile->getValueAsListInit("Constraints");
|
|
for (unsigned i = 0, e = Constraints->getSize(); i != e; ++i) {
|
|
assert(dynamic_cast<DefInit*>(Constraints->getElement(i)) &&
|
|
"Constraints list should contain constraint definitions!");
|
|
Record *Constraint =
|
|
static_cast<DefInit*>(Constraints->getElement(i))->getDef();
|
|
TypeConstraints.push_back(Constraint);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePatternNode implementation
|
|
//
|
|
|
|
TreePatternNode::~TreePatternNode() {
|
|
#if 0 // FIXME: implement refcounted tree nodes!
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
delete getChild(i);
|
|
#endif
|
|
}
|
|
|
|
/// UpdateNodeType - Set the node type of N to VT if VT contains
|
|
/// information. If N already contains a conflicting type, then throw an
|
|
/// exception. This returns true if any information was updated.
|
|
///
|
|
bool TreePatternNode::UpdateNodeType(MVT::ValueType VT, TreePattern &TP) {
|
|
if (VT == MVT::LAST_VALUETYPE || getType() == VT) return false;
|
|
if (getType() == MVT::LAST_VALUETYPE) {
|
|
setType(VT);
|
|
return true;
|
|
}
|
|
|
|
TP.error("Type inference contradiction found in node " +
|
|
getOperator()->getName() + "!");
|
|
return true; // unreachable
|
|
}
|
|
|
|
|
|
void TreePatternNode::print(std::ostream &OS) const {
|
|
if (isLeaf()) {
|
|
OS << *getLeafValue();
|
|
} else {
|
|
OS << "(" << getOperator()->getName();
|
|
}
|
|
|
|
if (getType() == MVT::Other)
|
|
OS << ":Other";
|
|
else if (getType() == MVT::LAST_VALUETYPE)
|
|
;//OS << ":?";
|
|
else
|
|
OS << ":" << getType();
|
|
|
|
if (!isLeaf()) {
|
|
if (getNumChildren() != 0) {
|
|
OS << " ";
|
|
getChild(0)->print(OS);
|
|
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
|
|
OS << ", ";
|
|
getChild(i)->print(OS);
|
|
}
|
|
}
|
|
OS << ")";
|
|
}
|
|
|
|
if (!PredicateFn.empty())
|
|
OS << "<<P:" << PredicateFn << ">>";
|
|
if (TransformFn)
|
|
OS << "<<X:" << TransformFn->getName() << ">>";
|
|
if (!getName().empty())
|
|
OS << ":$" << getName();
|
|
|
|
}
|
|
void TreePatternNode::dump() const {
|
|
print(std::cerr);
|
|
}
|
|
|
|
/// clone - Make a copy of this tree and all of its children.
|
|
///
|
|
TreePatternNode *TreePatternNode::clone() const {
|
|
TreePatternNode *New;
|
|
if (isLeaf()) {
|
|
New = new TreePatternNode(getLeafValue());
|
|
} else {
|
|
std::vector<TreePatternNode*> CChildren;
|
|
CChildren.reserve(Children.size());
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
CChildren.push_back(getChild(i)->clone());
|
|
New = new TreePatternNode(getOperator(), CChildren);
|
|
}
|
|
New->setName(getName());
|
|
New->setType(getType());
|
|
New->setPredicateFn(getPredicateFn());
|
|
New->setTransformFn(getTransformFn());
|
|
return New;
|
|
}
|
|
|
|
/// SubstituteFormalArguments - Replace the formal arguments in this tree
|
|
/// with actual values specified by ArgMap.
|
|
void TreePatternNode::
|
|
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
|
|
if (isLeaf()) return;
|
|
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = getChild(i);
|
|
if (Child->isLeaf()) {
|
|
Init *Val = Child->getLeafValue();
|
|
if (dynamic_cast<DefInit*>(Val) &&
|
|
static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
|
|
// We found a use of a formal argument, replace it with its value.
|
|
Child = ArgMap[Child->getName()];
|
|
assert(Child && "Couldn't find formal argument!");
|
|
setChild(i, Child);
|
|
}
|
|
} else {
|
|
getChild(i)->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// InlinePatternFragments - If this pattern refers to any pattern
|
|
/// fragments, inline them into place, giving us a pattern without any
|
|
/// PatFrag references.
|
|
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
|
|
if (isLeaf()) return this; // nothing to do.
|
|
Record *Op = getOperator();
|
|
|
|
if (!Op->isSubClassOf("PatFrag")) {
|
|
// Just recursively inline children nodes.
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
setChild(i, getChild(i)->InlinePatternFragments(TP));
|
|
return this;
|
|
}
|
|
|
|
// Otherwise, we found a reference to a fragment. First, look up its
|
|
// TreePattern record.
|
|
TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
|
|
|
|
// Verify that we are passing the right number of operands.
|
|
if (Frag->getNumArgs() != Children.size())
|
|
TP.error("'" + Op->getName() + "' fragment requires " +
|
|
utostr(Frag->getNumArgs()) + " operands!");
|
|
|
|
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
|
|
|
|
// Resolve formal arguments to their actual value.
|
|
if (Frag->getNumArgs()) {
|
|
// Compute the map of formal to actual arguments.
|
|
std::map<std::string, TreePatternNode*> ArgMap;
|
|
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
|
|
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
|
|
|
|
FragTree->SubstituteFormalArguments(ArgMap);
|
|
}
|
|
|
|
FragTree->setName(getName());
|
|
|
|
// Get a new copy of this fragment to stitch into here.
