forked from OSchip/llvm-project
458 lines
18 KiB
C++
458 lines
18 KiB
C++
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
|
|
// inserting a dummy basic block. This pass may be "required" by passes that
|
|
// cannot deal with critical edges. For this usage, the structure type is
|
|
// forward declared. This pass obviously invalidates the CFG, but can update
|
|
// dominator trees.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "break-crit-edges"
|
|
|
|
STATISTIC(NumBroken, "Number of blocks inserted");
|
|
|
|
namespace {
|
|
struct BreakCriticalEdges : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
BreakCriticalEdges() : FunctionPass(ID) {
|
|
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
unsigned N =
|
|
SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
|
|
NumBroken += N;
|
|
return N > 0;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
|
|
// No loop canonicalization guarantees are broken by this pass.
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
}
|
|
};
|
|
}
|
|
|
|
char BreakCriticalEdges::ID = 0;
|
|
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
|
|
"Break critical edges in CFG", false, false)
|
|
|
|
// Publicly exposed interface to pass...
|
|
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
|
|
FunctionPass *llvm::createBreakCriticalEdgesPass() {
|
|
return new BreakCriticalEdges();
|
|
}
|
|
|
|
PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
|
|
unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
|
|
NumBroken += N;
|
|
if (N == 0)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<LoopAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation of the external critical edge manipulation functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
|
|
/// exit block. This function inserts the new PHIs, as needed. Preds is a list
|
|
/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
|
|
/// the old loop exit, now the successor of SplitBB.
|
|
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
|
|
BasicBlock *SplitBB,
|
|
BasicBlock *DestBB) {
|
|
// SplitBB shouldn't have anything non-trivial in it yet.
|
|
assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
|
|
SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
|
|
|
|
// For each PHI in the destination block.
|
|
for (PHINode &PN : DestBB->phis()) {
|
|
unsigned Idx = PN.getBasicBlockIndex(SplitBB);
|
|
Value *V = PN.getIncomingValue(Idx);
|
|
|
|
// If the input is a PHI which already satisfies LCSSA, don't create
|
|
// a new one.
|
|
if (const PHINode *VP = dyn_cast<PHINode>(V))
|
|
if (VP->getParent() == SplitBB)
|
|
continue;
|
|
|
|
// Otherwise a new PHI is needed. Create one and populate it.
|
|
PHINode *NewPN = PHINode::Create(
|
|
PN.getType(), Preds.size(), "split",
|
|
SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
|
|
NewPN->addIncoming(V, Preds[i]);
|
|
|
|
// Update the original PHI.
|
|
PN.setIncomingValue(Idx, NewPN);
|
|
}
|
|
}
|
|
|
|
BasicBlock *
|
|
llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
|
|
const CriticalEdgeSplittingOptions &Options) {
|
|
if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
|
|
return nullptr;
|
|
|
|
assert(!isa<IndirectBrInst>(TI) &&
|
|
"Cannot split critical edge from IndirectBrInst");
|
|
|
|
BasicBlock *TIBB = TI->getParent();
|
|
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
|
|
|
|
// Splitting the critical edge to a pad block is non-trivial. Don't do
|
|
// it in this generic function.
|
|
if (DestBB->isEHPad()) return nullptr;
|
|
|
|
// Create a new basic block, linking it into the CFG.
|
|
BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
|
|
TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
|
|
// Create our unconditional branch.
|
|
BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
|
|
NewBI->setDebugLoc(TI->getDebugLoc());
|
|
|
|
// Branch to the new block, breaking the edge.
|
|
TI->setSuccessor(SuccNum, NewBB);
|
|
|
|
// Insert the block into the function... right after the block TI lives in.
|
|
Function &F = *TIBB->getParent();
|
|
Function::iterator FBBI = TIBB->getIterator();
|
|
F.getBasicBlockList().insert(++FBBI, NewBB);
|
|
|
|
// If there are any PHI nodes in DestBB, we need to update them so that they
|
|
// merge incoming values from NewBB instead of from TIBB.
