forked from OSchip/llvm-project
682 lines
24 KiB
C++
682 lines
24 KiB
C++
//===-- ImplicitNullChecks.cpp - Fold null checks into memory accesses ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass turns explicit null checks of the form
|
|
//
|
|
// test %r10, %r10
|
|
// je throw_npe
|
|
// movl (%r10), %esi
|
|
// ...
|
|
//
|
|
// to
|
|
//
|
|
// faulting_load_op("movl (%r10), %esi", throw_npe)
|
|
// ...
|
|
//
|
|
// With the help of a runtime that understands the .fault_maps section,
|
|
// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
|
|
// a page fault.
|
|
// Store and LoadStore are also supported.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/FaultMaps.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<int> PageSize("imp-null-check-page-size",
|
|
cl::desc("The page size of the target in bytes"),
|
|
cl::init(4096));
|
|
|
|
static cl::opt<unsigned> MaxInstsToConsider(
|
|
"imp-null-max-insts-to-consider",
|
|
cl::desc("The max number of instructions to consider hoisting loads over "
|
|
"(the algorithm is quadratic over this number)"),
|
|
cl::init(8));
|
|
|
|
#define DEBUG_TYPE "implicit-null-checks"
|
|
|
|
STATISTIC(NumImplicitNullChecks,
|
|
"Number of explicit null checks made implicit");
|
|
|
|
namespace {
|
|
|
|
class ImplicitNullChecks : public MachineFunctionPass {
|
|
/// Return true if \c computeDependence can process \p MI.
|
|
static bool canHandle(const MachineInstr *MI);
|
|
|
|
/// Helper function for \c computeDependence. Return true if \p A
|
|
/// and \p B do not have any dependences between them, and can be
|
|
/// re-ordered without changing program semantics.
|
|
bool canReorder(const MachineInstr *A, const MachineInstr *B);
|
|
|
|
/// A data type for representing the result computed by \c
|
|
/// computeDependence. States whether it is okay to reorder the
|
|
/// instruction passed to \c computeDependence with at most one
|
|
/// depednency.
|
|
struct DependenceResult {
|
|
/// Can we actually re-order \p MI with \p Insts (see \c
|
|
/// computeDependence).
|
|
bool CanReorder;
|
|
|
|
/// If non-None, then an instruction in \p Insts that also must be
|
|
/// hoisted.
|
|
Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
|
|
|
|
/*implicit*/ DependenceResult(
|
|
bool CanReorder,
|
|
Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
|
|
: CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
|
|
assert((!PotentialDependence || CanReorder) &&
|
|
"!CanReorder && PotentialDependence.hasValue() not allowed!");
|
|
}
|
|
};
|
|
|
|
/// Compute a result for the following question: can \p MI be
|
|
/// re-ordered from after \p Insts to before it.
|
|
///
|
|
/// \c canHandle should return true for all instructions in \p
|
|
/// Insts.
|
|
DependenceResult computeDependence(const MachineInstr *MI,
|
|
ArrayRef<MachineInstr *> Insts);
|
|
|
|
/// Represents one null check that can be made implicit.
|
|
class NullCheck {
|
|
// The memory operation the null check can be folded into.
|
|
MachineInstr *MemOperation;
|
|
|
|
// The instruction actually doing the null check (Ptr != 0).
|
|
MachineInstr *CheckOperation;
|
|
|
|
// The block the check resides in.
|
|
MachineBasicBlock *CheckBlock;
|
|
|
|
// The block branched to if the pointer is non-null.
|
|
MachineBasicBlock *NotNullSucc;
|
|
|
|
// The block branched to if the pointer is null.
|
|
MachineBasicBlock *NullSucc;
|
|
|
|
// If this is non-null, then MemOperation has a dependency on on this
|
|
// instruction; and it needs to be hoisted to execute before MemOperation.