|
|
//delete this; // FIXME: implement refcounting!
|
|
return FragTree;
|
|
}
|
|
|
|
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
|
|
/// this node and its children in the tree. This returns true if it makes a
|
|
/// change, false otherwise. If a type contradiction is found, throw an
|
|
/// exception.
|
|
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP) {
|
|
if (isLeaf()) return false;
|
|
|
|
// special handling for set, which isn't really an SDNode.
|
|
if (getOperator()->getName() == "set") {
|
|
assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
|
|
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP);
|
|
MadeChange |= getChild(1)->ApplyTypeConstraints(TP);
|
|
|
|
// Types of operands must match.
|
|
MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getType(), TP);
|
|
MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getType(), TP);
|
|
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
|
|
return MadeChange;
|
|
} else if (getOperator()->isSubClassOf("SDNode")) {
|
|
const SDNodeInfo &NI = TP.getDAGISelEmitter().getSDNodeInfo(getOperator());
|
|
|
|
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP);
|
|
return MadeChange;
|
|
} else if (getOperator()->isSubClassOf("Instruction")) {
|
|
const DAGInstruction &Inst =
|
|
TP.getDAGISelEmitter().getInstruction(getOperator());
|
|
|
|
assert(Inst.getNumResults() == 1 && "Only supports one result instrs!");
|
|
// Apply the result type to the node
|
|
bool MadeChange = UpdateNodeType(Inst.getResultType(0), TP);
|
|
|
|
if (getNumChildren() != Inst.getNumOperands())
|
|
TP.error("Instruction '" + getOperator()->getName() + " expects " +
|
|
utostr(Inst.getNumOperands()) + " operands, not " +
|
|
utostr(getNumChildren()) + " operands!");
|
|
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
|
|
MadeChange |= getChild(i)->UpdateNodeType(Inst.getOperandType(i), TP);
|
|
MadeChange |= getChild(i)->ApplyTypeConstraints(TP);
|
|
}
|
|
return MadeChange;
|
|
} else {
|
|
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
|
|
|
|
// Node transforms always take one operand, and take and return the same
|
|
// type.
|
|
if (getNumChildren() != 1)
|
|
TP.error("Node transform '" + getOperator()->getName() +
|
|
"' requires one operand!");
|
|
bool MadeChange = UpdateNodeType(getChild(0)->getType(), TP);
|
|
MadeChange |= getChild(0)->UpdateNodeType(getType(), TP);
|
|
return MadeChange;
|
|
}
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TreePattern implementation
|
|
//
|
|
|
|
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat,
|
|
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
|
|
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
|
|
Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, DagInit *Pat,
|
|
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
|
|
Trees.push_back(ParseTreePattern(Pat));
|
|
}
|
|
|
|
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat,
|
|
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
|
|
Trees.push_back(Pat);
|
|
}
|
|
|
|
|
|
|
|
void TreePattern::error(const std::string &Msg) const {
|
|
dump();
|
|
throw "In " + TheRecord->getName() + ": " + Msg;
|
|
}
|
|
|
|
/// getIntrinsicType - Check to see if the specified record has an intrinsic
|
|
/// type which should be applied to it. This infer the type of register
|
|
/// references from the register file information, for example.
|
|
///
|
|
MVT::ValueType TreePattern::getIntrinsicType(Record *R) const {
|
|
// Check to see if this is a register or a register class...
|
|
if (R->isSubClassOf("RegisterClass"))
|
|
return getValueType(R->getValueAsDef("RegType"));
|
|
else if (R->isSubClassOf("PatFrag")) {
|
|
// Pattern fragment types will be resolved when they are inlined.
|
|
return MVT::LAST_VALUETYPE;
|
|
} else if (R->isSubClassOf("Register")) {
|
|
assert(0 && "Explicit registers not handled here yet!\n");
|
|
return MVT::LAST_VALUETYPE;
|
|
} else if (R->isSubClassOf("ValueType")) {
|
|
// Using a VTSDNode.
|
|
return MVT::Other;
|
|
} else if (R->getName() == "node") {
|
|
// Placeholder.
|
|
return MVT::LAST_VALUETYPE;
|
|
}
|
|
|
|
error("Unknown node flavor used in pattern: " + R->getName());
|
|
return MVT::Other;
|
|
}
|
|
|
|
TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
|
|
Record *Operator = Dag->getNodeType();
|
|
|
|
if (Operator->isSubClassOf("ValueType")) {
|
|
// If the operator is a ValueType, then this must be "type cast" of a leaf
|
|
// node.
|
|
if (Dag->getNumArgs() != 1)
|
|
error("Type cast only valid for a leaf node!");
|
|
|
|
Init *Arg = Dag->getArg(0);
|
|
TreePatternNode *New;
|
|
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
|
|
Record *R = DI->getDef();
|
|
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
|
|
Dag->setArg(0, new DagInit(R,
|
|
std::vector<std::pair<Init*, std::string> >()));
|
|
TreePatternNode *TPN = ParseTreePattern(Dag);
|
|
TPN->setName(Dag->getArgName(0));
|
|
return TPN;
|
|
}
|
|
|
|
New = new TreePatternNode(DI);
|
|
// If it's a regclass or something else known, set the type.
|
|
New->setType(getIntrinsicType(DI->getDef()));
|
|
} else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
|
|
New = ParseTreePattern(DI);
|
|
} else {
|
|
Arg->dump();
|
|
error("Unknown leaf value for tree pattern!");
|
|
return 0;
|
|
}
|
|
|
|
// Apply the type cast.