|
|
{
|
|
unsigned BBIdx = 0;
|
|
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
|
|
// We no longer enter through TIBB, now we come in through NewBB.
|
|
// Revector exactly one entry in the PHI node that used to come from
|
|
// TIBB to come from NewBB.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
// Reuse the previous value of BBIdx if it lines up. In cases where we
|
|
// have multiple phi nodes with *lots* of predecessors, this is a speed
|
|
// win because we don't have to scan the PHI looking for TIBB. This
|
|
// happens because the BB list of PHI nodes are usually in the same
|
|
// order.
|
|
if (PN->getIncomingBlock(BBIdx) != TIBB)
|
|
BBIdx = PN->getBasicBlockIndex(TIBB);
|
|
PN->setIncomingBlock(BBIdx, NewBB);
|
|
}
|
|
}
|
|
|
|
// If there are any other edges from TIBB to DestBB, update those to go
|
|
// through the split block, making those edges non-critical as well (and
|
|
// reducing the number of phi entries in the DestBB if relevant).
|
|
if (Options.MergeIdenticalEdges) {
|
|
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
|
|
if (TI->getSuccessor(i) != DestBB) continue;
|
|
|
|
// Remove an entry for TIBB from DestBB phi nodes.
|
|
DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
|
|
|
|
// We found another edge to DestBB, go to NewBB instead.
|
|
TI->setSuccessor(i, NewBB);
|
|
}
|
|
}
|
|
|
|
// If we have nothing to update, just return.
|
|
auto *DT = Options.DT;
|
|
auto *LI = Options.LI;
|
|
auto *MSSAU = Options.MSSAU;
|
|
if (MSSAU)
|
|
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
|
|
DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
|
|
|
|
if (!DT && !LI)
|
|
return NewBB;
|
|
|
|
if (DT) {
|
|
// Update the DominatorTree.
|
|
// ---> NewBB -----\
|
|
// / V
|
|
// TIBB -------\\------> DestBB
|
|
//
|
|
// First, inform the DT about the new path from TIBB to DestBB via NewBB,
|
|
// then delete the old edge from TIBB to DestBB. By doing this in that order
|
|
// DestBB stays reachable in the DT the whole time and its subtree doesn't
|
|
// get disconnected.
|
|
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
|
Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
|
|
Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
|
|
if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
|
|
Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
|
|
|
|
DT->applyUpdates(Updates);
|
|
}
|
|
|
|
// Update LoopInfo if it is around.
|
|
if (LI) {
|
|
if (Loop *TIL = LI->getLoopFor(TIBB)) {
|
|
// If one or the other blocks were not in a loop, the new block is not
|
|
// either, and thus LI doesn't need to be updated.
|
|
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
|
|
if (TIL == DestLoop) {
|
|
// Both in the same loop, the NewBB joins loop.
|
|
DestLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else if (TIL->contains(DestLoop)) {
|
|
// Edge from an outer loop to an inner loop. Add to the outer loop.
|
|
TIL->addBasicBlockToLoop(NewBB, *LI);
|
|
} else if (DestLoop->contains(TIL)) {
|
|
// Edge from an inner loop to an outer loop. Add to the outer loop.
|
|
DestLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else {
|
|
// Edge from two loops with no containment relation. Because these
|
|
// are natural loops, we know that the destination block must be the
|
|
// header of its loop (adding a branch into a loop elsewhere would
|
|
// create an irreducible loop).
|
|
assert(DestLoop->getHeader() == DestBB &&
|
|
"Should not create irreducible loops!");
|
|
if (Loop *P = DestLoop->getParentLoop())
|
|
P->addBasicBlockToLoop(NewBB, *LI);
|
|
}
|
|
}
|
|
|
|
// If TIBB is in a loop and DestBB is outside of that loop, we may need
|
|
// to update LoopSimplify form and LCSSA form.