|
|
MachineInstr *OnlyDependency;
|
|
|
|
public:
|
|
explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
|
|
MachineBasicBlock *checkBlock,
|
|
MachineBasicBlock *notNullSucc,
|
|
MachineBasicBlock *nullSucc,
|
|
MachineInstr *onlyDependency)
|
|
: MemOperation(memOperation), CheckOperation(checkOperation),
|
|
CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
|
|
OnlyDependency(onlyDependency) {}
|
|
|
|
MachineInstr *getMemOperation() const { return MemOperation; }
|
|
|
|
MachineInstr *getCheckOperation() const { return CheckOperation; }
|
|
|
|
MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
|
|
|
|
MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
|
|
|
|
MachineBasicBlock *getNullSucc() const { return NullSucc; }
|
|
|
|
MachineInstr *getOnlyDependency() const { return OnlyDependency; }
|
|
};
|
|
|
|
const TargetInstrInfo *TII = nullptr;
|
|
const TargetRegisterInfo *TRI = nullptr;
|
|
AliasAnalysis *AA = nullptr;
|
|
MachineModuleInfo *MMI = nullptr;
|
|
MachineFrameInfo *MFI = nullptr;
|
|
|
|
bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
|
|
SmallVectorImpl<NullCheck> &NullCheckList);
|
|
MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *HandlerMBB);
|
|
void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
|
|
|
|
enum AliasResult {
|
|
AR_NoAlias,
|
|
AR_MayAlias,
|
|
AR_WillAliasEverything
|
|
};
|
|
/// Returns AR_NoAlias if \p MI memory operation does not alias with
|
|
/// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
|
|
/// they may alias and any further memory operation may alias with \p PrevMI.
|
|
AliasResult areMemoryOpsAliased(MachineInstr &MI, MachineInstr *PrevMI);
|
|
|
|
enum SuitabilityResult {
|
|
SR_Suitable,
|
|
SR_Unsuitable,
|
|
SR_Impossible
|
|
};
|
|
/// Return SR_Suitable if \p MI a memory operation that can be used to
|
|
/// implicitly null check the value in \p PointerReg, SR_Unsuitable if
|
|
/// \p MI cannot be used to null check and SR_Impossible if there is
|
|
/// no sense to continue lookup due to any other instruction will not be able
|
|
/// to be used. \p PrevInsts is the set of instruction seen since
|
|
/// the explicit null check on \p PointerReg.
|
|
SuitabilityResult isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
|
|
ArrayRef<MachineInstr *> PrevInsts);
|
|
|
|
/// Return true if \p FaultingMI can be hoisted from after the the
|
|
/// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
|
|
/// non-null value if we also need to (and legally can) hoist a depedency.
|
|
bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
|
|
ArrayRef<MachineInstr *> InstsSeenSoFar,
|
|
MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
ImplicitNullChecks() : MachineFunctionPass(ID) {
|
|
initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
|
|
if (MI->isCall() || MI->hasUnmodeledSideEffects())
|
|
return false;
|
|
auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
|
|
(void)IsRegMask;
|
|
|
|
assert(!llvm::any_of(MI->operands(), IsRegMask) &&
|
|
"Calls were filtered out above!");
|
|
|
|
auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
|
|
return llvm::all_of(MI->memoperands(), IsUnordered);
|
|
}
|
|
|
|
ImplicitNullChecks::DependenceResult
|
|
ImplicitNullChecks::computeDependence(const MachineInstr *MI,
|
|
ArrayRef<MachineInstr *> Block) {
|
|
assert(llvm::all_of(Block, canHandle) && "Check this first!");
|
|
assert(!llvm::is_contained(Block, MI) && "Block must be exclusive of MI!");
|
|
|
|
Optional<ArrayRef<MachineInstr *>::iterator> Dep;
|
|
|
|
for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
|
|
if (canReorder(*I, MI))
|
|
continue;
|
|
|
|
if (Dep == None) {
|
|
// Found one possible dependency, keep track of it.
|
|
Dep = I;
|
|
} else {
|
|
// We found two dependencies, so bail out.