|
|
New->UpdateNodeType(getValueType(Operator), *this);
|
|
return New;
|
|
}
|
|
|
|
// Verify that this is something that makes sense for an operator.
|
|
if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
|
|
!Operator->isSubClassOf("Instruction") &&
|
|
!Operator->isSubClassOf("SDNodeXForm") &&
|
|
Operator->getName() != "set")
|
|
error("Unrecognized node '" + Operator->getName() + "'!");
|
|
|
|
std::vector<TreePatternNode*> Children;
|
|
|
|
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
|
|
Init *Arg = Dag->getArg(i);
|
|
if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
|
|
Children.push_back(ParseTreePattern(DI));
|
|
Children.back()->setName(Dag->getArgName(i));
|
|
} else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
|
|
Record *R = DefI->getDef();
|
|
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
|
|
// TreePatternNode if its own.
|
|
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
|
|
Dag->setArg(i, new DagInit(R,
|
|
std::vector<std::pair<Init*, std::string> >()));
|
|
--i; // Revisit this node...
|
|
} else {
|
|
TreePatternNode *Node = new TreePatternNode(DefI);
|
|
Node->setName(Dag->getArgName(i));
|
|
Children.push_back(Node);
|
|
|
|
// If it's a regclass or something else known, set the type.
|
|
Node->setType(getIntrinsicType(R));
|
|
|
|
// Input argument?
|
|
if (R->getName() == "node") {
|
|
if (Dag->getArgName(i).empty())
|
|
error("'node' argument requires a name to match with operand list");
|
|
Args.push_back(Dag->getArgName(i));
|
|
}
|
|
}
|
|
} else {
|
|
Arg->dump();
|
|
error("Unknown leaf value for tree pattern!");
|
|
}
|
|
}
|
|
|
|
return new TreePatternNode(Operator, Children);
|
|
}
|
|
|
|
/// InferAllTypes - Infer/propagate as many types throughout the expression
|
|
/// patterns as possible. Return true if all types are infered, false
|
|
/// otherwise. Throw an exception if a type contradiction is found.
|
|
bool TreePattern::InferAllTypes() {
|
|
bool MadeChange = true;
|
|
while (MadeChange) {
|
|
MadeChange = false;
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
|
|
MadeChange |= Trees[i]->ApplyTypeConstraints(*this);
|
|
}
|
|
|
|
bool HasUnresolvedTypes = false;
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
|
|
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
|
|
return !HasUnresolvedTypes;
|
|
}
|
|
|
|
void TreePattern::print(std::ostream &OS) const {
|
|
OS << getRecord()->getName();
|
|
if (!Args.empty()) {
|
|
OS << "(" << Args[0];
|
|
for (unsigned i = 1, e = Args.size(); i != e; ++i)
|
|
OS << ", " << Args[i];
|
|
OS << ")";
|
|
}
|
|
OS << ": ";
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "[\n";
|
|
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
|
|
OS << "\t";
|
|
Trees[i]->print(OS);
|
|
OS << "\n";
|
|
}
|
|
|
|
if (Trees.size() > 1)
|
|
OS << "]\n";
|
|
}
|
|
|
|
void TreePattern::dump() const { print(std::cerr); }
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DAGISelEmitter implementation
|
|
//
|
|
|
|
// Parse all of the SDNode definitions for the target, populating SDNodes.
|
|
void DAGISelEmitter::ParseNodeInfo() {
|
|
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
|
|
while (!Nodes.empty()) {
|
|
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
|
|
Nodes.pop_back();
|
|
}
|
|
}
|
|
|
|
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
|
|
/// map, and emit them to the file as functions.
|
|
void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
|
|
OS << "\n// Node transformations.\n";
|
|
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
|
|
while (!Xforms.empty()) {
|
|
Record *XFormNode = Xforms.back();
|
|
Record *SDNode = XFormNode->getValueAsDef("Opcode");
|
|
std::string Code = XFormNode->getValueAsCode("XFormFunction");
|
|
SDNodeXForms.insert(std::make_pair(XFormNode,
|
|
std::make_pair(SDNode, Code)));
|
|
|
|
if (!Code.empty()) {
|
|
std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
|
|
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
|
|
|
|
OS << "inline SDOperand Transform_" << XFormNode->getName()
|
|
<< "(SDNode *" << C2 << ") {\n";
|
|
if (ClassName != "SDNode")
|
|
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
|
|
OS << Code << "\n}\n";
|
|
}
|
|
|
|
Xforms.pop_back();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
|
|
/// file, building up the PatternFragments map. After we've collected them all,
|
|
/// inline fragments together as necessary, so that there are no references left
|
|
/// inside a pattern fragment to a pattern fragment.
|
|
///
|
|
/// This also emits all of the predicate functions to the output file.
|
|
///
|
|
void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
|
|
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
|
|
|
|
// First step, parse all of the fragments and emit predicate functions.
|
|
OS << "\n// Predicate functions.\n";
|
|
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
|
|
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
|
|
TreePattern *P = new TreePattern(Fragments[i], Tree, *this);
|
|
PatternFragments[Fragments[i]] = P;
|
|
|
|
// Validate the argument list, converting it to map, to discard duplicates.
|
|
std::vector<std::string> &Args = P->getArgList();
|
|
std::set<std::string> OperandsMap(Args.begin(), Args.end());
|
|
|
|
if (OperandsMap.count(""))
|
|
P->error("Cannot have unnamed 'node' values in pattern fragment!");
|
|
|
|
// Parse the operands list.