|
|
if (!TIL->contains(DestBB)) {
|
|
assert(!TIL->contains(NewBB) &&
|
|
"Split point for loop exit is contained in loop!");
|
|
|
|
// Update LCSSA form in the newly created exit block.
|
|
if (Options.PreserveLCSSA) {
|
|
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
|
|
}
|
|
|
|
// The only that we can break LoopSimplify form by splitting a critical
|
|
// edge is if after the split there exists some edge from TIL to DestBB
|
|
// *and* the only edge into DestBB from outside of TIL is that of
|
|
// NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
|
|
// is the new exit block and it has no non-loop predecessors. If the
|
|
// second isn't true, then DestBB was not in LoopSimplify form prior to
|
|
// the split as it had a non-loop predecessor. In both of these cases,
|
|
// the predecessor must be directly in TIL, not in a subloop, or again
|
|
// LoopSimplify doesn't hold.
|
|
SmallVector<BasicBlock *, 4> LoopPreds;
|
|
for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
|
|
++I) {
|
|
BasicBlock *P = *I;
|
|
if (P == NewBB)
|
|
continue; // The new block is known.
|
|
if (LI->getLoopFor(P) != TIL) {
|
|
// No need to re-simplify, it wasn't to start with.
|
|
LoopPreds.clear();
|
|
break;
|
|
}
|
|
LoopPreds.push_back(P);
|
|
}
|
|
if (!LoopPreds.empty()) {
|
|
assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
|
|
BasicBlock *NewExitBB = SplitBlockPredecessors(
|
|
DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
|
|
if (Options.PreserveLCSSA)
|
|
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
// Return the unique indirectbr predecessor of a block. This may return null
|
|
// even if such a predecessor exists, if it's not useful for splitting.
|
|
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
|
|
// predecessors of BB.
|
|
static BasicBlock *
|
|
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
|
|
// If the block doesn't have any PHIs, we don't care about it, since there's
|
|
// no point in splitting it.
|
|
PHINode *PN = dyn_cast<PHINode>(BB->begin());
|
|
if (!PN)
|
|
return nullptr;
|
|
|
|
// Verify we have exactly one IBR predecessor.
|
|
// Conservatively bail out if one of the other predecessors is not a "regular"
|
|
// terminator (that is, not a switch or a br).
|
|
BasicBlock *IBB = nullptr;
|
|
for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
|
|
BasicBlock *PredBB = PN->getIncomingBlock(Pred);
|
|
TerminatorInst *PredTerm = PredBB->getTerminator();
|
|
switch (PredTerm->getOpcode()) {
|
|
case Instruction::IndirectBr:
|
|
if (IBB)
|
|
return nullptr;
|
|
IBB = PredBB;
|
|
break;
|
|
case Instruction::Br:
|
|
case Instruction::Switch:
|
|
OtherPreds.push_back(PredBB);
|
|
continue;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return IBB;
|
|
}
|
|
|
|
bool llvm::SplitIndirectBrCriticalEdges(Function &F,
|
|
BranchProbabilityInfo *BPI,
|
|
BlockFrequencyInfo *BFI) {
|
|
// Check whether the function has any indirectbrs, and collect which blocks
|
|
// they may jump to. Since most functions don't have indirect branches,
|
|
// this lowers the common case's overhead to O(Blocks) instead of O(Edges).
|
|
SmallSetVector<BasicBlock *, 16> Targets;
|
|
for (auto &BB : F) {
|
|
auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
|
|
if (!IBI)
|
|
continue;
|
|
|
|
for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
|
|
Targets.insert(IBI->getSuccessor(Succ));
|
|
}
|
|
|
|
if (Targets.empty())
|
|
return false;
|
|
|
|
bool ShouldUpdateAnalysis = BPI && BFI;
|
|
bool Changed = false;
|
|
for (BasicBlock *Target : Targets) {
|
|
SmallVector<BasicBlock *, 16> OtherPreds;
|
|
BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
|
|
// If we did not found an indirectbr, or the indirectbr is the only
|
|
// incoming edge, this isn't the kind of edge we're looking for.