|
|
return {false, None};
|
|
}
|
|
}
|
|
|
|
return {true, Dep};
|
|
}
|
|
|
|
bool ImplicitNullChecks::canReorder(const MachineInstr *A,
|
|
const MachineInstr *B) {
|
|
assert(canHandle(A) && canHandle(B) && "Precondition!");
|
|
|
|
// canHandle makes sure that we _can_ correctly analyze the dependencies
|
|
// between A and B here -- for instance, we should not be dealing with heap
|
|
// load-store dependencies here.
|
|
|
|
for (auto MOA : A->operands()) {
|
|
if (!(MOA.isReg() && MOA.getReg()))
|
|
continue;
|
|
|
|
unsigned RegA = MOA.getReg();
|
|
for (auto MOB : B->operands()) {
|
|
if (!(MOB.isReg() && MOB.getReg()))
|
|
continue;
|
|
|
|
unsigned RegB = MOB.getReg();
|
|
|
|
if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TRI = MF.getRegInfo().getTargetRegisterInfo();
|
|
MMI = &MF.getMMI();
|
|
MFI = &MF.getFrameInfo();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
SmallVector<NullCheck, 16> NullCheckList;
|
|
|
|
for (auto &MBB : MF)
|
|
analyzeBlockForNullChecks(MBB, NullCheckList);
|
|
|
|
if (!NullCheckList.empty())
|
|
rewriteNullChecks(NullCheckList);
|
|
|
|
return !NullCheckList.empty();
|
|
}
|
|
|
|
// Return true if any register aliasing \p Reg is live-in into \p MBB.
|
|
static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
|
|
MachineBasicBlock *MBB, unsigned Reg) {
|
|
for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
|
|
++AR)
|
|
if (MBB->isLiveIn(*AR))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
ImplicitNullChecks::AliasResult
|
|
ImplicitNullChecks::areMemoryOpsAliased(MachineInstr &MI,
|
|
MachineInstr *PrevMI) {
|
|
// If it is not memory access, skip the check.
|
|
if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
|
|
return AR_NoAlias;
|
|
// Load-Load may alias
|
|
if (!(MI.mayStore() || PrevMI->mayStore()))
|
|
return AR_NoAlias;
|
|
// We lost info, conservatively alias. If it was store then no sense to
|
|
// continue because we won't be able to check against it further.
|
|
if (MI.memoperands_empty())
|
|
return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
|
|
if (PrevMI->memoperands_empty())
|
|
return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
|
|
|
|
for (MachineMemOperand *MMO1 : MI.memoperands()) {
|
|
// MMO1 should have a value due it comes from operation we'd like to use
|
|
// as implicit null check.
|
|
assert(MMO1->getValue() && "MMO1 should have a Value!");
|
|
for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
|
|
if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
|
|
if (PSV->mayAlias(MFI))
|
|
return AR_MayAlias;
|
|
continue;
|
|
}
|
|
llvm::AliasResult AAResult = AA->alias(
|
|
MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
|
|
MMO1->getAAInfo()),
|
|
MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
|
|
MMO2->getAAInfo()));
|
|
if (AAResult != NoAlias)
|
|
return AR_MayAlias;
|
|
}
|
|
}
|
|
return AR_NoAlias;
|
|
}
|
|
|
|
ImplicitNullChecks::SuitabilityResult
|
|
ImplicitNullChecks::isSuitableMemoryOp(MachineInstr &MI, unsigned PointerReg,
|
|
ArrayRef<MachineInstr *> PrevInsts) {
|
|
int64_t Offset;
|
|
unsigned BaseReg;
|
|
|
|
if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI) ||
|
|
BaseReg != PointerReg)
|
|
return SR_Unsuitable;
|
|
|
|
// We want the mem access to be issued at a sane offset from PointerReg,
|
|
// so that if PointerReg is null then the access reliably page faults.