|
|
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
|
|
if (OpsList->getNodeType()->getName() != "ops")
|
|
P->error("Operands list should start with '(ops ... '!");
|
|
|
|
// Copy over the arguments.
|
|
Args.clear();
|
|
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
|
|
if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
|
|
static_cast<DefInit*>(OpsList->getArg(j))->
|
|
getDef()->getName() != "node")
|
|
P->error("Operands list should all be 'node' values.");
|
|
if (OpsList->getArgName(j).empty())
|
|
P->error("Operands list should have names for each operand!");
|
|
if (!OperandsMap.count(OpsList->getArgName(j)))
|
|
P->error("'" + OpsList->getArgName(j) +
|
|
"' does not occur in pattern or was multiply specified!");
|
|
OperandsMap.erase(OpsList->getArgName(j));
|
|
Args.push_back(OpsList->getArgName(j));
|
|
}
|
|
|
|
if (!OperandsMap.empty())
|
|
P->error("Operands list does not contain an entry for operand '" +
|
|
*OperandsMap.begin() + "'!");
|
|
|
|
// If there is a code init for this fragment, emit the predicate code and
|
|
// keep track of the fact that this fragment uses it.
|
|
std::string Code = Fragments[i]->getValueAsCode("Predicate");
|
|
if (!Code.empty()) {
|
|
assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!");
|
|
std::string ClassName =
|
|
getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
|
|
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
|
|
|
|
OS << "inline bool Predicate_" << Fragments[i]->getName()
|
|
<< "(SDNode *" << C2 << ") {\n";
|
|
if (ClassName != "SDNode")
|
|
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
|
|
OS << Code << "\n}\n";
|
|
P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
|
|
}
|
|
|
|
// If there is a node transformation corresponding to this, keep track of
|
|
// it.
|
|
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
|
|
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
|
|
P->getOnlyTree()->setTransformFn(Transform);
|
|
}
|
|
|
|
OS << "\n\n";
|
|
|
|
// Now that we've parsed all of the tree fragments, do a closure on them so
|
|
// that there are not references to PatFrags left inside of them.
|
|
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
|
|
E = PatternFragments.end(); I != E; ++I) {
|
|
TreePattern *ThePat = I->second;
|
|
ThePat->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. Don't worry about it if we don't infer
|
|
// all of them, some may depend on the inputs of the pattern.
|
|
try {
|
|
ThePat->InferAllTypes();
|
|
} catch (...) {
|
|
// If this pattern fragment is not supported by this target (no types can
|
|
// satisfy its constraints), just ignore it. If the bogus pattern is
|
|
// actually used by instructions, the type consistency error will be
|
|
// reported there.
|
|
}
|
|
|
|
// If debugging, print out the pattern fragment result.
|
|
DEBUG(ThePat->dump());
|
|
}
|
|
}
|
|
|
|
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
|
|
/// instruction input. Return true if this is a real use.
|
|
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs) {
|
|
// No name -> not interesting.
|
|
if (Pat->getName().empty()) {
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
|
|
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
|
|
I->error("Input " + DI->getDef()->getName() + " must be named!");
|
|
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Record *Rec;
|
|
if (Pat->isLeaf()) {
|
|
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
|
|
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
|
|
Rec = DI->getDef();
|
|
} else {
|
|
assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
|
|
Rec = Pat->getOperator();
|
|
}
|
|
|
|
TreePatternNode *&Slot = InstInputs[Pat->getName()];
|
|
if (!Slot) {
|
|
Slot = Pat;
|
|
} else {
|
|
Record *SlotRec;
|
|
if (Slot->isLeaf()) {
|
|
SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
|
|
} else {
|
|
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
|
|
SlotRec = Slot->getOperator();
|
|
}
|
|
|
|
// Ensure that the inputs agree if we've already seen this input.
|
|
if (Rec != SlotRec)
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
if (Slot->getType() != Pat->getType())
|
|
I->error("All $" + Pat->getName() + " inputs must agree with each other");
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
|
|
/// part of "I", the instruction), computing the set of inputs and outputs of
|
|
/// the pattern. Report errors if we see anything naughty.
|
|
void DAGISelEmitter::
|
|
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
|
|
std::map<std::string, TreePatternNode*> &InstInputs,
|
|
std::map<std::string, Record*> &InstResults) {
|
|
if (Pat->isLeaf()) {
|
|
bool isUse = HandleUse(I, Pat, InstInputs);
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
} else if (Pat->getOperator()->getName() != "set") {
|
|
// If this is not a set, verify that the children nodes are not void typed,
|
|
// and recurse.
|
|
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
|
|
if (Pat->getChild(i)->getType() == MVT::isVoid)
|
|
I->error("Cannot have void nodes inside of patterns!");
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults);
|
|
}
|
|
|
|
// If this is a non-leaf node with no children, treat it basically as if
|
|
// it were a leaf. This handles nodes like (imm).
|
|
bool isUse = false;
|
|
if (Pat->getNumChildren() == 0)
|
|
isUse = HandleUse(I, Pat, InstInputs);
|
|
|
|
if (!isUse && Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function for a non-input value!");
|
|
return;
|
|
}
|
|
|
|
// Otherwise, this is a set, validate and collect instruction results.
|
|
if (Pat->getNumChildren() == 0)
|
|
I->error("set requires operands!");
|
|
else if (Pat->getNumChildren() & 1)
|
|
I->error("set requires an even number of operands");
|
|
|
|
if (Pat->getTransformFn())
|
|
I->error("Cannot specify a transform function on a set node!");
|
|
|
|
// Check the set destinations.