|
|
if (!IBRPred || OtherPreds.empty())
|
|
continue;
|
|
|
|
// Don't even think about ehpads/landingpads.
|
|
Instruction *FirstNonPHI = Target->getFirstNonPHI();
|
|
if (FirstNonPHI->isEHPad() || Target->isLandingPad())
|
|
continue;
|
|
|
|
BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
|
|
if (ShouldUpdateAnalysis) {
|
|
// Copy the BFI/BPI from Target to BodyBlock.
|
|
for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
|
|
I < E; ++I)
|
|
BPI->setEdgeProbability(BodyBlock, I,
|
|
BPI->getEdgeProbability(Target, I));
|
|
BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
|
|
}
|
|
// It's possible Target was its own successor through an indirectbr.
|
|
// In this case, the indirectbr now comes from BodyBlock.
|
|
if (IBRPred == Target)
|
|
IBRPred = BodyBlock;
|
|
|
|
// At this point Target only has PHIs, and BodyBlock has the rest of the
|
|
// block's body. Create a copy of Target that will be used by the "direct"
|
|
// preds.
|
|
ValueToValueMapTy VMap;
|
|
BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
|
|
|
|
BlockFrequency BlockFreqForDirectSucc;
|
|
for (BasicBlock *Pred : OtherPreds) {
|
|
// If the target is a loop to itself, then the terminator of the split
|
|
// block (BodyBlock) needs to be updated.
|
|
BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
|
|
Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
|
|
if (ShouldUpdateAnalysis)
|
|
BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
|
|
BPI->getEdgeProbability(Src, DirectSucc);
|
|
}
|
|
if (ShouldUpdateAnalysis) {
|
|
BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
|
|
BlockFrequency NewBlockFreqForTarget =
|
|
BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
|
|
BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
|
|
BPI->eraseBlock(Target);
|
|
}
|
|
|
|
// Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
|
|
// they are clones, so the number of PHIs are the same.
|
|
// (a) Remove the edge coming from IBRPred from the "Direct" PHI
|
|
// (b) Leave that as the only edge in the "Indirect" PHI.
|
|
// (c) Merge the two in the body block.
|
|
BasicBlock::iterator Indirect = Target->begin(),
|
|
End = Target->getFirstNonPHI()->getIterator();
|
|
BasicBlock::iterator Direct = DirectSucc->begin();
|
|
BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
|
|
|
|
assert(&*End == Target->getTerminator() &&
|
|
"Block was expected to only contain PHIs");
|
|
|
|
while (Indirect != End) {
|
|
PHINode *DirPHI = cast<PHINode>(Direct);
|
|
PHINode *IndPHI = cast<PHINode>(Indirect);
|
|
|
|
// Now, clean up - the direct block shouldn't get the indirect value,
|
|
// and vice versa.
|
|
DirPHI->removeIncomingValue(IBRPred);
|
|
Direct++;
|
|
|
|
// Advance the pointer here, to avoid invalidation issues when the old
|
|
// PHI is erased.
|
|
Indirect++;
|
|
|
|
PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
|
|
NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
|
|
IBRPred);
|
|
|
|
// Create a PHI in the body block, to merge the direct and indirect
|
|
// predecessors.
|
|
PHINode *MergePHI =
|
|
PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
|
|
MergePHI->addIncoming(NewIndPHI, Target);
|
|
MergePHI->addIncoming(DirPHI, DirectSucc);
|
|
|
|
IndPHI->replaceAllUsesWith(MergePHI);
|
|
IndPHI->eraseFromParent();
|
|
}
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|