|
|
if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() &&
|
|
Offset < PageSize))
|
|
return SR_Unsuitable;
|
|
|
|
// Finally, we need to make sure that the access instruction actually is
|
|
// accessing from PointerReg, and there isn't some re-definition of PointerReg
|
|
// between the compare and the memory access.
|
|
// If PointerReg has been redefined before then there is no sense to continue
|
|
// lookup due to this condition will fail for any further instruction.
|
|
SuitabilityResult Suitable = SR_Suitable;
|
|
for (auto *PrevMI : PrevInsts)
|
|
for (auto &PrevMO : PrevMI->operands()) {
|
|
if (PrevMO.isReg() && PrevMO.getReg() && PrevMO.isDef() &&
|
|
TRI->regsOverlap(PrevMO.getReg(), PointerReg))
|
|
return SR_Impossible;
|
|
|
|
// Check whether the current memory access aliases with previous one.
|
|
// If we already found that it aliases then no need to continue.
|
|
// But we continue base pointer check as it can result in SR_Impossible.
|
|
if (Suitable == SR_Suitable) {
|
|
AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
|
|
if (AR == AR_WillAliasEverything)
|
|
return SR_Impossible;
|
|
if (AR == AR_MayAlias)
|
|
Suitable = SR_Unsuitable;
|
|
}
|
|
}
|
|
return Suitable;
|
|
}
|
|
|
|
bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
|
|
unsigned PointerReg,
|
|
ArrayRef<MachineInstr *> InstsSeenSoFar,
|
|
MachineBasicBlock *NullSucc,
|
|
MachineInstr *&Dependence) {
|
|
auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
|
|
if (!DepResult.CanReorder)
|
|
return false;
|
|
|
|
if (!DepResult.PotentialDependence) {
|
|
Dependence = nullptr;
|
|
return true;
|
|
}
|
|
|
|
auto DependenceItr = *DepResult.PotentialDependence;
|
|
auto *DependenceMI = *DependenceItr;
|
|
|
|
// We don't want to reason about speculating loads. Note -- at this point
|
|
// we should have already filtered out all of the other non-speculatable
|
|
// things, like calls and stores.
|
|
assert(canHandle(DependenceMI) && "Should never have reached here!");
|
|
if (DependenceMI->mayLoad())
|
|
return false;
|
|
|
|
for (auto &DependenceMO : DependenceMI->operands()) {
|
|
if (!(DependenceMO.isReg() && DependenceMO.getReg()))
|
|
continue;
|
|
|
|
// Make sure that we won't clobber any live ins to the sibling block by
|
|
// hoisting Dependency. For instance, we can't hoist INST to before the
|
|
// null check (even if it safe, and does not violate any dependencies in
|
|
// the non_null_block) if %rdx is live in to _null_block.
|
|
//
|
|
// test %rcx, %rcx
|
|
// je _null_block
|
|
// _non_null_block:
|
|
// %rdx<def> = INST
|
|
// ...
|
|
//
|
|
// This restriction does not apply to the faulting load inst because in
|
|
// case the pointer loaded from is in the null page, the load will not
|
|
// semantically execute, and affect machine state. That is, if the load
|
|
// was loading into %rax and it faults, the value of %rax should stay the
|
|
// same as it would have been had the load not have executed and we'd have
|
|
// branched to NullSucc directly.
|
|
if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
|
|
return false;
|
|
|
|
// The Dependency can't be re-defining the base register -- then we won't
|
|
// get the memory operation on the address we want. This is already
|
|
// checked in \c IsSuitableMemoryOp.
|
|
assert(!(DependenceMO.isDef() &&
|
|
TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
|
|
"Should have been checked before!");
|
|
}
|
|
|
|
auto DepDepResult =
|
|
computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
|
|
|
|
if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
|
|
return false;
|
|
|
|
Dependence = DependenceMI;
|
|
return true;
|
|
}
|
|
|
|
/// Analyze MBB to check if its terminating branch can be turned into an
|
|
/// implicit null check. If yes, append a description of the said null check to
|
|
/// NullCheckList and return true, else return false.