|
|
unsigned NumValues = Pat->getNumChildren()/2;
|
|
for (unsigned i = 0; i != NumValues; ++i) {
|
|
TreePatternNode *Dest = Pat->getChild(i);
|
|
if (!Dest->isLeaf())
|
|
I->error("set destination should be a virtual register!");
|
|
|
|
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
|
|
if (!Val)
|
|
I->error("set destination should be a virtual register!");
|
|
|
|
if (!Val->getDef()->isSubClassOf("RegisterClass"))
|
|
I->error("set destination should be a virtual register!");
|
|
if (Dest->getName().empty())
|
|
I->error("set destination must have a name!");
|
|
if (InstResults.count(Dest->getName()))
|
|
I->error("cannot set '" + Dest->getName() +"' multiple times");
|
|
InstResults[Dest->getName()] = Val->getDef();
|
|
|
|
// Verify and collect info from the computation.
|
|
FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
|
|
InstInputs, InstResults);
|
|
}
|
|
}
|
|
|
|
|
|
/// ParseInstructions - Parse all of the instructions, inlining and resolving
|
|
/// any fragments involved. This populates the Instructions list with fully
|
|
/// resolved instructions.
|
|
void DAGISelEmitter::ParseInstructions() {
|
|
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
|
|
|
|
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
|
|
if (!dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
|
|
continue; // no pattern yet, ignore it.
|
|
|
|
ListInit *LI = Instrs[i]->getValueAsListInit("Pattern");
|
|
if (LI->getSize() == 0) continue; // no pattern.
|
|
|
|
// Parse the instruction.
|
|
TreePattern *I = new TreePattern(Instrs[i], LI, *this);
|
|
// Inline pattern fragments into it.
|
|
I->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we can
|
|
// never do anything with this instruction pattern: report it to the user.
|
|
if (!I->InferAllTypes())
|
|
I->error("Could not infer all types in pattern!");
|
|
|
|
// InstInputs - Keep track of all of the inputs of the instruction, along
|
|
// with the record they are declared as.
|
|
std::map<std::string, TreePatternNode*> InstInputs;
|
|
|
|
// InstResults - Keep track of all the virtual registers that are 'set'
|
|
// in the instruction, including what reg class they are.
|
|
std::map<std::string, Record*> InstResults;
|
|
|
|
// Verify that the top-level forms in the instruction are of void type, and
|
|
// fill in the InstResults map.
|
|
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
|
|
TreePatternNode *Pat = I->getTree(j);
|
|
if (Pat->getType() != MVT::isVoid) {
|
|
I->dump();
|
|
I->error("Top-level forms in instruction pattern should have"
|
|
" void types");
|
|
}
|
|
|
|
// Find inputs and outputs, and verify the structure of the uses/defs.
|
|
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults);
|
|
}
|
|
|
|
// Now that we have inputs and outputs of the pattern, inspect the operands
|
|
// list for the instruction. This determines the order that operands are
|
|
// added to the machine instruction the node corresponds to.
|
|
unsigned NumResults = InstResults.size();
|
|
|
|
// Parse the operands list from the (ops) list, validating it.
|
|
std::vector<std::string> &Args = I->getArgList();
|
|
assert(Args.empty() && "Args list should still be empty here!");
|
|
CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
|
|
|
|
// Check that all of the results occur first in the list.
|
|
std::vector<MVT::ValueType> ResultTypes;
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
if (i == CGI.OperandList.size())
|
|
I->error("'" + InstResults.begin()->first +
|
|
"' set but does not appear in operand list!");
|
|
const std::string &OpName = CGI.OperandList[i].Name;
|
|
|
|
// Check that it exists in InstResults.
|
|
Record *R = InstResults[OpName];
|
|
if (R == 0)
|
|
I->error("Operand $" + OpName + " should be a set destination: all "
|
|
"outputs must occur before inputs in operand list!");
|
|
|
|
if (CGI.OperandList[i].Rec != R)
|
|
I->error("Operand $" + OpName + " class mismatch!");
|
|
|
|
// Remember the return type.
|
|
ResultTypes.push_back(CGI.OperandList[i].Ty);
|
|
|
|
// Okay, this one checks out.
|
|
InstResults.erase(OpName);
|
|
}
|
|
|
|
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
|
|
// the copy while we're checking the inputs.
|
|
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
|
|
|
|
std::vector<TreePatternNode*> ResultNodeOperands;
|
|
std::vector<MVT::ValueType> OperandTypes;
|
|
for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
|
|
const std::string &OpName = CGI.OperandList[i].Name;
|
|
if (OpName.empty())
|
|
I->error("Operand #" + utostr(i) + " in operands list has no name!");
|
|
|
|
if (!InstInputsCheck.count(OpName))
|
|
I->error("Operand $" + OpName +
|
|
" does not appear in the instruction pattern");
|
|
TreePatternNode *InVal = InstInputsCheck[OpName];
|
|
InstInputsCheck.erase(OpName); // It occurred, remove from map.
|
|
if (CGI.OperandList[i].Ty != InVal->getType())
|
|
I->error("Operand $" + OpName +
|
|
"'s type disagrees between the operand and pattern");
|
|
OperandTypes.push_back(InVal->getType());
|
|
|
|
// Construct the result for the dest-pattern operand list.
|
|
TreePatternNode *OpNode = InVal->clone();
|
|
|
|
// No predicate is useful on the result.
|
|
OpNode->setPredicateFn("");
|
|
|
|
// Promote the xform function to be an explicit node if set.
