llvm-project/polly/lib/CodePreparation.cpp

184 lines
5.7 KiB
C++

//===---- CodePreparation.cpp - Code preparation for Scop Detection -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The Polly code preparation pass is executed before SCoP detection. Its only
// use is to translate all PHI nodes that can not be expressed by the code
// generator into explicit memory dependences. Depending of the code generation
// strategy different PHI nodes are translated:
//
// - indvars based code generation:
//
// The indvars based code generation requires explicit canonical induction
// variables. Such variables are generated before scop detection and
// also before the code preparation pass. All PHI nodes that are not canonical
// induction variables are not supported by the indvars based code generation
// and are consequently translated into explict memory accesses.
//
// - scev based code generation:
//
// The scev based code generation can code generate all PHI nodes that do not
// reference parameters within the scop. As the code preparation pass is run
// before scop detection, we can not check this condition, because without
// a detected scop, we do not know SCEVUnknowns that appear in the SCEV of
// a PHI node may later be within or outside of the SCoP. Hence, we follow a
// heuristic and translate all PHI nodes that are either directly SCEVUnknown
// or SCEVCouldNotCompute. This will hopefully get most of the PHI nodes that
// are introduced due to conditional control flow, but not the ones that are
// referencing loop counters.
//
// XXX: In the future, we should remove the need for this pass entirely and
// instead add support for scalar dependences to ScopInfo and code generation.
//
//===----------------------------------------------------------------------===//
#include "polly/LinkAllPasses.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace polly;
namespace {
/// @brief Prepare the IR for the scop detection.
///
class CodePreparation : public FunctionPass {
// DO NOT IMPLEMENT.
CodePreparation(const CodePreparation &);
// DO NOT IMPLEMENT.
const CodePreparation &operator=(const CodePreparation &);
LoopInfo *LI;
ScalarEvolution *SE;
void clear();
bool eliminatePHINodes(Function &F);
public:
static char ID;
explicit CodePreparation() : FunctionPass(ID) {}
~CodePreparation();
/// @name FunctionPass interface.
//@{
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual bool runOnFunction(Function &F);
virtual void print(raw_ostream &OS, const Module *) const;
//@}
};
}
void CodePreparation::clear() {}
CodePreparation::~CodePreparation() { clear(); }
bool CodePreparation::eliminatePHINodes(Function &F) {
// The PHINodes that will be deleted.
std::vector<PHINode *> PNtoDelete;
// The PHINodes that will be preserved.
std::vector<PHINode *> PreservedPNs;
// Scan the PHINodes in this function.
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI)
for (BasicBlock::iterator II = BI->begin(), IE = BI->getFirstNonPHI();
II != IE; ++II) {
PHINode *PN = cast<PHINode>(II);
if (SCEVCodegen) {
if (SE->isSCEVable(PN->getType())) {
const SCEV *S = SE->getSCEV(PN);
if (!isa<SCEVUnknown>(S) && !isa<SCEVCouldNotCompute>(S)) {
PreservedPNs.push_back(PN);
continue;
}
}
} else {
if (Loop *L = LI->getLoopFor(BI)) {
// Induction variables will be preserved.
if (L->getCanonicalInductionVariable() == PN) {
PreservedPNs.push_back(PN);
continue;
}
}
}
// As DemotePHIToStack does not support invoke edges, we preserve
// PHINodes that have invoke edges.
if (hasInvokeEdge(PN))
PreservedPNs.push_back(PN);
else
PNtoDelete.push_back(PN);
}
if (PNtoDelete.empty())
return false;
while (!PNtoDelete.empty()) {
PHINode *PN = PNtoDelete.back();
PNtoDelete.pop_back();
DemotePHIToStack(PN);
}
// Move preserved PHINodes to the beginning of the BasicBlock.
while (!PreservedPNs.empty()) {
PHINode *PN = PreservedPNs.back();
PreservedPNs.pop_back();
BasicBlock *BB = PN->getParent();
if (PN == BB->begin())
continue;
PN->moveBefore(BB->begin());
}
return true;
}
void CodePreparation::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<RegionInfo>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
}
bool CodePreparation::runOnFunction(Function &F) {
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
splitEntryBlockForAlloca(&F.getEntryBlock(), this);
eliminatePHINodes(F);
return false;
}
void CodePreparation::releaseMemory() { clear(); }
void CodePreparation::print(raw_ostream &OS, const Module *) const {}
char CodePreparation::ID = 0;
char &polly::CodePreparationID = CodePreparation::ID;
Pass *polly::createCodePreparationPass() { return new CodePreparation(); }
INITIALIZE_PASS_BEGIN(CodePreparation, "polly-prepare",
"Polly - Prepare code for polly", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(CodePreparation, "polly-prepare",
"Polly - Prepare code for polly", false, false)