|
|
bool ImplicitNullChecks::analyzeBlockForNullChecks(
|
|
MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
|
|
typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate;
|
|
|
|
MDNode *BranchMD = nullptr;
|
|
if (auto *BB = MBB.getBasicBlock())
|
|
BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
|
|
|
|
if (!BranchMD)
|
|
return false;
|
|
|
|
MachineBranchPredicate MBP;
|
|
|
|
if (TII->analyzeBranchPredicate(MBB, MBP, true))
|
|
return false;
|
|
|
|
// Is the predicate comparing an integer to zero?
|
|
if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
|
|
(MBP.Predicate == MachineBranchPredicate::PRED_NE ||
|
|
MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
|
|
return false;
|
|
|
|
// If we cannot erase the test instruction itself, then making the null check
|
|
// implicit does not buy us much.
|
|
if (!MBP.SingleUseCondition)
|
|
return false;
|
|
|
|
MachineBasicBlock *NotNullSucc, *NullSucc;
|
|
|
|
if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
|
|
NotNullSucc = MBP.TrueDest;
|
|
NullSucc = MBP.FalseDest;
|
|
} else {
|
|
NotNullSucc = MBP.FalseDest;
|
|
NullSucc = MBP.TrueDest;
|
|
}
|
|
|
|
// We handle the simplest case for now. We can potentially do better by using
|
|
// the machine dominator tree.
|
|
if (NotNullSucc->pred_size() != 1)
|
|
return false;
|
|
|
|
// Starting with a code fragment like:
|
|
//
|
|
// test %RAX, %RAX
|
|
// jne LblNotNull
|
|
//
|
|
// LblNull:
|
|
// callq throw_NullPointerException
|
|
//
|
|
// LblNotNull:
|
|
// Inst0
|
|
// Inst1
|
|
// ...
|
|
// Def = Load (%RAX + <offset>)
|
|
// ...
|
|
//
|
|
//
|
|
// we want to end up with
|
|
//
|
|
// Def = FaultingLoad (%RAX + <offset>), LblNull
|
|
// jmp LblNotNull ;; explicit or fallthrough
|
|
//
|
|
// LblNotNull:
|
|
// Inst0
|
|
// Inst1
|
|
// ...
|
|
//
|
|
// LblNull:
|
|
// callq throw_NullPointerException
|
|
//
|
|
//
|
|
// To see why this is legal, consider the two possibilities:
|
|
//
|
|
// 1. %RAX is null: since we constrain <offset> to be less than PageSize, the
|
|
// load instruction dereferences the null page, causing a segmentation
|
|
// fault.
|
|
//
|
|
// 2. %RAX is not null: in this case we know that the load cannot fault, as
|
|
// otherwise the load would've faulted in the original program too and the
|
|
// original program would've been undefined.
|
|
//
|
|
// This reasoning cannot be extended to justify hoisting through arbitrary
|
|
// control flow. For instance, in the example below (in pseudo-C)
|
|
//
|
|
// if (ptr == null) { throw_npe(); unreachable; }
|
|
// if (some_cond) { return 42; }
|
|
// v = ptr->field; // LD
|
|
// ...
|
|
//
|
|
// we cannot (without code duplication) use the load marked "LD" to null check
|
|
// ptr -- clause (2) above does not apply in this case. In the above program
|
|
// the safety of ptr->field can be dependent on some_cond; and, for instance,
|
|
// ptr could be some non-null invalid reference that never gets loaded from
|
|
// because some_cond is always true.
|
|
|
|
const unsigned PointerReg = MBP.LHS.getReg();
|
|
|
|
SmallVector<MachineInstr *, 8> InstsSeenSoFar;
|
|
|
|
for (auto &MI : *NotNullSucc) {
|
|
if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
|
|
return false;
|
|
|
|
MachineInstr *Dependence;
|
|
SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
|
|
if (SR == SR_Impossible)
|
|
return false;
|
|
if (SR == SR_Suitable &&
|
|
canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
|
|
NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
|
|
NullSucc, Dependence);
|
|
return true;
|
|
}
|
|
|
|
InstsSeenSoFar.push_back(&MI);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Wrap a machine instruction, MI, into a FAULTING machine instruction.