|
|
if (Record *Xform = OpNode->getTransformFn()) {
|
|
OpNode->setTransformFn(0);
|
|
std::vector<TreePatternNode*> Children;
|
|
Children.push_back(OpNode);
|
|
OpNode = new TreePatternNode(Xform, Children);
|
|
}
|
|
|
|
ResultNodeOperands.push_back(OpNode);
|
|
}
|
|
|
|
if (!InstInputsCheck.empty())
|
|
I->error("Input operand $" + InstInputsCheck.begin()->first +
|
|
" occurs in pattern but not in operands list!");
|
|
|
|
TreePatternNode *ResultPattern =
|
|
new TreePatternNode(I->getRecord(), ResultNodeOperands);
|
|
|
|
// Create and insert the instruction.
|
|
DAGInstruction TheInst(I, ResultTypes, OperandTypes);
|
|
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
|
|
|
|
// Use a temporary tree pattern to infer all types and make sure that the
|
|
// constructed result is correct. This depends on the instruction already
|
|
// being inserted into the Instructions map.
|
|
TreePattern Temp(I->getRecord(), ResultPattern, *this);
|
|
Temp.InferAllTypes();
|
|
|
|
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
|
|
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
|
|
|
|
DEBUG(I->dump());
|
|
}
|
|
|
|
// If we can, convert the instructions to be patterns that are matched!
|
|
for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
|
|
E = Instructions.end(); II != E; ++II) {
|
|
TreePattern *I = II->second.getPattern();
|
|
|
|
if (I->getNumTrees() != 1) {
|
|
std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
|
|
continue;
|
|
}
|
|
TreePatternNode *Pattern = I->getTree(0);
|
|
if (Pattern->getOperator()->getName() != "set")
|
|
continue; // Not a set (store or something?)
|
|
|
|
if (Pattern->getNumChildren() != 2)
|
|
continue; // Not a set of a single value (not handled so far)
|
|
|
|
TreePatternNode *SrcPattern = Pattern->getChild(1)->clone();
|
|
TreePatternNode *DstPattern = II->second.getResultPattern();
|
|
PatternsToMatch.push_back(std::make_pair(SrcPattern, DstPattern));
|
|
}
|
|
}
|
|
|
|
void DAGISelEmitter::ParsePatterns() {
|
|
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
|
|
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
|
|
TreePattern *Pattern = new TreePattern(Patterns[i], Tree, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Pattern->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we can
|
|
// never do anything with this pattern: report it to the user.
|
|
if (!Pattern->InferAllTypes())
|
|
Pattern->error("Could not infer all types in pattern!");
|
|
|
|
ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
|
|
if (LI->getSize() == 0) continue; // no pattern.
|
|
|
|
// Parse the instruction.
|
|
TreePattern *Result = new TreePattern(Patterns[i], LI, *this);
|
|
|
|
// Inline pattern fragments into it.
|
|
Result->InlinePatternFragments();
|
|
|
|
// Infer as many types as possible. If we cannot infer all of them, we can
|
|
// never do anything with this pattern: report it to the user.
|
|
if (!Result->InferAllTypes())
|
|
Result->error("Could not infer all types in pattern result!");
|
|
|
|
if (Result->getNumTrees() != 1)
|
|
Result->error("Cannot handle instructions producing instructions "
|
|
"with temporaries yet!");
|
|
PatternsToMatch.push_back(std::make_pair(Pattern->getOnlyTree(),
|
|
Result->getOnlyTree()));
|
|
}
|
|
|
|
DEBUG(std::cerr << "\n\nPARSED PATTERNS TO MATCH:\n\n";
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
|
|
std::cerr << "PATTERN: "; PatternsToMatch[i].first->dump();
|
|
std::cerr << "\nRESULT: ";PatternsToMatch[i].second->dump();
|
|
std::cerr << "\n";
|
|
});
|
|
}
|
|
|
|
/// EmitMatchForPattern - Emit a matcher for N, going to the label for PatternNo
|
|
/// if the match fails. At this point, we already know that the opcode for N
|
|
/// matches, and the SDNode for the result has the RootName specified name.
|
|
void DAGISelEmitter::EmitMatchForPattern(TreePatternNode *N,
|
|
const std::string &RootName,
|
|
std::map<std::string,std::string> &VarMap,
|
|
unsigned PatternNo, std::ostream &OS) {
|
|
assert(!N->isLeaf() && "Cannot match against a leaf!");
|
|
|
|
// If this node has a name associated with it, capture it in VarMap. If
|
|
// we already saw this in the pattern, emit code to verify dagness.
|
|
if (!N->getName().empty()) {
|
|
std::string &VarMapEntry = VarMap[N->getName()];
|
|
if (VarMapEntry.empty()) {
|
|
VarMapEntry = RootName;
|
|
} else {
|
|
// If we get here, this is a second reference to a specific name. Since
|
|
// we already have checked that the first reference is valid, we don't
|
|
// have to recursively match it, just check that it's the same as the
|
|
// previously named thing.
|
|
OS << " if (" << VarMapEntry << " != " << RootName
|
|
<< ") goto P" << PatternNo << "Fail;\n";
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Emit code to load the child nodes and match their contents recursively.
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
|
|
OS << " SDOperand " << RootName << i <<" = " << RootName
|
|
<< ".getOperand(" << i << ");\n";
|
|
TreePatternNode *Child = N->getChild(i);
|
|
|
|
if (!Child->isLeaf()) {
|
|
// If it's not a leaf, recursively match.
|
|
const SDNodeInfo &CInfo = getSDNodeInfo(Child->getOperator());
|
|
OS << " if (" << RootName << i << ".getOpcode() != "
|
|
<< CInfo.getEnumName() << ") goto P" << PatternNo << "Fail;\n";
|
|
EmitMatchForPattern(Child, RootName + utostr(i), VarMap, PatternNo, OS);
|
|
} else {
|
|
// If this child has a name associated with it, capture it in VarMap. If
|
|
// we already saw this in the pattern, emit code to verify dagness.
|
|
if (!Child->getName().empty()) {
|
|
std::string &VarMapEntry = VarMap[Child->getName()];
|
|
if (VarMapEntry.empty()) {
|
|
VarMapEntry = RootName + utostr(i);
|
|
} else {
|
|
// If we get here, this is a second reference to a specific name. Since
|
|
// we already have checked that the first reference is valid, we don't
|
|
// have to recursively match it, just check that it's the same as the
|
|
// previously named thing.
|
|
OS << " if (" << VarMapEntry << " != " << RootName << i
|
|
<< ") goto P" << PatternNo << "Fail;\n";
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Handle leaves of various types.
|
|
Init *LeafVal = Child->getLeafValue();
|
|
Record *LeafRec = dynamic_cast<DefInit*>(LeafVal)->getDef();
|
|
if (LeafRec->isSubClassOf("RegisterClass")) {
|
|
// Handle register references. Nothing to do here.
|
|
} else if (LeafRec->isSubClassOf("ValueType")) {
|
|
// Make sure this is the specified value type.
|
|
OS << " if (cast<VTSDNode>(" << RootName << i << ")->getVT() != "
|
|
<< "MVT::" << LeafRec->getName() << ") goto P" << PatternNo
|
|
<< "Fail;\n";
|
|
} else {
|
|
Child->dump();
|
|
assert(0 && "Unknown leaf type!");
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is a node predicate for this, emit the call.
|
|
if (!N->getPredicateFn().empty())
|
|
OS << " if (!" << N->getPredicateFn() << "(" << RootName
|
|
<< ".Val)) goto P" << PatternNo << "Fail;\n";
|
|
}
|
|
|
|
|
|
unsigned DAGISelEmitter::
|
|
CodeGenPatternResult(TreePatternNode *N, unsigned &Ctr,
|
|
std::map<std::string,std::string> &VariableMap,
|
|
std::ostream &OS){
|
|
// This is something selected from the pattern we matched.
|
|
if (!N->getName().empty()) {
|
|
const std::string &Val = VariableMap[N->getName()];
|
|
assert(!Val.empty() &&
|
|
"Variable referenced but not defined and not caught earlier!");
|
|
if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
|
|
// Already selected this operand, just return the tmpval.
|
|
// FIXME: DO THIS.
|
|
} else {
|
|
unsigned ResNo = Ctr++;
|
|
OS << " SDOperand Tmp" << ResNo << " = Select(" << Val << ");\n";
|
|
// FIXME: Add Tmp<ResNo> to VariableMap.
|
|
return ResNo;
|
|
}
|
|
}
|
|
|
|
if (N->isLeaf()) {
|
|
N->dump();
|
|
assert(0 && "Unknown leaf type!");
|
|
return ~0U;
|
|
}
|
|
|
|
Record *Op = N->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
// Emit all of the operands.
|
|
std::vector<unsigned> Ops;
|
|
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
|
|
Ops.push_back(CodeGenPatternResult(N->getChild(i), Ctr, VariableMap, OS));
|
|
|
|
CodeGenInstruction &II = Target.getInstruction(Op->getName());
|
|
unsigned ResNo = Ctr++;
|
|
|
|
OS << " SDOperand Tmp" << ResNo << " = CurDAG->getTargetNode("
|
|
<< II.Namespace << "::" << II.TheDef->getName() << ", MVT::"
|
|
<< getEnumName(N->getType());
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
OS << ", Tmp" << Ops[i];
|
|
OS << ");\n";
|
|
return ResNo;
|
|
} else if (Op->isSubClassOf("SDNodeXForm")) {
|
|
assert(N->getNumChildren() == 1 && "node xform should have one child!");
|
|
unsigned OpVal = CodeGenPatternResult(N->getChild(0), Ctr, VariableMap, OS);
|
|
|
|
unsigned ResNo = Ctr++;
|
|
OS << " SDOperand Tmp" << ResNo << " = Transform_" << Op->getName()
|
|
<< "(Tmp" << OpVal << ".Val);\n";
|
|
return ResNo;
|
|
} else {
|
|
N->dump();
|
|
assert(0 && "Unknown node in result pattern!");
|
|
return ~0U;
|
|
}
|
|
}
|
|
|
|
|
|
/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
|
|
/// stream to match the pattern, and generate the code for the match if it
|
|
/// succeeds.
|
|
void DAGISelEmitter::EmitCodeForPattern(PatternToMatch &Pattern,
|
|
std::ostream &OS) {
|
|
static unsigned PatternCount = 0;
|
|
unsigned PatternNo = PatternCount++;
|
|
OS << " { // Pattern #" << PatternNo << ": ";
|
|
Pattern.first->print(OS);
|
|
OS << "\n";
|
|
|
|
// Emit the matcher, capturing named arguments in VariableMap.
|
|
std::map<std::string,std::string> VariableMap;
|
|
EmitMatchForPattern(Pattern.first, "N", VariableMap, PatternNo, OS);
|
|
|
|
OS << " // Emit: ";
|
|
Pattern.second->print(OS);
|
|
OS << "\n";
|
|
|
|
unsigned TmpNo = 0;
|
|
unsigned Res = CodeGenPatternResult(Pattern.second, TmpNo, VariableMap, OS);
|
|
|
|
// Add the result to the map if it has multiple uses.