|
|
/// The FAULTING instruction does the same load/store as MI
|
|
/// (defining the same register), and branches to HandlerMBB if the mem access
|
|
/// faults. The FAULTING instruction is inserted at the end of MBB.
|
|
MachineInstr *ImplicitNullChecks::insertFaultingInstr(
|
|
MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
|
|
const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
|
|
// all targets.
|
|
|
|
DebugLoc DL;
|
|
unsigned NumDefs = MI->getDesc().getNumDefs();
|
|
assert(NumDefs <= 1 && "other cases unhandled!");
|
|
|
|
unsigned DefReg = NoRegister;
|
|
if (NumDefs != 0) {
|
|
DefReg = MI->defs().begin()->getReg();
|
|
assert(std::distance(MI->defs().begin(), MI->defs().end()) == 1 &&
|
|
"expected exactly one def!");
|
|
}
|
|
|
|
FaultMaps::FaultKind FK;
|
|
if (MI->mayLoad())
|
|
FK =
|
|
MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
|
|
else
|
|
FK = FaultMaps::FaultingStore;
|
|
|
|
auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
|
|
.addImm(FK)
|
|
.addMBB(HandlerMBB)
|
|
.addImm(MI->getOpcode());
|
|
|
|
for (auto &MO : MI->uses())
|
|
MIB.add(MO);
|
|
|
|
MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
return MIB;
|
|
}
|
|
|
|
/// Rewrite the null checks in NullCheckList into implicit null checks.
|
|
void ImplicitNullChecks::rewriteNullChecks(
|
|
ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
|
|
DebugLoc DL;
|
|
|
|
for (auto &NC : NullCheckList) {
|
|
// Remove the conditional branch dependent on the null check.
|
|
unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
|
|
(void)BranchesRemoved;
|
|
assert(BranchesRemoved > 0 && "expected at least one branch!");
|
|
|
|
if (auto *DepMI = NC.getOnlyDependency()) {
|
|
DepMI->removeFromParent();
|
|
NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
|
|
}
|
|
|
|
// Insert a faulting instruction where the conditional branch was
|
|
// originally. We check earlier ensures that this bit of code motion
|
|
// is legal. We do not touch the successors list for any basic block
|
|
// since we haven't changed control flow, we've just made it implicit.
|
|
MachineInstr *FaultingInstr = insertFaultingInstr(
|
|
NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
|
|
// Now the values defined by MemOperation, if any, are live-in of
|
|
// the block of MemOperation.
|
|
// The original operation may define implicit-defs alongside
|
|
// the value.
|
|
MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
|
|
for (const MachineOperand &MO : FaultingInstr->operands()) {
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg || MBB->isLiveIn(Reg))
|
|
continue;
|
|
MBB->addLiveIn(Reg);
|
|
}
|
|
|
|
if (auto *DepMI = NC.getOnlyDependency()) {
|
|
for (auto &MO : DepMI->operands()) {
|
|
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
|
|
continue;
|
|
if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
|
|
NC.getNotNullSucc()->addLiveIn(MO.getReg());
|
|
}
|
|
}
|
|
|
|
NC.getMemOperation()->eraseFromParent();
|
|
NC.getCheckOperation()->eraseFromParent();
|
|
|
|
// Insert an *unconditional* branch to not-null successor.
|
|
TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
|
|
/*Cond=*/None, DL);
|
|
|
|
NumImplicitNullChecks++;
|
|
}
|
|
}
|
|
|
|
|
|
char ImplicitNullChecks::ID = 0;
|
|
char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
|
|
INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
|
|
"Implicit null checks", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
|
|
"Implicit null checks", false, false)
|