|
|
OS << " if (!N.Val->hasOneUse()) CodeGenMap[N] = Tmp" << Res << ";\n";
|
|
OS << " return Tmp" << Res << ";\n";
|
|
OS << " }\n P" << PatternNo << "Fail:\n";
|
|
}
|
|
|
|
/// getPatternSize - Return the 'size' of this pattern. We want to match large
|
|
/// patterns before small ones. This is used to determine the size of a
|
|
/// pattern.
|
|
static unsigned getPatternSize(TreePatternNode *P) {
|
|
assert(MVT::isInteger(P->getType()) || MVT::isFloatingPoint(P->getType()) &&
|
|
"Not a valid pattern node to size!");
|
|
unsigned Size = 1; // The node itself.
|
|
|
|
// Count children in the count if they are also nodes.
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
|
|
TreePatternNode *Child = P->getChild(i);
|
|
if (!Child->isLeaf() && Child->getType() != MVT::Other)
|
|
Size += getPatternSize(Child);
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
|
|
// In particular, we want to match maximal patterns first and lowest cost within
|
|
// a particular complexity first.
|
|
struct PatternSortingPredicate {
|
|
bool operator()(DAGISelEmitter::PatternToMatch *LHS,
|
|
DAGISelEmitter::PatternToMatch *RHS) {
|
|
unsigned LHSSize = getPatternSize(LHS->first);
|
|
unsigned RHSSize = getPatternSize(RHS->first);
|
|
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
|
|
if (LHSSize < RHSSize) return false;
|
|
|
|
// If they are equal, compare cost.
|
|
// FIXME: Compute cost!
|
|
return false;
|
|
}
|
|
};
|
|
|
|
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
|
|
// Emit boilerplate.
|
|
OS << "// The main instruction selector code.\n"
|
|
<< "SDOperand SelectCode(SDOperand N) {\n"
|
|
<< " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
|
|
<< " N.getOpcode() < PPCISD::FIRST_NUMBER)\n"
|
|
<< " return N; // Already selected.\n\n"
|
|
<< " if (!N.Val->hasOneUse()) {\n"
|
|
<< " std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);\n"
|
|
<< " if (CGMI != CodeGenMap.end()) return CGMI->second;\n"
|
|
<< " }\n"
|
|
<< " switch (N.getOpcode()) {\n"
|
|
<< " default: break;\n"
|
|
<< " case ISD::EntryToken: // These leaves remain the same.\n"
|
|
<< " return N;\n"
|
|
<< " case ISD::AssertSext:\n"
|
|
<< " case ISD::AssertZext:\n"
|
|
<< " return Select(N.getOperand(0));\n";
|
|
|
|
// Group the patterns by their top-level opcodes.
|
|
std::map<Record*, std::vector<PatternToMatch*> > PatternsByOpcode;
|
|
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i)
|
|
PatternsByOpcode[PatternsToMatch[i].first->getOperator()]
|
|
.push_back(&PatternsToMatch[i]);
|
|
|
|
// Loop over all of the case statements.
|
|
for (std::map<Record*, std::vector<PatternToMatch*> >::iterator
|
|
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); PBOI != E;
|
|
++PBOI) {
|
|
const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first);
|
|
std::vector<PatternToMatch*> &Patterns = PBOI->second;
|
|
|
|
OS << " case " << OpcodeInfo.getEnumName() << ":\n";
|
|
|
|
// We want to emit all of the matching code now. However, we want to emit
|
|
// the matches in order of minimal cost. Sort the patterns so the least
|
|
// cost one is at the start.
|
|
std::stable_sort(Patterns.begin(), Patterns.end(),
|
|
PatternSortingPredicate());
|
|
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
|
|
EmitCodeForPattern(*Patterns[i], OS);
|
|
OS << " break;\n\n";
|
|
}
|
|
|
|
|
|
OS << " } // end of big switch.\n\n"
|
|
<< " std::cerr << \"Cannot yet select: \";\n"
|
|
<< " N.Val->dump();\n"
|
|
<< " std::cerr << '\\n';\n"
|
|
<< " abort();\n"
|
|
<< "}\n";
|
|
}
|
|
|
|
void DAGISelEmitter::run(std::ostream &OS) {
|
|
EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
|
|
" target", OS);
|
|
|
|
OS << "// *** NOTE: This file is #included into the middle of the target\n"
|
|
<< "// *** instruction selector class. These functions are really "
|
|
<< "methods.\n\n";
|
|
|
|
OS << "// Instance var to keep track of multiply used nodes that have \n"
|
|
<< "// already been selected.\n"
|
|
<< "std::map<SDOperand, SDOperand> CodeGenMap;\n";
|
|
|
|
ParseNodeInfo();
|
|
ParseNodeTransforms(OS);
|
|
ParsePatternFragments(OS);
|
|
ParseInstructions();
|
|
ParsePatterns();
|
|
|
|
// FIXME: Generate variants. For example, commutative patterns can match
|
|
// multiple ways. Add them to PatternsToMatch as well.
|
|
|
|
// At this point, we have full information about the 'Patterns' we need to
|
|
// parse, both implicitly from instructions as well as from explicit pattern
|
|
// definitions.
|
|
|
|
EmitInstructionSelector(OS);
|
|
|
|
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
|
|
E = PatternFragments.end(); I != E; ++I)
|
|
delete I->second;
|
|
PatternFragments.clear();
|
|
|
|
Instructions.clear();
|
|
}
|